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Abstract

This paper addresses the distributed frequency control problem in a multi-area power system taking into account of unknown
time-varying power imbalance. Particularly, fast controllable loads are utilized to restore system frequency under changing power
imbalance in an optimal manner. The imbalanced power causing frequency deviation is decomposed into three parts: a known
constant part, an unknown low-frequency variation and a high-frequency residual. The known steady part is usually the prediction
of power imbalance. The variation may result from the fluctuation of renewable resources, electric vehicle charging, etc., which is
usually unknown to operators. The high-frequency residual is usually unknown and treated as an external disturbance. Correspond-
ingly, in this paper, we resolve the following three problems in different timescales: 1) allocate the steady part of power imbalance
economically; 2) mitigate the effect of unknown low-frequency power variation locally; 3) attenuate unknown high-frequency dis-
turbances. To this end, a distributed controller combining consensus method with adaptive internal model control is proposed. We
first prove that the closed-loop system is asymptotically stable and converges to the optimal solution of an optimization problem
if the external disturbance is not included. We then prove that the power variation can be mitigated accurately. Furthermore, we
show that the closed-loop system is robust against both parameter uncertainty and external disturbances. The New England system
is used to verify the efficacy of our design.

Keywords: Distributed control, frequency regulation, internal model control, load-side control, renewable generation.

1. Introduction

1.1. Background

In the modern power system, multiple regional grids are usu-
ally interconnected to constitute a bulk grid Min and Abur
(2006); Ahmadi-Khatir et al. (2013). To maintain a stable
power system, the frequency should be retained at its nominal
value, e.g. 50Hz or 60Hz. Conventionally, it is realized by syn-
chronized generators in a centralized fashion, known as a hier-
archy control architecture Kundur (1994); Dörfler et al. (2016).
However, with the increasing penetration of volatile and uncer-
tain renewable generations, power mismatch in the system can
fluctuate rapidly with a large amount. In such a situation, the
traditional manner of control may not be able to keep pace due
to large inertia of the traditional synchronous generators. For-
tunately, load-side participation in frequency control opens up
new possibility to resolve this problem, benefiting from its fast
response Schweppe et al. (1980); Zhao et al. (2014). On the
other hand, as controllable loads are usually dispersed across
the power system, a distributed architecture is more suitable for
load-side control than the conventional centralized one. Indeed,
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distributed optimal control has been investigated by combining
controller design with optimal dispatch problems Jokić et al.
(2009); Zhang and Papachristodoulou (2015); Stegink et al.
(2017). It leads to a so-called reverse engineering methodol-
ogy for designing optimal controllers, particularly in optimal
frequency control of power systems Li et al. (2016); Zhao et al.
(2014); Cai et al. (2017). In this paper, we design a distributed
load-side controller that is capable of adapting to power varia-
tion due to volatile renewable generations, such as wind farms
and PV clusters.

1.2. Related Work

In power system operation, frequency deviation is usually
a consequence of power mismatch due to unexpected distur-
bances, such as sudden load leaping/dropping or generator trip-
ping. Frequency control papers can be roughly divided into
two categories in terms of the forms of power imbalance: con-
stant power imbalance Zhao et al. (2014); Mallada et al. (2017);
Wang et al. (2018); Kasis et al. (2017); Wang et al. (2017b,c);
Lu et al. (2016) and time-varying power imbalance Trip et al.
(2016); Xi et al. (2017); Weitenberg et al. (2017). In the first
category, a step change of load/generation is considered. Then
generators and/or controllable loads are utilized to eliminate the
power imbalance and restore the nominal frequency. In Zhao
et al. (2014), an optimal load-side control problem is formu-
lated and a primary frequency controller is derived to balance
step power change using controllable loads. It is extended in
Mallada et al. (2017) to realize a secondary frequency control,
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i.e. restoring the nominal frequency. The design approach is
generalized in Kasis et al. (2017), where the model requirement
is relaxed and a passivity condition is proposed to guarantee
asymptotic stability. Wang et al. (2017b,c) further consider both
steady-state and transient operational constraints in distributed
optimal frequency control. In Wang et al. (2018), a nonlinear
network-preserving model is considered and only limited con-
trol coverage is needed to implement the distributed optimal
frequency control. A different disturbance is considered in Lu
et al. (2016), where the secondary frequency controller is in-
jected by constant malicious attacks. To eliminate the influence
of the attacks, a detection method is derived to combine with
the distributed frequency controller.

In the second category, power imbalance is not constant, cre-
ating much greater challenge to controller design and stabil-
ity analysis. In Trip et al. (2016), power variation is mod-
eled as output of a known exosystem. Then an internal model
controller is designed to tackle and compensate for the time-
varying imbalanced power. The idea of combining distributed
control with internal model control is attractive and inspiring.
In Xi et al. (2017), a centralized controller is proposed, which
can track the power imbalance and maintain the system fre-
quency within a desired range in the presence slowly changing
power imbalance. The frequency still varies along with time-
varying loads. In Weitenberg et al. (2017), measurement noise
is considered in frequency control, and a leaky integral con-
troller is proposed that can strike an acceptable trade-off be-
tween performance and robustness.

To sum up, in most of the existing literature, power distur-
bance is modeled as a step change. The time-varying power
disturbance is usually regarded as output of a known exosys-
tem. However, neither model is realistic for practical power
systems, especially when a large amount of renewable gener-
ations and electric vehicles are integrated. In such a situation,
power imbalance is always time-varying and unknown, which
should be carefully considered in the design of distributed fre-
quency control.

1.3. Contribution
In this paper, power imbalance is decomposed into a known

constant part, an unknown low-frequency time-varying part and
a high-frequency residual. In power systems, the first one can
be obtained by prediction while the latter two are fluctuations
around the prediction. Offset error in prediction can also be
considered in the unknown time-varying part. This decompo-
sition suggests a way to deal with time-varying disturbances.
First, a distributed control is proposed based on consensus
method to balance the known constant part economically, which
resolves a slow timescale operation problem. Second, a decen-
tralized supplementary controller based on the internal model
control is proposed to mitigate the effect of the unknown low-
frequency variation at a faster timescale. Finally, we also en-
sure that the proposed controller attenuate the impact of high-
frequency residual.

This work can be regarded as an extension of Zhao et al.
(2014); Mallada et al. (2017); Wang et al. (2018); Kasis et al.
(2017); Wang et al. (2017b,c). As the power imbalance is time

varying in our case, these previous distributed controller may
not be able to stabilize and restore the frequency, as we will
demonstrate later in case studies. Here the main challenge is
how to fit a time-varying tracking and compensation control
into the structure of the previous distributed frequency con-
troller. The major difference between this paper and Trip et al.
(2016) is that the power variation is modeled as output of a
known exosystem in Trip et al. (2016). Since such information
is difficult to obtain in practice, our model appears to be more
practical. In Wang et al. (2017a), an internal model control
is leveraged to devise a distributed unconstrained optimization
which can mitigate the effects of unknown time-varying dis-
turbances. In contrast, we consider optimal frequency control
problem with both power system dynamics as well as power
balance constraints, which are not included in Wang et al.
(2017a). Moreover, we also analyze the robustness of the pro-
posed controller under uncertain parameters and disturbances.
Main contributions of this paper are as follows:

• A generic model of power imbalance for frequency con-
trol is established, consisting of three parts: a known con-
stant part, an unknown low-frequency power variation and
a high-frequency residual. The power variation is further
modeled by a superposition of several dominant sinusoidal
components. Then it is formulated as the output of an ex-
osystem with unknown parameters;

• A distributed controller is derived to restore the nominal
frequency even under unknown disturbance. It is com-
posed of two parts. One is designed based on consensus
control to achieve an economic allocation of the constant
part of power imbalance, while the other is designed based
on adaptive internal model control to mitigate the effect of
unknown power variation;

• Robustness of the controller under parameter uncertainty
and external disturbances is analyzed. It is proved that the
uncertain damping constant has no impact on the perfor-
mance of the controller and the impact of external distur-
bances is attenuated greatly.

1.4. Organization
The rest of this paper is organized as follows. In Section 2,

the network and power imbalance models are formulated. Sec-
tion 3 presents the design of distributed frequency controller. In
Section 4, the equilibrium of the closed-loop system is charac-
terized with a proof of asymptotic stability. The robustness of
the proposed controller under uncertainties is analyzed in Sec-
tion 5. We confirm controller performance via simulations in
Section 6. Section 7 concludes the paper.

2. Problem Formulation

2.1. Model of Power Network
A large power network is usually composed of multiple con-

trol areas, which are interconnected through tie lines. For sim-
plicity, we treat each control area as a node with an aggre-
gate controllable load and an aggregate uncontrollable power
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injection.1 Then the power network is modeled as a graph
G := (N, E) where N = {1, 2, ...n} is the set of nodes (control
areas) and E ⊆ N × N is the set of edges (tie lines). If a pair of
nodes i and j are connected by a tie line directly, we denote the
tie line by (i, j) ∈ E. G is treated as directed with an arbitrary
orientation and we use (i, j) ∈ E or i → j interchangeably to
denote a directed edge from i to j. Without loss of generality,
we assume G is connected.

Besides the graph of physical power network, we also need
to consider the communication network, modeled by a graphH
whose nodes are the same set N of graph G with possibly a dif-
ferent set of edges. An edge inH means that the two endpoints
of the edge can communicate with each other directly. In this
paper, we assumeH is also connected. The set of neighbors of
node j in the communication graph H is denoted by Nc j. The
Laplacian matrix ofH is denoted as L.

A second-order linearized model is adopted to describe the
frequency dynamics of each node. We assume the tie lines
are lossless and adopt the DC power flow model, which is rea-
sonable for a high-voltage transmission system. Then for each
node j ∈ N, we have

θ̇ j = ω j (1a)

M jω̇ j = Pin
j − Pl

j − D jω j

+
∑

i:i→ j
Bi j(θi − θ j) −

∑
k: j→k

B jk(θ j − θk) (1b)

where, θ j denotes the rotor angle at node j; ω j the frequency
deviation; Pin

j the uncontrollable power injection; Pl
j the con-

trollable load. M j > 0, D j > 0 are inertia and damping con-
stants, respectively. B jk > 0 are line parameters that depend on
the reactances of line ( j, k) ∈ E.

2.2. Model of Power Imbalance

Denote Pin
j as the imbalanced power in the system. It can be

decomposed into two parts: a constant part and a variation part.
That is

Pin
j (t) = P

in
j + q̃ j(t) (2)

where P
in
j is the known constant part, which could be the predic-

tion of renewable generations and/or loads. q̃ j(t) is the variation
part, which is assumed unknown.2

The known constant part is easy to deal with, while the vari-
ation part is non-trivial. The main idea is to further decompose
it into the sum of a series of sinusoidal functions, whose pa-
rameters are unknown. Then an internal model control can be
utilized to trace these sinusoidal components, and then elimi-
nate the effects of the variation part.

1In our study, all controllable loads in the same area are aggregated into one
controllable load. The same for the aggregate uncontrollable power injection.
This simplification is practically reasonable when dealing with the frequency
control problem in power systems Li et al. (2016).

2As P
in
j may not be accurate, the offset error of prediction is included in

q̃ j(t) component. We abuse the term q̃ j(t) “variation part” for simplicity.

In light of Milan et al. (2013); Bušiā and Meyn (2016); Ba-
rooah et al. (2015); Aguirre et al. (2008), we can approxi-
mate variation of renewable generations and load demands by a
superposition of a few sinusoidal functions. Specifically, we
decompose the power imbalance q̃ j(t) at node j injected by
volatile renewable generation and loads into

q̃ j(t) := q j0 +
∑s j

k=1
q jk sin(a jk · t + φ jk) + w j(t) (3)

where q j0 is the prediction offset error (which is an unknown
constant). The second term models the variation part, which
is a superposition of s j sinusoidal functions. Their amplitudes
q jk, frequencies a jk > 0 and initial phases φ jk are unknown but
belong to a known bounded interval. Here we consider only
a few low-frequency power fluctuations. The remaining high-
frequency residuals, denoted by w j(t), is usually quite small. So
we treat w j(t) as an external disturbance and do not consider its
detailed model in this paper, but simply assume that it belongs
to theLT

2 space, i.e., for any w j(t) ( j ∈ N),
∫ T

0 ||w j(t)||2dt < +∞

holds for all 0 < T < +∞.

Remark 1 (Power Variation in power system). In this paper,
we adopt a generic model to depict q̃ j(t) so that it is applicable
to various types of power imbalance in practice. In practical
power systems, q̃ j(t) has many interpretations, some of which
are listed below.

1) Variation of renewable generations. Large-scale renewable
generations may vary rapidly. As it is difficult to accurately
predict volatile renewable generations, the fluctuation is al-
ways partly unknown. Such unknown variations may lead
to severe frequency fluctuations or even instability.

2) Variation of loads. Load demands in a power system are
always varying. Whereas load demand usually can be es-
timated quite accurately in a traditional power system, the
integration of electric vehicles, energy storage and demand
response makes demands much more difficult to predict.

We use a generic form to represent the variation of renewable
generations and loads instead of detailed models of wind gener-
ators and PVs. Actually, it is common to treat power variation
due to wind generators, PVs and loads as an aggregated injec-
tion Trip et al. (2016); Li et al. (2016); Mallada et al. (2017).
Here we follow this treatment.

2.3. Equivalent Transformation of Disturbance Model

We further investigate the dominant part in q̃ j(t). Denote

q j(t) := q j0 +
∑s j

k=1
q jk sin(a jk · t + φ jk) (4)

Then we show that q j(t) can be expressed as the output of an
exosystem. To this end, define

λ j1 = q j(t)

λ jk =

(
d
dt

)k−1

q j(t) (2 ≤ k ≤ s̄ j)
(5)
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where s̄ j := 2s j + 1. Then q j(t) is just the output of the follow-
ing dynamic system Obregon-Pulido et al. (2002); Wang et al.
(2017a):

λ̇ j = A j(α j)λ j (6a)
q j(t) = [1 01×2s j ] · λ j (6b)

where,

λ j := [λ j1, · · · , λ j,s̄ j ]
T

A j(α j) :=
[

02s j×1 I2s j

0 α j1, 0, · · · , α js j , 0

] (7)

with α j1 = −
s j∏

l=1
a2

jl, α j2 = −
s j∑

k=1

s j∏
l=1
l,k

a2
jl, · · · , α js j = −

s j∑
l=1

a2
jl.

Here, a jl are defined in (4).
To facilitate the controller design, a transformation is con-

structed. Let R j := [ri1, · · · , ri,s̄ j−1, 1], such that all the roots of
polynomial τs̄ j−1 + ri,s̄ j−1τ

s̄ j−2 + · · · + ri2τ + ri1 have negative
real parts. Then define a vector Ã j(α j) := R j(Is̄ j + A j(α j)) and
construct the following matrix

O j(α j) :=
[
ÃT

j (α j), · · · ,
(
Ã j(α j)A

s̄ j−1
j (α j)

)T ]T

In Xu et al. (2016) , it is proven that O j(α j) is nonsingular, and

O−1
j (α j)A j(α j)O j(α j) = A j(α j)

Let ϕ j = O−1
j (α j)λ j. Then we have

ϕ̇ j = A j(α j)ϕ j (8a)
q j(t) = Ã j(α j)ϕ j (8b)

So far, q j(t) is written as the output of a new exosystem (8a).
However, elements in A j(α j) and Ã j(α j) are still unknown. Ac-
cording to the definition of q j(t) and boundedness of q jk, a jk,
we have λ j is bounded. Hence ϕ j is also bounded due to the
nonsingular transformation.

From (2), (3) and (4), Pin
j (t) is composed of three parts, i.e.,

P
in
j , q j(t) and w j(t), we will address them in different ways,

giving rise to the following three problems.

P1: Balancing P
in
j economically and globally;

P2: Coping with the variation of q j(t) locally;

P3: Attenuating the impact of external disturbance w j(t).

Remark 2 (Timescales). The above three problems can be in-
terpreted from the perspective of multiple timescales in power
systems. P1 is the long-term operation problem, i.e., the sys-
tem should operate economically in a steady state, where the
time scale is about several minutes. P2 is the short-term con-
trol problem with time scale of several seconds, where the low-
frequency variation should be eliminated by designing proper
controller. The timescale of P3 is even faster than that of P2,
where the controller cannot track the high-frequency distur-
bance accurately. In this situation, we hope to attenuate its neg-
ative impact. Thus, we resolve the distributed frequency control
problem under time-varying power imbalance systematically in
three different timescales, which coincides with P1-P3.

3. Controller Design

In this section, the known steady-state part P
in
j is optimally

balanced across all areas using a consensus-based distributed
control, which resolves P1. Then the effect of variation part
q j(t) is eliminated locally by using a supplementary internal
model controller, resolving P2. In terms of P3, here we do
not design a specific controller to deal with w j(t). Instead
we show that the proposed controller can effectively attenuate
w j(t), which will be discussed in Section V.

3.1. Controller for the Known Steady-state P̄in
j

First we formulate an optimization model for the optimal
load control problem:

OLC: min
Pl

j

∑
j∈N

1
2
β j ·

(
Pl

j

)2
(9a)

s. t.
∑

j∈N
P

in
j =

∑
j∈N

Pl
j (9b)

where β j > 0 are constants. The control goal of each area is to
minimize the regulation cost of the controllable load, which is
in a quadratic form Trip et al. (2016). (9b) is the power balance
constraint. Suppose for that q̃ j(t) = 0. We design a consensus-
based controller Trip et al. (2016)

Pl
j = µ j/β j (10a)

µ̇ j = −
∑

k∈Nc j
(µ j − µk) + ω j/β j (10b)

In (10a), µ j are the consensus variables, and −µ j stands for the
marginal costs of individual controllable loads. In the steady
state, all µ j should converge to an identical value for all con-
trollable loads when ω j converges to zero.

This simple controller can restore the frequency and mini-
mize the regulation cost of the controllable loads when q̃ j(t) =

0. However, a time-varying q̃ j(t) may destroy the controller.
Next we use a supplementary controller to deal with q̃ j(t).

3.2. Controller Considering Varying Power Imbalance

In this subsection, an adaptive internal model control is sup-
plemented to mitigate q j(t), which is given by

Pl
j = µ j/β j + [d jω j + Ã j(α̂ j)ζ j] (11a)

µ̇ j = −
∑

k∈Nc j
(µ j − µk) + ω j/β j (11b)

η̇ j = −η j + P
in
j − Pl

j − D jω j

+
∑

i:i→ j
Bi j(θi − θ j) −

∑
k: j→k

B jk(θ j − θk)
(11c)

ζ̇ j = A j(α̂ j)ζ j −G j(η j + R jζ j) (11d)
˙̂α j = −kαΛ j(ζ j)(η j + R jζ j) (11e)

where kα > 0, γ > 0 are constant coefficients, and

G j = [ 01×(s̄ j−2), 1, γ ]T ,

Λ j(ζ j) = [ ζ j2, ζ j4, · · · , ζ j,s̄ j−1 ]T .

4



Here, (11b) is the same as (10b), which is used to synchronize
µ j and restore frequency. Dynamics of η j, ζ j, α̂ j are derived
from the adaptive internal model. Comparing (11c) and (1b),
we have η̇ j = −η j + M jω̇ j − q̃ j(t), which implies that η j is
intended to estimate unknown q̃ j(t). ζ j reproduces the dynamics
of ϕ j in (8a). α̂ j is the estimation of α j. It should be noted that
Ã j(α̂ j)ζ j in (11a) are the estimated values of Ã j(α j)ϕ j, i.e. q j,
in (8a). It will be introduced in Section 4, α̂ j = α j and ζ j = ϕ j

in the steady state, leading to q j = Ã j(α̂ j)ζ j.

In the controller (11a), µ j/β j allocates P
in
j economically;

Ã j(α̂ j)ζ j is the output of the internal model, which is used to
eliminate q j(t) asymptotically; and d jω j is used to guarantee
stability and enhance robustness of the controller. It is illus-
trated in Section VI that a low-order internal model control suf-
fices to trace and compensate for the power variation well.

3.3. Closed-loop Dynamics

Combining (1) with (11) and omitting w j(t), we obtain a
closed-loop system. Since we are only interested in angle dif-
ference between two areas, use θ̃i j := θi − θ j as the new state
variable. Then perform the following transformation

η̃ j := R jϕ j + η j, ζ̃ j := ζ j − ϕ j, α̃ j := α̂ j − α j (12)

Their derivatives are

˙̃η j = R jϕ̇ j + η̇ j

= R jA j(α j)ϕ j − η j + P
in
j +

∑
i:i→ j

Bi jθ̃i j

−
∑

k: j→k
B jkθ̃ jk − D jω j −

(
µ j/β j + d jω j + Ã j(α̂ j)ζ j

)
= −η̃ j + Ã j(α j)ϕ j − Ã j(α̂ j)ζ j + P

in
j +

∑
i:i→ j

Bi jθ̃i j

−
∑

k: j→k
B jkθ̃ jk − D jω j − µ j/β j − d jω j (13a)

˙̃ζ j = ζ̇ j − ϕ̇ j = A j(α̂ j)ζ j −G j(η j + R jζ j) − A j(α j)ϕ j

= (A j(α̂ j) − A j(α j))ζ j + A j(α j)(ζ j − ϕ j)
−G j(η j + R jζ j − R jϕ j + R jϕ j)

= (A j(α̂ j) − A j(α j))ζ j + (A j(α j) −G jR j)ζ̃ j −G jη̃ j (13b)
˙̃α j = ˙̂α j − α̇ j = −kαΛ j(ζ j)(η j + R jζ j)

= −kαΛ j(ζ j)(η̃ j + R jζ̃ j) (13c)

Define ρq j := Ã j(α j)ϕ j− Ã j(α̂ j)ζ j. Then the closed-loop system
is converted into

˙̃θi j = ωi − ω j (14a)

ω̇ j =
1

M j

(
P

in
j + ρq +

∑
i:i→ j

Bi jθ̃i j −
∑

k: j→k
B jkθ̃ jk

− µ j/β j − d jω j − D jω j
) (14b)

µ̇ j = −
∑

k∈Nc j
(µ j − µk) + ω j/β j (14c)

˙̃η j = −η̃ j + P
in
j + ρq +

∑
i:i→ j

Bi jθ̃i j −
∑

k: j→k
B jkθ̃ jk

− D jω j − µ j/β j − d jω j

(14d)

˙̃ζ j = (A j(α̂ j) − A j(α j))ζ j + (A j(α j) −G jR j)ζ̃ j −G jη̃ j (14e)

˙̃α j = −kαΛ j(ζ j)(η̃ j + R jζ̃ j) (14f)

The new closed-loop system (14) is equivalent to the original
one , i.e. (1) and (11). We can hence analyze the equilibrium
point and stability of the equivalent system (14).

4. Equilibrium Point and Stability

In this section, we analyze the equilibrium and stability of the
closed-loop system (14) when the noise w j(t) is not considered.

4.1. Equilibrium Point
First we define the equilibrium point of the closed-loop sys-

tem (14).

Definition 1. A point (θ̃∗, ω∗, µ∗, η̃∗, ζ̃∗, α̃∗) 3 is an equilibrium
point or an equilibrium of the closed-loop system (14) if the
right-hand side of (14) vanishes at (θ̃∗, ω∗, µ∗, η̃∗, ζ̃∗, α̃∗).

The next theorem shows that two problems P1 and P2 are
solved simultaneously at the equilibrium.

Theorem 1. At the equilibrium of (14), the following asser-
tions are true.

1. η̃∗j = ζ̃∗j = α̃∗j = 0, which implies that q j(t) is accurately
estimated.

2. System frequency is restored to its nominal value, i.e.
ω∗j = 0 for all j ∈ N.

3. The marginal controllable load costs satisfy µ∗j = µ∗k for all
j, k ∈ N.

Proof of Theorem 1. In an equilibrium, we have

0 = ω∗i − ω
∗
j (15a)

0 = P
in
j + ρ∗q +

∑
i:i→ j

Bi jθ̃
∗
i j −

∑
k: j→k

B jkθ̃
∗
jk −

µ∗j

β j
− (d j + D j)ω∗j

(15b)

0 = −
∑

k∈Nc j
(µ∗j − µ

∗
k) + ω∗j/β j (15c)

0 = −η̃∗j + P
in
j + ρ∗q +

∑
i:i→ j

Bi jθ̃
∗
i j −

∑
k: j→k

B jkθ̃
∗
jk

− µ∗j/β j − (d j + D j)ω∗j
(15d)

0 = (A j(α̂∗j) − A j(α j))ζ∗j + (A j(α j) −G jR j)ζ̃∗j −G jη̃
∗
j (15e)

0 = −kαΛ j(ζ∗j )(η̃
∗
j + R jζ̃

∗
j ) (15f)

We have η̃∗j = 0 due to (15d) and (15b). Then (7) yields

A j(α̂∗j) − A j(α j) =

[
02s j×1 02s j

0 α̃ j1, 0, · · · , α̃ js j , 0

]
(16)

and

A j(α j) −G jR j =

[
02s j×1 I2s j

0 α j1, 0, · · · , α js j , 0

]

3Given a collection of yi for i in a certain set Y , y denotes the column vector
y := (yi, i ∈ Y) of a proper dimension with yi as its components.

5



− [0T , 1, γ]T · [r j1, · · · , r j,s̄ j−1, 1]

=

 0s̄ j−2,1 Is̄ j−2 0s̄ j−2,1
−r j1 −r j2, · · · ,−r j,s̄ j−1 0
−γri1 α j1 − γr j2,−γr j3, · · · ,−γr j,s̄ j−1 −γ

 (17)

Then the first s̄ j − 1 dimension of (15e) is rewritten as

[
0s̄ j−2,1 Is̄ j−2
−r j1 −r j2, · · · ,−r j,s̄ j−1

]
︸                                 ︷︷                                 ︸

Ψ


ζ̃∗j1
...

ζ̃∗j,s̄ j−1

 = 0 (18)

The first matrix in (18), denoted by Ψ, is nonsingular. Hence
we have

[
ζ̃∗j1, · · · , ζ̃

∗
j,s̄ j−1

]T
= 0. Denote α̃ j := [α̃ j1, · · · , α̃ j,s j ]

T .
Then the s̄ j-th dimension of (15e) together with (15f) yield

ΛT
j (ζ j)α̃∗j − γζ̃

∗
j,s̄ j
≡ 0

Λ j(ζ j)ζ̃∗j,s̄ j
≡ 0

This implies ζ̃∗j,s̄ j
= 0 and α̃∗j = 0. The first assertion is proved.

From the first assertion, we have

ρ∗q j = −Ã j(α̂∗j)ζ
∗
j + Ã j(α j)ϕ j = 0 (19)

From (15a), we have ω∗i = ω∗j = ω0, with a constant ω0. Con-
sidering the compact form of (15c), we have

−Lµ∗ + ω0 · β
−1 = 0 (20)

where β−1 := [β−1
1 , · · · , β−1

n ]T . Multiply 1T on both sides of
(20), and we have

−1T · Lµ∗ + ω01T · β−1 = 0 = ω0(β−1
1 + · · · + β−1

n ) (21)

where 1 is a vector with all elements as 1, and the second equa-
tion is due to 1T ·L = 0. Thus we have ω0 = 0 due to β j > 0,∀ j,
which is the second assertion.

From (20), we have Lµ∗ = 0. Equivalently, µ∗ = µ0 · 1 with a
constant µ0, implying the third assertion.

In fact, the equilibrium (θ̃∗, ω∗, µ∗, η̃∗, ζ̃∗, α̃∗) is unique, with
θ̃∗ being unique up to reference angles θ0. As the optimization
problem (9) is with a strongly convex objective function and
linear constraints, its solution Pl

j is unique. Then, µ∗j is unique
by (10a). In Theorem 1, we prove that ω∗j = η̃∗j = ζ̃∗j = α̃∗j = 0,
which are also unique. If the angle of the reference node is
set as a constant θ0, θ̃∗ is also unique (see (Wang et al., 2017c,
Theorem 2)). Thus, the equilibrium point of (14) is unique.

From the first assertion and invoking (12), we have ζ∗j =

ϕ j, α̂
∗
j = α j, implying the variation q j(t) is accurately elimi-

nated. Then P2 is solved. From the third assertion, P1 is solved.
Therefore, P1 and P2 are solved simultaneously.

4.2. Asymptotic stability

In this subsection, we prove the asymptotic stability of the
closed-loop system (14) when the noise w j(t) is not considered.
We start by transforming it to an equivalent form.

Denote η̂ j := η̃ j − M jω j and ν j := [η̂ j, ζ̃ j, α̃ j]T . Then (14)
can be rewritten as

˙̃θi j = ωi − ω j (22a)

ω̇ j =
1

M j

(
P

in
j + ρq j +

∑
i:i→ j

Bi jθ̃i j −
∑

k: j→k
B jkθ̃ jk

− µ j/β j − d jω j − D jω j
) (22b)

µ̇ j = −
∑

k∈Nc j
(µ j − µk) + ω j/β j (22c)

ν̇ j = φ j(ν j, ω j) (22d)

where

φ j(ν j, ω j) =


−η̂ j − M jω j(

(A j(α̂ j) − A j(α j))ζ j −G j(η̂ j + M jω j)
+(A j(α j) −G jR j)ζ̃ j

)
−kαΛ j(ζ j)(η̂ j + M jω j + R jζ̃ j)


It is obvious that if (14) is stable, (22) is also stable. Thus, we
turn to prove the stability of (22).

Consider the subsystem ν j , we have the following Lemma.

Lemma 2. Consider the subsystem (22d) and let ω j ≡ 0. Then
for each j ∈ N, there exists a C1 function U j(t, ν j) such that

U j(ν j) ≤ U j(t, ν j) ≤ U j(ν j)

∂U j(t, ν j)
∂t

+
∂U j(t, ν j)

∂ν j
φ j(ν j, 0) ≤ −

∥∥∥ν j

∥∥∥2

∥∥∥∥∥∥∂U j(t, ν j)
∂ν j

∥∥∥∥∥∥ ≤ b j0(
∥∥∥ν j

∥∥∥ +
∥∥∥ν j

∥∥∥3
)

(23)

for some constant b j0 > 0 and positive definite and radially
unbounded functions U j(ν j),U j(ν j).

The proof of Lemma 2 is similar to (Wang et al., 2017a,
Lemma 3), which is omitted here.

Before giving the stability result, we first study the Euclidean
norm of

∥∥∥ρq j

∥∥∥ and
∥∥∥∥ ∂U j(t,ν j)

∂ν j

(
φ j(ν j, ω j) − φ j(ν j, 0)

)∥∥∥∥. For ρq j,∥∥∥ρq j

∥∥∥ =
∥∥∥Ã j(α j)ϕ j − Ã j(α̂ j)(ζ̃ j + ϕ j)

∥∥∥
≤

∥∥∥R jÂ j(α̃ j)ϕ j

∥∥∥ +
∥∥∥Ã j(α̃ j + α j)ζ̃ j

∥∥∥
≤

∥∥∥R j

∥∥∥ ∥∥∥Â j(α̃ j)
∥∥∥ ∥∥∥ϕ j

∥∥∥ +
∥∥∥R jζ̃ j + R jA j(α̃ j + α j)ζ̃ j

∥∥∥
≤

∥∥∥R j

∥∥∥ ∥∥∥Â j(α̃ j)
∥∥∥ ∥∥∥ϕ j

∥∥∥ +
∥∥∥R jζ̃ j

∥∥∥ +
∥∥∥R jA j(α j)ζ̃ j

∥∥∥ +
∥∥∥R jĀ j(α̃ j)ζ̃ j

∥∥∥
≤ c2(

∥∥∥ν j

∥∥∥ +
∥∥∥ν j

∥∥∥2
) (24)

where

Â j(α̃ j) =
[
α̃ j1 0 α̃ j2 0 · · · α̃ js j 0

]
Ā j(α̃ j) =

[
0(s̄ j−1)×1 0s̄ j−1,s̄ j−1
α̃ j1 0, α̃ j2, 0, · · · , α̃ js j , 0

]
c2 ≥

∥∥∥R j

∥∥∥ ∥∥∥Â j(α̃ j)
∥∥∥ +

∥∥∥R j

∥∥∥ +
∥∥∥R jA j(α j)

∥∥∥ ,∀ j ∈ N

The last “≤” is due to the boundedness of φ j. Define a set Ων :={
ν|

∑
j∈N U j(t, ν j) ≤ c̃

}
. Since U j(t, ν j) is radially unbounded,
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there exists a constant c such that
∥∥∥v j(t)

∥∥∥ ≤ c for any ν ∈ Ων. In
Ων, we have∥∥∥ρq j

∥∥∥ =
∥∥∥Ã j(α j)φ j − Ã j(α̂ j)ζ j

∥∥∥ ≤ c3
∥∥∥ν j

∥∥∥ (25)

for a suitable c3 > 0 (defined in (29)).
Similarly,

∥∥∥φ j(ν j, ω j) − φ j(ν j, 0)
∥∥∥ =

∥∥∥∥∥∥∥∥
 −M jω j

−G jM jω j

−kαΛ j(ζ j)M jω j


∥∥∥∥∥∥∥∥

≤
(∥∥∥M j

∥∥∥ +
∥∥∥G j

∥∥∥ ∥∥∥M j

∥∥∥ + kα
∥∥∥M j

∥∥∥ ∥∥∥ν j

∥∥∥) ∥∥∥ω j

∥∥∥ ≤ c3
∥∥∥ω j

∥∥∥ (26)

From Lemma 2, we have∥∥∥∥∥∥∂U j(t, ν j)
∂ν j

∥∥∥∥∥∥ ≤ c3
∥∥∥ν j

∥∥∥ (27)

Combining (26) and (27), we have∥∥∥∥∥∥∂U j(t, ν j)
∂ν j

(
φ j(ν j, ω j) − φ j(ν j, 0)

)∥∥∥∥∥∥ ≤ 1
2

∥∥∥ν j

∥∥∥2
+

1
2

c4
3

∥∥∥ω j

∥∥∥2

(28)

where

c3 ≥ max
{
1, c2(1 + c), b j0(1 + c2),∥∥∥M j

∥∥∥ +
∥∥∥G j

∥∥∥ ∥∥∥M j

∥∥∥ + kα
∥∥∥M j

∥∥∥ c
}
, ∀ j ∈ N

(29)

We make an assumption.

A1: The control parameter d j satisfies

d j > max

1 + 2c6
3

2
− D j,

2c2
3 + 1

4c2
3

+
2c6

3 − c4
3

2c2
3 − 2

+ 2c2
3 − D j


(30)

A1 is easy to satisfy by letting d j large enough. Denote

the state variables of (22) as x =
[
θ̃T , ωT , µT , νT

]T
and x1 =[

θ̃T , ωT , µT ]T . Similar to Definition 1, we have

Definition 2. A point x∗ is an equilibrium point of the closed-
loop system (22) if the right-hand side of (22) vanishes at x∗.

Define a Lyapunov candidate function as

V(t, x1, ν) =
1

2c2
3

V1 + V2 (31)

where

V1 =
1
2

(x1 − x∗1)T Γ(x1 − x∗1) (32)

with Γ := diag (B,M, In),

V2 =
∑

j∈N
U j(t, ν j) (33)

From Lemma 2 and (32), there are positive definite and radi-
ally unbounded functions V(x1, ν),V(x1, ν) such that V(x1, ν) ≤
V(t, x1, ν) ≤ V(x1, ν). Define a set ΩV =

{
(x1, ν)| V(x1, ν) ≤ c̃

}
.

We have ∀(x1, ν) ∈ ΩV , then ν ∈ Ων and
∥∥∥v j(t)

∥∥∥ ≤ c.
Finally, the stability result is given.

Theorem 3. Assume A1 holds. Then every trajectory of (22)
x(t) starting from ΩV converges to x∗ asymptotically.

Proof of Theorem 3. Define the following function

h(x1) =


BCTω

P
in
− β−1µ − (D + d)ω −CBθ̃

−Lµ + β−1ω

 (34)

The derivative of V1 is

V̇1 = (x1 − x∗1)T h(x1) +
∑
j∈N

ω j

(
Ã j(α j)ϕ j − Ã j(α̂ j)ζ j

)
(35)

The first part of V̇1 is

(x1 − x∗1)T h(x1)

=

∫ 1

0
(x1 − x∗1)T ∂

∂y
h(y(s))(x1 − x∗1)ds + (x1 − x∗1)T h(x∗1)

≤
1
2

∫ 1

0
(x1 − x∗1)T

[
∂T

∂y
h(y(s)) +

∂

∂y
h(y(s))

]
(x1 − x∗1)ds

=

∫ 1

0
(x1 − x∗1)T [

H(y(s))
]
(x1 − x∗1)ds (36)

where y(s) = x∗1 + s(x1 − x∗1). The second equation is from the

fact that h(x1)−h(x∗1) =
∫ 1

0
∂
∂y h(y(s))(x1 − x∗1)ds. The inequality

is due to either h(x∗1) = 0 or h(x∗1) < 0, x1 ≥ 0, i.e. (x1 −

x∗1)T h(x∗1) ≤ 0.

∂h(x1)
∂x1

=

 0 BCT 0
−CB −(D + d) −β−1

0 β−1 −L

 (37)

where D = diag(Di), d = diag(di), C is the incidence matrix of
the communication graph.

Finally, H in (36) is

H =
1
2

[
∂T

∂x1
h(x1) +

∂

∂x1
h(x1)

]
=

 0 0 0
0 −(D + d) 0
0 0 −L


The second part of V̇1 is∑

j∈N
ω j

(
Ã j(α j)φ j − Ã j(α̂ j)ζ j

)
≤

1
2
‖ω‖2 +

1
2

∑
j∈N

(Ã j(α j)ϕ j − Ã j(α̂ j)ζ j)2

≤
1
2
‖ω‖2 +

1
2

c2
3 ‖ν‖ (38)

where the last inequality is due to (25).
Thus,

V̇1 ≤

∫ 1

0
(x1 − x∗1)T [

H(y(s))
]
(x1 − x∗1)ds +

1
2
‖ω‖2 +

1
2

c2
3 ‖ν‖

(39)

The derivative of V2 is

V̇2 =
∑

j∈N

(
∂U j(t, ν j)

∂t
+
∂U j(t, ν j)

∂ν j
φ j(ν j, ω j)

)
7



=
∑

j∈N

(
∂U j(t, ν j)

∂t
+
∂U j(t, ν j)

∂ν j
φ j(ν j, 0)

)
+

∑
j∈N

(
∂U j(t, ν j)

∂ν j

(
φ j(ν j, ω j) − φ j(ν j, 0)

))
≤ − ‖ν‖2 +

1
2
‖ν‖2 +

1
2

c4
3 ‖ω‖

2

= −
1
2
‖ν‖2 +

1
2

c4
3 ‖ω‖

2 (40)

where the inequality is due to Lemma 2 and (28).
In ΩV , the derivative of V is

V̇ ≤
1

2c2
3

∫ 1

0
(x1 − x∗1)T [

H(y(s))
]
(x1 − x∗1)ds +

1
4c2

3

‖ω‖2

+
1

4c2
3

∑
j∈N

(Ã j(α j)φ j − Ã j(α̂ j)ζ j)2 −
1
2
‖ν‖2 +

1
2

c4
3 ‖ω‖

2

≤ −
1
4
‖ν‖2 +

1
2c2

3

∫ 1

0
(x1 − x∗1)T [

H(y(s))
]
(x1 − x∗1)ds

+
1 + 2c6

3

4c2
3

‖ω‖2 (41)

Define H̃ as H̃ :=


0 0 0

0 −(D + d) +
1+2c6

3
2 In 0

0 0 −L

 .
Then we have

V̇ ≤ −
1
4
‖ν‖2 +

1
2c2

3

∫ 1

0
(x1 − x∗1)T H̃ (x1 − x∗1)ds (42)

It is obvious that H̃ ≤ 0 holds if

−(D + d) +
1 + 2c6

3

2
In < 0 (43)

where In is an n-dimensional identity matrix. Indeed, Assump-
tion A1 guarantees that (43) holds.

By LaSalle’s invariance principle, we can prove that the tra-
jectory x(t) converges to the largest invariant subset of

W1 = {x|ν∗ = 0, ω = ω∗ = 0, µ = µ∗} .

Next we will prove that the convergence is to an equilibrium
point. Since ω = ω∗ are constants, θ̃ = CTω∗ are also constants.
Then by (Khalil, 1996, Corollary 4.1), x(t) will converge to its
equilibrium point x∗ asymptotically.

5. Robustness Analysis

5.1. Robustness Against Uncertain Parameter D j

In the controller (11), the exact value of D j is difficult to
know, and may even change. However, we claim that the in-
accuracy of D j does not influence the equilibrium point of the
closed-loop system (14) and its stability, as we explain.

We first consider the equilibrium point. Suppose the estima-
tion of D j is D̂ j and the estimation error is ∆D j := D̂ j − D j. As

D j > 0, we assume its estimation D̂ j > 0. Then (14d) can be
rewritten as

˙̃η j = −η̃ j + P
in
j + ρq j +

∑
i:i→ j

Bi jθ̃i j −
∑

k: j→k
B jkθ̃ jk

− D jω j − ∆D jω j − µ j/β j − d jω j

(44)

Since ω j vanishes at equilibrium, ∆D j does not influence the
equilibrium point of the closed-loop system (14a)-(14c), (44),
(14e)-(14f).

Next, we discuss stability. When ∆D j is considered, (22d) is
rewritten as

ν̇ j =


−η̂ j − (M j + ∆D j)ω j(

(A j(α̂ j) − A j(α j))ζ j −G j(η̂ j + M jω j)
+(A j(α j) −G jR j)ζ̃ j

)
−kαΛ j(ζ j)(η̂ j + M jω j + R jζ̃ j)

 (45)

Suppose x̃(t) are state variables of (22a) − (22c), (45), and x̃∗ is
an equilibrium point of x̃(t).

A2: The parameter d j satisfies (30), where c3 is given by

c3 ≥ max
{
1, c2(1 + c), b j0(1 + c2),∥∥∥M j + ∆D j

∥∥∥ +
∥∥∥G j

∥∥∥ ∥∥∥M j

∥∥∥ + kα
∥∥∥M j

∥∥∥ c
}
.

We have the following result.

Corollary 4. Assume A2 holds, every trajectory x̃(t) of (14a)-
(14c), (44), (14e)-(14f) starting from ΩV converges to the equi-
librium point x̃∗ asymptotically.

Note that one can always choose a large enough d j. Hence
Corollary 4 can be easily proved following the same proof of
Theorem 3, which is omitted here.

In summary, the unknown parameter D j does not influence
the equilibrium point and its stability,indicating that our con-
troller is robust against parameter uncertainty.

5.2. Robustness Against Unknown Disturbances w j(t)
To attenuate the effect of w j(t), one needs to guarantee that,

for a given constant γ > 0, the robust performance index∥∥∥ω j(t)
∥∥∥2
≤ γ

∥∥∥w j(t)
∥∥∥2

holds. (Zhou et al., 1996, Chapter 16),
Qin et al. (2018). It means that, for a bounded external distur-
bance w j(t), the frequency deviation is always bounded by the
given γ. A smaller γ results in a better attenuation performance.
The lower bound of γ (if it exists) is referred to as L2 gain of
the system.

When considering w j(t), the closed-loop system is

˙̃θi j = ωi − ω j (46a)

ω̇ j =
1

M j

(
P

in
j + w j(t) + ρq j +

∑
i:i→ j

Bi jθ̃i j −
∑

k: j→k

B jkθ̃ jk

− µ j/β j − d jω j − D jω j
) (46b)

µ̇ j = −
∑

k∈Nc j
(µ j − µk) + ω j/β j (46c)

ν̇ j = φ̃ j(ν j, ω j,w j) (46d)
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where

φ̃ j =


−η̂ j − M jω j − w j(t)(

(A j(α̂ j) − A j(α j))ζ j −G j(η̂ j + M jω j)
+(A j(α j) −G jR j)ζ̃ j

)
−kαΛ j(ζ j)(η̂ j + M jω j + R jζ̃ j)

 .
By an analysis similar to (26), we have∥∥∥φ j(ν j, ω j,w j) − φ j(ν j, 0, 0)

∥∥∥ ≤ c3
∥∥∥ω j

∥∥∥ +
∥∥∥w j

∥∥∥ (47)

where c3 is same as that in (29). Then∥∥∥∥∥∥∂U j(t, ν j)
∂ν j

(
φ j(ν j, ω j,w j) − φ j(ν j, 0, 0)

)∥∥∥∥∥∥
≤

1
2

∥∥∥ν j

∥∥∥2
+

2c6
3 − c4

3

2c2
3 − 2

∥∥∥ω j

∥∥∥2
+

1
2

∥∥∥w j

∥∥∥2
(48)

Using V1, V2 defined in (32) and (33) again, we have

V̇1 ≤

∫ 1

0
(x1 − x∗1)T [

H(y(s))
]
(x1 − x∗1)ds +

1
2

c2
3 ‖ν‖

2

+
1
2
‖ω‖2 +

1
4c2

3

‖ω‖2 + c2
3 ‖w‖

2
(49)

and

V̇2 ≤ − ‖ν‖
2 +

1
2

∥∥∥ν j

∥∥∥2
+

2c6
3 − c4

3

2c2
3 − 2

‖ω‖2 +
1
2
‖w‖2

= −
1
2
‖ν‖2 +

2c6
3 − c4

3

2c2
3 − 2

‖ω‖2 +
1
2
‖w‖2 (50)

Using the same Lyapunov function as in (31) gives

V̇ ≤ −
1
4
‖ν‖2 −

1
2c2

3

(µ − µ∗)T L(µ − µ∗) + ‖w‖2

−
1

2c2
3

ωT

D + d −
2c2

3 + 1

4c2
3

In −
2c6

3 − c4
3

2c2
3 − 2

In

ω (51)

Thus, we have ∥∥∥ω j

∥∥∥2
≤ γ

∥∥∥w j

∥∥∥2
(52)

where

1
γ

= min

 1
2c2

3

D j + d j −
2c2

3 + 1

4c2
3

−
2c6

3 − c4
3

2c2
3 − 2

 ,∀ j ∈ N

(53)

We have 1
γ
> 1 due to Assumption A1.

Inequalities (52) and (53) indicate that the controller is robust
to w j(t) with the L2-gain γ < 1. In practice, the amplitudes of
w j(t) are usually quite small. As a consequence, the deviation
of ω j is also small. According to (53), a larger d j is helpful to
enhance the attenuation performance.

The analysis above shows that the controller is robust in
terms of uncertain parameter D j and unknown disturbance
w j(t). Hence P3 is resolved.
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Figure 1: The New England 39-bus system

0 20 40 60 80 100 120 140 160 180-30
-20
-10
0
10
20
30

V
ar

ia
tio

n 
(M

W
)

 

Area 1
 

Area 2

 

Area 3
-150
-100
-50
0

50
100
150

 

Area 4

Time (s)
-30
-20
-10
0

10
20
30

0 20 40 60 80 100 120 140 160 180
Time (s)

-30
-20
-10
0
10
20
30

V
ar

ia
tio

n 
(M

W
)

0 20 40 60 80 100 120 140 160 180
Time (s)

0 20 40 60 80 100 120 140 160 180
Time (s)

Figure 2: Power variation of renewable resources in each area

6. Case studies

6.1. System Configuration

To verify the performance of the proposed controller, the
New England 39-bus system with 10 generators as shown in
Figure 1 is used for test. All simulations are implemented in
the commercial power system simulation software PSCAD.

We add four (aggregate) controllable loads to the system by
connecting them at buses 32, 36, 38 and 39, respectively. Their
initial values are set as (74.1, 52.7, 52.7, 105.4) MW. Then the
system is divided into four control areas, as shown in Figure
1. Each area contains a controllable load. The communication
graph is undirected and set as L32 ↔ L36 ↔ L38 ↔ L39 ↔
L32. For simplicity, we assume the communication is perfect
with no delay or loss. In our tests, two cases are studied based
on different data: 1) self-generated data in PSCAD; 2) the real
data of an offshore wind farm. The variation in the first case
is faster than the latter. Parameters used in the controller (11)
are given in Table 1. The value of Bi j is given in Table 2. The

Table 1: Parameters used in the controller (11)
Area i 1 2 3 4
β 1 0.8 0.8 0.4
d 1000 1000 1000 1000
D 50 50 50 80
γ 1 1 1 1
kα 10 10 10 10
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Table 2: Parameters used in the controller (11)
Line (1, 2) (1, 3) (1, 4) (2, 3) (2, 4)
Bi j 46 47 89 112 24

0 20 40 60 80 100 120 59.92

59.94

59.96

59.98

60

60.02

60.04

60.06

60.08

Fr
eq

ue
nc

y 
(H

z)

Time (s)

No extra control
With extra control

0 20 40 60 80 100 120 59.92

59.94

59.96

59.98

60

60.02

60.04

60.06

60.08

Fr
eq

ue
nc

y 
(H

z)

Time (s)

With controller (10)
With controller (11)

Figure 3: System frequencies under two controls

R j used in (11) for each area is R j = [1, 6, 15, 20, 15, 6, 1]. The
corresponding polynomial is (x + 1)6, where all the roots are
−1, satisfying the requirement.

6.2. Self-generated data

In the first case, the varying power in each area is shown in
Figure 2. Note that the functions of the four curves in Figure
2 are unknown to the controllers. In the controller design, we
choose s j = 3 in (3). Note that this does not mean the actual
power variation (curves in Figure 2) are superposition of only
three sinusoidal functions.

In this subsection, P
in
j in each area are (15, 15, 15, 15)

MW, which are the prediction of aggregated load. It should be
pointed out that the prediction is not accurate. The offset errors
are (1, 1, 1, 5) MW, which are relatively small but unknown.
We compare the performances using controller (10) and (11).
Both the two controllers are applied at t = 20s. The system
frequencies are compared in Figure 3.

The green line stands for the frequency dynamics using (10).
The frequency oscillation is fierce and nadir is quite low. The
black line stands for frequency dynamics using (11). In this
situation, the nominal frequency is recovered fast without os-
cillation. The frequency nadir is much higher than that using
(10). This result confirms that our controller can still work well
when P

in
j , 0.

The dynamics of µ j are given in the left part of Figure 4. The
green line stands for µ j using (10), while the black line stands
for that using (11). µ j of each area converges to a same value,

which implies the optimality is achieved, i.e., P
in
j is balanced

economically.
In this scenario, the controllable load in each area is also

composed of two parts: a steady part to balance P
in
j and a vari-

ation part to mitigate the effects of q̃ j(t). The steady part of
controllable load is given in the right part of Figure 4. The con-
trollable loads in the steady state are (63.8, 39.8, 39.8, 79.6)
MW. The result is the same as that obtained using CVX to solve
the optimization counterpart (i.e., OLC problem (9)).

To demonstrate it more clearly, we define an error index Err j
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Figure 4: Dynamics of µ and steady parts of controllable loads
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Figure 5: Variation and internal model output with load increases

as below.

Err j :=

∫ t1
t0

√(
Ã j(α̂ j)ζ j − q̃ j(t)

)2
dt∫ t1

t0

√(
q̃ j(t)

)2
dt

(54)

The performance of controllable load tracking power vari-
ation in each area is given in Figure 5. We can find that the
controllable loads coincide to the power variations with high
accuracy. Again, the error index Err j with t0 = 20 and t1 = 120
in this situation are (0.0084, 0.0026, 0.0057, 0.0019), which
are also very small.

6.3. Performance under Unknown Disturbances

To test the performance of our controller under high-
frequency unknown disturbances, we add random noise w̃(t) on
q̃(t) into the testing system, which takes the form of w̃(t) =

[20, 20, 20, 100] × rand(t) MW , with rand(t) as a function gen-
erating a random number between [0, 1] at time t. In the sim-
ulation, a random number is generated every 0.01s. The load
control command and the power variations are given Figure
6. As the frequency of external disturbance is quite high, the
internal model control is not able to follow it accurately. As
a consequence, there exist obvious tracking errors. The sys-
tem frequency is shown in Figure 7. The inset zooms into the
frequency dynamics between 140s-160s, when the system con-
verges to the steady state. The maximal frequency deviation is
smaller than 0.003Hz, demonstrating that the unknown distur-
bance is well attenuated by the proposed controller.
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6.4. Simulation with Real Data

In this subsection, we use 300s data points for each area (one
data point per second) to illustrate the effectiveness of our con-
troller, which come from a real offshore wind farm. The data is
available via the link Wang (2018). Due to agreement with the
data provider, its is for personal use only. The wind power in
each area is shown in Figure 8, which is added in the simula-
tion at t = 10s. The power prediction in each area, i.e. P

in
j , is

(72, 60, 49, 120)MW respectively. The frequency dynamics us-
ing controller (10) and (11) with the real data are given in Figure
9. Similar to that in Figure 3, the frequency under the controller
(10) varies and cannot be restored to the nominal value due to
the variation of wind power. On the contrary, the frequency
is very smooth when controller (11) is used. The performance
of controllable load tracking wind power variation in each area
is given in Figure 10. We can find that the controllable loads
still coincide with the variations with high accuracy under the
proposed controller.

6.5. Comparison with Existing Control Methods

First, we compare the proposed method (11) with conven-
tional PI control. In the PI control, the control command
is Pl

j = KPω j + KI
∫
ω j dt, where KP in each area are

(500, 500, 500, 800), and KI are (2500, 2500, 2500, 4000). The
frequency dynamics are given in the left part of Figure 11,
where the inset is the enlarged version. It is shown that the fre-
quency nadir is much larger than our method and the variation
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Figure 9: Frequency dynamics with real data

cannot be eliminated. This result demonstrates the superiority
of the proposed method to the traditional PI control.

We also compare the proposed method (11) with the dis-
tributed controller in Mallada et al. (2017). To make a valid
comparison, we do not consider line constraints when using
controller in Mallada et al. (2017), and the objective function
is same with this paper. The frequency dynamics are given in
the right part of Figure 11. Similarly, the frequency variation is
not eliminated, demonstrating the superiority of our controller
in coping with unknown and time-varying power imbalance.

7. Conclusion

In this paper, we have addressed the distributed frequency
control problem of power systems in the presence of unknown
and time-varying power imbalance. We have decomposed
power imbalance into three parts at different timescales: the
known steady part, the unknown low-frequency variation and
the unknown high-frequency residual. Then the distributed
frequency control problem at the three different timescales
are solved in a unified control framework composed of three
timescales:

1. The slow timescale: designing a consensus-based dis-
tributed control to allocate the steady part of power im-
balance economically;

2. The medium timescale: devising an internal model con-
trol to accurately track and compensate for the time-
varying unknown power imbalance locally;

3. The fast timescale: using the L2-gain inequality to show
the robustness of the controller against uncertain distur-
bances and parameters.
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Figure 10: Variation and internal model output with real wind data
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Figure 11: Frequency dynamics compared with PI control (left) and other dis-
tributed controller (right)

We have conducted numerical experiments using data of the
New England system and real-world wind farms. The empiri-
cal results show that our distributed controller can mitigate the
frequency fluctuation caused by the integration of large uncer-
tain and time-varying renewable generation. The test results
also confirm that our controller outperforms existing ones.

This paper intends to provide a systematic approach to deal
with unknown and time-varying power imbalance in an eco-
nomic manner. Besides renewable generations, power oscilla-
tions and malicious attacks on controllers can also lead to un-
known and time-varying power variation in power system op-
eration. The proposed method could be extended to cope with
such problems, which are among our future studies.
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