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6 Atomic-Level Simulation and Modeling of Biomacromolecules

Nagarajan Vaidehi and William A. Goddard III

6.1 Introduction

In principle, all the problems in biology could be solved by solving the time-dependent
Schroedinger equation (quantum mechanics, QM). This would lead to a detailed under-
standing of the role that molecular-level interactions play in determining the fundamental
biochemistry at the heart of biology and pharmacology. The difªculty is the vast range of
length and time scales, from a nitrous oxide molecule to an organ (heart, lung), which
makes a QM solution both impractical and useless. It is impractical because there are too
many degrees of freedom describing the motions of the electrons and atoms, whereas in
the functioning of an organ it may be only the rate of transfer across some membrane. The
solution to both problems is the hierarchical strategy outlined in ªgure 6.1. We average
over the scale of electrons (from QM) to describe the forces on atoms (the force ªeld, FF),
then average over the dynamics of atoms (molecular dynamics, MD) to describe the mo-
tions of large biomolecules, then average over the molecular scale to obtain the properties
of membranes, then average over the components in a cell, then average over the cells to
describe a part of an organ. The strategy is to develop a methodology for going between
these various levels so that ªrst principle’s theory can be used to predict the properties of
new systems.

In this chapter, we describe the ªrst two levels of simulations and the attempts to coars-
en the simulations to the mesoscale level in the hierarchy. The complexity of QM limits its
applications to systems with only 10 to 200 atoms (depending on the accuracy), leading to
distance scales of less than 20 Å and time scales of femtoseconds. The quantum mechani-
cal forces are then translated into a set of parameters describing the bonded and nonbonded
forces in a molecule. This set of parameters is known as the force ªeld. Given the forces
calculated with the FF, we solve Newton’s equations to describe the motions of atoms with
time, a process referred to as molecular dynamics. With MD, one can now consider sys-
tems with up to 1 million atoms, allowing practical simulations of systems as large as
small viruses (say, 300 Å and 10 ns). The fundamental unit of MD is atoms (not the elec-
trons of QM), allowing us to interpret the chemistry of the systems. A set of parameters
that describe the forces between assemblies of atoms (collections of atoms or domains of a
protein) in a molecule can be derived from the output of MD simulations. These parame-
ters are further used in mesoscale dynamics.

These atomistic computational methods of chemistry and physics have evolved into so-
phisticated but practical tools that (using modern supercomputers) now allow many sys-
tems to be modeled and simulated. Thus, it is becoming possible to quantitatively predict
the three-dimensional structure and dynamics of important biomacromolecules and to ana-
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Figure 6.1
The hierarchy of biomolecular simulations. It is necesary to predict reliable properties before starting an experi-
ment. The foundation is quantum mechanics. This allows prediction in advance, but is not practical for time and
distance scales of molecular engineering. Thus one must extend from QM to large-scale, cellular-level dynamics
by a succession of scales, where at each scale the parameters are determined by averaging over the finer scale.



lyze their interactions with other molecules at appropriate levels of computational resolu-
tion (ranging from electronic, to molecular, to the mesoscale cellular level). This makes it
practical to begin addressing many complex issues of biological systems in terms of
atomistic descriptions that provide quantitative information about the fundamental pro-
cesses. Such atomistic computer simulations allow one to obtain static and dynamic mo-
lecular models for complex biosystems that describe the properties of the macroscale
system or process in terms of concepts emphasizing the atomic origins of the phenomena
(e.g., how the precise shape and exposed surface of a protein determines its function,
which is critical to a drug design). This atomic-level description of the dynamic structure
of proteins should be valuable for understanding:

• reaction chemistry at active sites in enzymes

• binding energetics and rates of small molecules or ligands to DNA, enzymes, and recep-
tors (e.g., retinal to the signal receptor to protein rhodopsin)

• binding of antibodies to antigens

• conformational changes in proteins and how these changes modify function (relevant to
neurological diseases)

• binding of proteins and other ligands to speciªc sites on DNA (relevant to expression)

6.2 Molecular Dynamics

Depending on the size of the system to be modeled and the accuracy required, there has
evolved a hierarchy of QM methods in which approximations are often used to obtain
greater speeds. The most accurate methods use no experimental data (ªrst principles or ab
initio QM) and are known by such names as Hartree–Fock (HF), density functional theory
(DFT), and conªguration interaction (CI) (Schaefer 1984, Parr and Yang 1989). However
more approximate but much faster semiempirical methods [known by such names as
modiªed intermediate neglect of differential overlap (MINDO), extended Hückel, and
AM1) based partly on comparisons with experiments are quite valuable for many problems
(Pople and Beveridge 1970). Such QM methods are essential for describing systems in
which the nature of the bonds changes; for example, chemical reactions, excited states of
molecules, and electron transfer.

In describing the structure and dynamics of large molecules such as proteins and DNA,
the nature of the bonds is relatively insensitive to the environment. Instead, the focus of in-
terest usually involves packing and conformation. For such problems, the electrons of QM
can be accurately replaced with springs and the dynamics described with Newton’s equa-
tions rather Schroedinger’s. Here the choice of parameters in the FF is critical. They
should give a description close to QM (and experiment). This has served well for many
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problems; however, it is usually difªcult to include polarization, charge transfer, and
changes in bond order in the FF. Consequently, direct theoretical descriptions of chemical
reactions have been the domain of QM. Recent progress in developing FFs that allow for
bond breaking and reactions has been reported (Che et al. 1999, Qi et al. 1999, Demiralp
et al. 1998).

6.2.1 The Force Field

The choice of the FF is critical for accurate predictions of the properties of a system. For
biomolecules, the FF is described in terms of two types of interaction energies:

E E Etot nonbond valence= + , (6.1)

where Evalence describes interactions involving changes in the covalent bonds and Enonbond de-
scribes the nonbonded interactions.

The nonbond energy is separated into electrostatic (Coulomb), van der Waals (VDW),
and sometimes explicit hydrogen bond (HB) components. Each atom has associated with it
an atomic charge, qI, leading to an electrostatic energy of the form

E
q q

R
I J

IJI J
elec = ∑ ε

.
,

(6.2)

Here qI is the charge on atom I, RIJ is the distance between atoms I and J, and 
 accounts for
the units and dielectric constant of the medium. This raises the issue of how to determine
the charges. For modern FF, the charges are determined either directly from QM or from
charge equilibration (QEq), a general semiempirical scheme that allows charges to depend
on instantaneous structure. Sometimes the dielectric constant is used to replace some ef-
fects of the solvent and sometimes the solvent is included explicitly or by a continuous
Poisson–Boltzmann approximation.

For biological systems, hydrogen bonding (e.g., between the amide hydrogen and the
carbonyl oxygen) is particularly important in determining structure and energetics. Thus,
some FFs include speciªc special HB interaction terms in the VDW part of (6.2) (Levitt
1983, Brooks et al. 1983, Weiner et al. 1986, Mayo et al. 1990, Cornell et al. 1995). How-
ever since QM shows that electrostatics dominates hydrogen bond interactions, most mod-
ern FFs account for hydrogen bonding through the electrostatics (van Gunsteren et al.
1987, Jorgensen and Tirado-Tives 1988, Hermans et al. 1984).

The two most common forms for the VDW energy are the Lennard-Jones 6−12

E AR BRL J IJ IJ= −− −12 6 (6.3)

and the Buckingham exponential, −6
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E Ae BRCRIJ
IJexp ,6

6= −− − (6.4)

where the A, B, and C parameters are usually deªned by a comparison with experimental
data or accurate QM calculations on small molecules. Morse functions

E A eIJ
C R Ri= − −− −{[ ] }( ) 1 12 (6.5)

are also used (Gerdy 1995, Brameld et al. 1997).
Because the nonbond terms require calculation for all pairs of atoms (scaling as the

square of the number of atoms), this is a bottleneck for simulations of very large systems.
To reduce these costs, it is common to ignore interactions longer than some cutoff radius
(using a spline function to smooth the potential at the cutoff radius). More recently, fast
multipole techniques [the cell multipole method (CMM); Ding 1992, Lim et al. 1997,
Figueirido et al. 1997] have been used to obtain accurate nonbond energies without cutoffs
but scaling linearly with the size of the system. These fast and accurate methods are being
used in MD simulations for large-scale biological systems (Vaidehi and Goddard 1997).

The valence energy is usually described as

E E E E Evalence bond angle torsion inversion= + + + , (6.6)

where bond describes the interaction between two bonded atoms; angle describes the inter-
action between two bonds sharing a common atom; torsion describes the interaction be-
tween a bond IJ and a bond KL connected through a bond JK; and inversion is used to
describe nonplanar distortions at atoms with three bonds.

Since the covalent bonds are expected to remain near equilibrium, the bond stretching
and angle bending are taken as harmonic:

E K R RIJ IJbond = −1

2 0
2( ) (6.7)

E K CIJKangle or= − −1

2
1 20

2
0

2( ) ( / ) (cos cos ) .θ θ θ θ (6.8)

Here R0 is the equilibrium bond distance, KIJ is the bond force constant, � is the bond angle
between bonds IJ and JK, �0 is the equilibrium bond angle, and KIJK (or C) is the angle
force constant.

The torsion energy is described in terms of the dihedral angle, �, between bonds IJ and
KL along bond JK. This is periodic and can be written as

E K d nn
n

torsion = −
=

∑1

2
1

1

6

φ φ, [ cos( )], (6.9)
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where K�,n is the torsion energy barrier for periodicity n and d = �1 describes whether the
torsion angle (� = 0) is a minimum (d = +1) or a maximum. Torsion potentials are essential
in describing the dependence of the energies on conformation.

Finally, an inversion term is needed to describe the distortions from planarity of atoms
making three bonds (e.g., in aromatic amines or amides). For cases where the equilibrium
geometry is planar (e.g., amine N or C), we use

E Kinversion inv= −( cos ).1 ω (6.10)

For cases where the equilibrium geometry is nonplanar (e.g., an amine), we use

E C Iinversion = −1

2
0 2(cos cos ) ,ω ω (6.11)

where

C
K

I
inv

0(sinω )
.

2
(6.12)

Standard Force Fields Given the functional forms as described above, the FF is deªned
by the particular choices for the parameters in the FF (force constants and equilibrium ge-
ometries). Three strategies have been used for biological systems.

One is to develop the FFs for a speciªc class of molecules. The most popular FFs for
proteins and DNA are AMBER (Weiner et al. 1984, Cornell et al. 1995) and CHARMM
(Brooks 1983, Mackrell et al. 1995), which are parameterized to describe the naturally oc-
curring amino acids and nucleic acids. These parameterizations include the atomic charges
required to describe the electrostatics. Such FFs have been quite useful, and the majority of
simulations on natural protein and DNA systems use these FF. However, unusual ligands
such as drug molecules, cofactors, substrates, or their modiªcations are difªcult to incor-
porate, as are non-natural amino acids or bases. Useful here are FFs developed for organic
systems [OPLS (Pranata et al. 1991) and MM3 (Allinger and Schleyer 1996)] which can
describe parameters of non-natural amino acids or bases, along with most molecules that
bind to biosystems.

The second strategy is to develop rule-based FFs based on the character and connectiv-
ity of the molecules. The simplest such generic FF is Dreiding (Mayo et al. 1990): Equilib-
rium bond distances are based on atomic radii, and the bond angles, inversion angles, and
torsion periodicities are derived from simple rules based on fundamental ideas of bonding.
There is only one bond force constant (bond order times 700 kcal/mol Å), one angle force
constant 100 kcal/mol rad), and simple rules based on fundamental ideas of bonding. To
obtain generic charges, the charge equilibrium method (Rappe and Goddard 1991) was de-
veloped in which all charges of all molecules are determined from three parameters per
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atom (radius, electronegativity, and hardness). Despite its simplicity, Dreiding gives accu-
rate structures for the main group elements (the B, C, N, O, and F columns) most prevalent
in biology.

A more general generic FF that also treats transition metals is the universal force ªeld
(UFF; Rappe et al. 1992), which treats all elements of the periodic table (through Lr, ele-
ment 103). UFF includes simple rules in which the force constants of molecules are de-
rived from atomic parameters. Such generic FFs are most useful for systems with unusual
arrangements of atoms or for new molecules for which there are no experimental or QM
data. For applications in which it is necessary to have the exact molecular structure, such
generic FFs may not be sufªciently accurate. Hence, there is a need for a generic FF that
incorporates just enough speciªcity for accurate simulations of biomolecules while provid-
ing the ºexibility to model all other organic molecules.

Accurately predicting the vibrational spectra of the molecule, in addition to the geome-
try and energy, requires the third strategy for FFs in which the parameters are optimized for
a speciªc class. This requires cross-terms coupling different bonds and angles. A general
procedure for developing such spectroscopic FFs from QM is the biased Hessian method,
which has been used for many systems (Dasgupta et al. 1996). Usually the spectroscopic
quality FFs are useful only for limited classes of molecules.

Effect of Solvents The role of solvents (particularly water) is critical in biological simu-
lations, since the secondary and tertiary structures of proteins are determined by the nature
of the solvent. Several levels of simulation have been used.

The earliest studies ignored the solvent entirely, usually replacing the effect of solvent
polarization by using a dielectric constant larger than one (which is often distance depend-
ent). At this level of approximation, it is important to include counterions to represent the
effects of solvent on charged groups. Such simulations were useful in understanding the
gross properties of systems.

The most accurate MD treatments include an explicit description of the water using an
FF adjusted to describe the bulk properties of water (Jorgensen et al. 1983; Levitt et al.
1997; Rahman and Stillinger 1971; Berendsen et al. 1981, 1987). Although they are accu-
rate, such calculations usually require very long time scales in order to allow the hydrogen-
bonding network in the water to equilibrate as the biomolecule undergoes dynamic motion.
In addition, for an accurate treatment of solvent effects, the number of solvent atoms may
be ten times that of the biomolecule.

An excellent compromise for attaining most of the accuracy of explicit water, while
eliminating the atoms and time scale of the solvent, is the dielectric continuum model.
Here the electrostatic ªeld of the protein is allowed to polarize the (continuum) solvent,
which then acts back on the protein, leading to the Poisson–Boltzmann equation (Sitkoff
et al. 1993). Recent developments have led to computationally efªcient techniques (Tannor
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et al. 1994) that can accurately account for effects of solvation on the forces (geometry)
and free energy. For example, solvation energies of neutral molecules are accurate to better
than 1 kcal/mol.

6.2.2 Molecular Dynamics Methods

The Fundamental Equations Given the FF, the dynamics are obtained by solving New-
ton’s equations of motion:

− =Fi i im x�� , (6.13)

where Fi is the force vector, ��xi denotes the acceleration, and mi is the mass of atom i.
Solving equation (6.13) leads to 3N coordinates and 3N velocities that describe the trajec-
tory of the system as a function of time. Often this dynamic trajectory provides valuable
information about a system. Thus, MD methods have been useful for the exploration of
structure–activity relationships in biological molecules (McCammon 1987).

However, more often it is the ensemble of conformations near equilibrium that is re-
quired to calculate accurate properties. Assuming that the barriers between different rele-
vant structures are sufªciently small that they can be sampled in the time scale of the
simulations, we think that the collection of conformations sampled in the dynamics can be
used as the ensemble for calculating properties.

The steps in MD simulations are as follows:

1. Start with the structure (3N coordinates), which may be obtained from a crystal struc-
ture or from Build software using standard rules of bonding. In addition, it is necessary to
have an initial set of velocities, which are chosen statistically to describe a Maxwell–
Boltzmann distribution.

2. At each timestep, calculate the potential energy and its derivative to obtain the force on
every atom in the molecule. Equation 6.14 is then solved to obtain the 3N accelerations at
timestep t.

�� / / ,x f m E mi i i i= = −∇ tot (6.14)

where ∇Etot is the gradient of the potential energy.

3. To obtain the velocities and coordinates of each atom as a function of time (the trajec-
tory), we consider a timestep � and write the acceleration at the nth timestep as

��

�

,x

x x

n

n n
=

−
+ −1

2
1
2

δ
(6.15)

leading to
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� � .x x
m

E
n n

i
n+ +

= − ∇1
2

1
2

δ
(6.16)

Integrating (6.16) then leads to the coordinates at the next timestep,

x x xn n n+ +
= +1 1

2

δ . (6.17)

Equations (6.16) and (6.17) are the fundamental equations for dynamics (the Verlet veloc-
ity leapfrog algorithm). The ªrst segment of MD is used to equilibrate the system, remov-
ing any bias from the initial conditions.

4. The acceleration and then the velocities are integrated to determine the new atomic po-
sitions. This integration is usually performed using the Verlet leapfrog algorithm.

The timestep of integration, �, must be short enough to provide several points during the
period of the fastest vibration. If the hydrogen atoms are described explicitly, the timestep
is usually 1 to 2 fs.

The trajectory of the molecular systems may require time scales ranging from picosec-
onds to hundreds of nanoseconds, depending on the application and the size of the system.
Thus, a computationally efªcient MD algorithm must allow fast and accurate calculation
for atomic forces and use the longest possible timesteps compatible with accurate Verlet
integration to simulate molecular motions on the longest time scale.

NPT and NVT Dynamics Newton’s equations of motion (6.13) describe a closed sys-
tem. Thus the total energy (kinetic energy plus potential energy) of the system cannot
change, and the system is adiabatic. If the volume is held constant, this simulation gener-
ates the microcanonical ensemble of statistical mechanics (denoted NVE for constant
number of molecules, volume, and energy). However, most experiments deal with systems
in equilibrium with temperature and pressure baths, leading to a Gibbs ensemble (Allen
1987). For the trajectory to generate a Gibbs ensemble, it is necessary to allow the internal
temperature of the molecule to ºuctuate in the same way it would if it were in contact with
a temperature bath, and the volume must ºuctuate in the same way it would in contact with
a pressure bath.

Several methods (Woodcock 1971, Nose 1984, Hoover 1985, Vaidehi et al. 1996) are
used to control the temperature of an MD simulation. The most rigorous method (Nose
1984) introduces into the equations of motion a new dynamic degree of freedom �, which
is associated with energy transfer to the temperature bath (friction). If the volume is kept
ªxed, the Nose dynamics generates a Helmholtz canonical ensemble, giving rise to the cor-
rect partition function for an NVT system. These partition functions can be used to calcu-
late macroscopic properties of the system. We consider NVT canonical dynamics as
adequate for most biochemical problems [such as calculating binding energy and other
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molecular properties to be used in deriving quantitative structure–activity relationships
(QSAR) that are useful for predicting enzyme activity].

Some interesting biological applications consider the response of proteins to external
pressure (Floriano et al. 1998). In this case, we use periodic boundary conditions (de-
scribed later), placing the molecule and solvent in a periodic cell that can be acted upon by
external stresses. Examining the structural deformations of proteins under pressure or un-
der external stress requires that the MD allow the internal pressure of a molecule to
ºuctuate in the same way as for a system in a constant-pressure environment (Parrinello
and Rahman 1981). The modiªed Newton equations lead to NPT dynamics (constant num-
ber of particles, pressure, and temperature).

Constrained Internal Coordinates The short time scale of 1 fs for MD is required to
describe the very rapid oscillations involved in bond stretching and angle bending motions.
However, for proteins and nucleic acids, it is the low-frequency motions involved in
conformational changes that are of most interest. Several algorithms (Ryckaert et al. 1977,
van Gunsteren et al. 1990, Mazur and Abagayan 1989, Jain et al. 1993, Rice and Brunger
1994) have been developed for ªxing the bonds and angles in order to focus on the
conformational motions. Such constrained dynamics algorithms lead to coupled equations
of motion:

M C T( )�� ( , �θ θ θ θ) = (θ)+ (6.18)

for P degrees of freedom (torsions). Here ��θ is the angular acceleration; M is the P�P mass
matrix (moment of inertia tensor), which depends on the internal coordinates �; T is
the vector of general forces (tensor) on the atoms; and C is the velocity- dependent Coriolis
force. At each timestep we know �, M, T, and C, and we must solve the matrix equation
(6.18) to obtain the acceleration,

�� ( ).θ = −−M T C1 (6.19)

Integration of ��θ gives the velocity �θ and further integration leads to the torsion or the dihed-
ral angles � from which the coordinates can be obtained. The problem is that solving equa-
tion (6.19) requires inverting the P�P dense mass matrix M at every timestep. For a
system with, say, 10,000 atoms, there might be 3000 torsional degrees of freedom, making
the solution of (6.19) for every timestep impractical (the cost of inverting M scales as P3).
Recently we developed the Newton–Euler inverse mass operator (NEIMO) method (Jain
et al. 1993, Mathiowetz et al. 1994, Vaidehi and Goddard 1996), which solves (6.19) at a
computational cost proportional to P. The NEIMO method considers the molecule to be a
collection of rigid “clusters” connected by ºexible “hinges.” A rigid cluster can be a single
atom, a group of atoms (a peptide bond), or a secondary structure (a helix or even an entire
domain of a protein). Such constrained models allow much larger timesteps.
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With ªne-grain all-torsion NEIMO dynamics, we normally treat double bonds, terminal
single bonds, and rings (benzene) as rigid bodies. In hierarchical or H-NEIMO dynamics
(Vaidehi et al. 2000), we allow higher levels of coarseness, keeping various segments or
parts of a domain of a protein rigid during the dynamics. This allows larger timesteps, as il-
lustrated in table 6.1.

Using hierarchical NEIMO simulations on the glycolytic enzyme phosphoglycerate
kinase (PGK), we are able to follow the long time-scale domain motions in PGK responsi-
ble for its function. PGK catalyzes an essential phosphorylation step in the glycolytic path-
way. Under physiological conditions, PGK facilitates the phosphoryl transfer from
adenosine diphosphate (ADP) to adenosine triphosphate (ATP). PGK consists of two ma-
jor domains (1400 atoms in each domain) denoted as the C-domain and the N-domain. In
most crystal structures (McPhillips et al. 1996, Bernstein et al. 1997), the substrates are
found bound to the opposite domains at a distance of �13 Å. Thus, Blake (1997) proposed
a hinge-bending mechanism by which the protein brings the substrates together to react.
Using H-NEIMO (ªgure 6.2; see also plate 19), we found low-frequency domain motions
that take the open structure examined by yeast PGK (McPhillips 1996) to the closed struc-
ture examined by Trypanosoma brucei PGK (Bernstein et al. 1997). The NEIMO dynam-
ics suggest that PGK undergoes long time-scale motions that put the substrate binding sites
together, then take them apart, then put them together again. The extent and rate of the do-
main motions depend on the nature of the substrates bound.

MPSim In order to allow long time simulations on very large systems (up to a million at-
oms), we developed the massively parallel simulation (MPSim) program (Lim et al. 1997)
to operate efªciently with massively parallel computers. MPSim includes important algo-
rithm developments such as CMM (for calculating long-range nonbond interactions) (Ding
et al. 1992), NEIMO (Jain et al. 1993, Mathiowetz et al. 1994, Vaidehi et al. 1996), and the
Poisson–Boltzmann solution (Tannor et al. 1994). It is compatible with massively parallel
high-performance computers (SGI-Origin-2000, IBM-SP2, Cray T3D/T3E, HP/Convex-
Exemplar, and Intel Paragon). MPSim has been used to understand the action of drugs on
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Table 6.1
Time steps obtained in the hierarchical modeling of two proteins

Protein MD method Degrees of freedom Time step (ps)

Protein A1 Newtonian 1062 0.001
NEIMO (all torsions) 219 0.010
H-NEIMO 92 0.020

PGK Newtonian (all atom) 12525 0.001
NEIMO (all torsions) 2210 0.005
H-NEIMO 80 0.010

1Protein A is a helix-coil-helix segment from staphylococcus aureus



the human rhinovirus (Vaidehi et al. 1996) as summarized in section 6.3.2. It is also being
used for materials science problems (Miklis et al. 1997, Demiralp et al. 1999).

Periodic Boundary Conditions In order to control the pressure on a system and to in-
clude explicit solvents without introducing complications of free surfaces, it is convenient
to place the molecule in a large box (much larger than the molecule) and then reproduce it
periodically to ªll space. In addition, it is particularly useful to describe some systems,
such as DNA, as periodic and repeating in one direction. The computational box contain-
ing the molecular system is surrounded by an inªnite number of copies of itself (see ªgure
6.3).

Because periodic systems involve an inªnite number of atoms, some care must be taken
in calculating the long-range forces. Otherwise, singularities or wild oscillations can occur.
The most common accurate method is Ewald summation (Ewald 1921, de Leeuw et al.
1980, Heyes 1981, Allen 1987, Karasawa and Goddard 1989, Chen et al. 1997), which
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Figure 6.2
The H-NEIMO model for phosphoglycerate kinase. Here the parts of two domains that bind the substrates
(shown in yellow) are kept rigid while the loops (shown in green) are allowed to have full torsional freedom.
H-NEIMO MD simulations exhibit large-scale domain motions that bring the substrates close together and then
apart. (See plate 19.)

Figure 6.3
Molecules in a periodic system. (a) Two-dimensional view of a tripeptide in a periodic box. (b) The simulation
unit cell is the box outlined in the center. It is surrounded by an infinite array of equivalent boxes to that there is
no free surface. Molecules are allowed to move from box to box, but the number in the unit cell is always
constant.
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considers point charges smeared over a region of ªnite size 1/�, chosen to converge rapidly
(in real space), and then Fourier transforms the difference between the smeared charges
and the point charges to obtain rapid convergence (in the reciprocal space sums). Karasawa
and Goddard (1989) showed how to choose the optimum � to minimize computational cost
for a given level of accuracy. This leads to costs scaling as N3/2 for systems with N atoms
per unit cell. Ding et al. (1992b) showed how to use the reduced CMM method to achieve
linear scaling.

Monte Carlo Methods For many systems, the barriers between low-lying structures
may be too large for MD to sample all the structures. In such cases, we often use Monte
Carlo or statistical sampling techniques, using a random search algorithm such as Monte
Carlo metropolis. With a sufªciently large number of samples, the occurrence of each con-
formation is proportional to the Boltzmann factor, leading to a canonical distribution. The
steps involved in the Monte Carlo simulation procedure are:

1. Starting from a given molecular conformation, a new conformation is generated by ran-
dom displacement of one or more atoms. The random displacements should be such that in
the limit of a large number of successive displacements, the available conformation space
is uniformly sampled.

2. The newly generated conformation is accepted or rejected based on the change in the
potential energy of the current step compared with the previous step. The new conforma-
tion is accepted if the change in potential energy �V = V (present step) �V (previous step)
≤0, or if �V � 0 when the Boltzmann factor is greater than a random number R.

Upon acceptance, the new conformation is counted and used as a starting point for the
generation of the next random displacement. If the criteria are not met, then the new con-
formation is rejected and the previous conformation is counted again as a starting point for
another random displacement. This method thus generates a Boltzmann ensemble of con-
formations. Many Monte Carlo methods are available (Allen 1987) and have been used as
a fast conformational search tool in protein folding (Sternberg 1996). A recent advance,
continuous conformation Boltzmann biased direct Monte Carlo (Sadanobu and Goddard
1997) has been used to determine the complete set of folding topologies for proteins with
up to 100 residues (Debe et al. 1999). Such methods show considerable promise for
solving the protein-folding problem (predicting the tertiary structure from a primary
sequence).

6.3 Application to Biological Problems

In this section, we summarize some recent applications of quantum chemistry and molecu-
lar dynamics to problems in structural biology.
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6.3.1 Study of Enzyme Reaction Mechanisms

The reaction mechanisms for many enzymes have been studied using a combination of
QM and MD methods (McCammon 1987, Cunningham and Bach 1997). Examples in-
clude the hydrolysis of a peptide bond by serine proteases, and hydrolysis by the
metalloenzyme, staphylococcal nuclease of both DNA and RNA, etc. (Warshel 1991). We
describe here a recent QM and MD study for the elucidation of the mechanism of family
18 (Brameld and Goddard 1998a) and family 19 chitinases (Brameld and Goddard 1998b).
This application relies heavily on a combination of QM and MD methods, demonstrating
the feasibility of solving difªcult problems using modern computational methods.

Chitin (see ªgure 6.4) is a � (1,4)-linked N-acetylglucosamine (GlcNAc) polysac-
charide that is a major structural component of fungal cell walls and the exoskeletons of in-
vertebrates (including insects and crustaceans). This linear polymer may be degraded
through the enzymatic hydrolysis action of chitinases. Chitinases have been found in a
wide range of organisms, including bacteria (Watanabe et al. 1990; plants (Collinge et al.
1993), fungi (Bartinicki-Garcia 1968), insects (Kramer et al. 1985), and crustaceans (Koga
et al. 1987). For organisms that utilize the structural properties of chitin, chitinases are crit-
ical for the normal life-cycle functions of molting and cell division (Fukamizo and Kramer
1985, Kuranda and Robbins 1991). Because chitin is not found in vertebrates, inhibition of
chitinases is a promising strategy for treatment of fungal infections and human parasitosis
(Robertus 1995).

Based on amino acid sequence, the glycosyl hydrolases have been classiªed into 45
families. Using this classiªcation method, the chitinases form families 18 and 19, which
are unrelated, differing both in structure and in mechanism. Sequence analysis shows little
homology between these classes of chitinases. Family 19 chitinases (found in plants)
share the bilobal α + β folding motif of lysozyme, which forms a well-deªned substrate
binding cleft between the lobes. In contrast, family 18 chitinases share two short sequence
motifs, which form the catalytic (βα) 8-barrel active site. Family 18 chitinases with diverse
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Figure 6.4
An arrow marks the hydrolysis site of chitin, the Symbol”b (1,4)-N-acetylglucosamine (GlcNAc) polysaccharide
substrate of chitinases.



sequences have been isolated from a wide range of eukaryotes and prokaryotes. The hy-
drolysis site of chitin is shown in ªgure 6.4.

Brameld investigated the hydrolysis mechanisms of the chitinases by examining the re-
activity of the chitin substrate alone and in the presence of the enzyme. This was done us-
ing ab initio quantum mechanical calculations on three possible reaction intermediates for
the enzymatic hydrolysis of chitin. He found that anchimeric assistance from the neighbor-
ing N-acetyl group of the chitin is critical in stabilizing the resulting oxazoline ion
intermediate.

MD simulations of the complete enzyme with bound substrate led to further insights
into the mechanisms of family 18 and 19 chitinases, which differ substantially. All MD
simulations were carried out using the MSC-PolyGraf program using the Dreiding FF
(Mayo et al. 1990). QEq charges (Rappe and Goddard 1991) were used for all GlcNAc res-
idues. All nonbond interactions were considered explicitly (using a distance-independent
dielectric constant), with a cutoff of 9.5 Å for MD simulations and 13.5 Å for energies.
Solvation energies were estimated using the continuum solvent model in the Delphi pro-
gram (Tannor et al. 1994). Two possible intermediates, namely, the oxazoline ion and the
oxocarbenium ion, were proposed. The formation of the oxazoline ion intermediate results
from substrate distortion (see ªgure 6.5) induced within the active site of family 18
chitinases. This substrate distortion was observed in the MD simulations and is necessary
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Figure 6.5
The minimum energy structure for the −1-–boat hexaNAG conformation. A boat geometry for GlcNAc residue −
1 and the twist between residues −1 and +1 strains the linking glycosidic bond. This distortion observed in the
simulations should be included when designing new inhibitors.



to design inhibitors for the family 18 chitinase. Yet surprisingly, the family 19 chitinases
do not utilize an oxazoline ion intermediate and undergo a considerable change in enzyme
conformation to stabilize the resulting oxocarbenium ion intermediate.

The oxazoline transition state serves as a target for the rational design of more potent
glycosidase inhibitors speciªc to family 18 chitinases. Simple analogs of allosamidin that
incorporate the key features of a delocalized positive charge while maintaining a chairlike
sugar conformation may prove to be synthetically more accessible than allosamidin. Such
analogs could lead to a new generation of chitinase transition-state inhibitors.

6.3.2 A Model for Drug Action on Rhinovirus-1A and Rhinovirus-14

Human rhinovirus (HRV) belongs to the picornavirus family. It has over 100 serotypes,
providing a challenge to drug design. The serotypes of HRV are classiªed into two groups.
The major receptor group (including HRV-14 and HRV-16) binds to the intercellular adhe-
sion molecule 1 (ICAM-1) receptors. The minor receptor group (including HRV-1A) binds
to low-density lipoprotein-type receptor molecules. The protein capsid of HRV consists of
an icosahedral shell with 60 copies of the four viral proteins (VP1, VP2, VP3, and VP4) to-
taling 480,000 atoms ( 300 Å in diameter). Figure 6.6 (see also plate 20) shows the
icosahedral shell, its elements such as the pentamers that make up the icosahedron, the
asymmetric unit that makes up the pentamer, and the basic four viral proteins of the asym-
metric unit. A single-stranded RNA is enclosed in the protein shell. The sequence of events
involved in the endocytosis is not clear yet, but circumstantial evidence suggests that the
RNA is released through the pentamer in the virus coat (Rueckert 1991).

There are several known isoxazole-derived drugs for HRV-1A and HRV-14 (Couch
1990). It is known that binding of these drugs to HRV-14 prevents binding of the virus to
the ICAM-1 receptors. However for HRV-1A, binding of thee drugs does not block recep-
tor attachment; rather, it prevents uncoating of the virus. One speculation is that this bind-
ing leads to stiffening of the viral capsid. Based on this speculation and the fact that the
RNA is released through the pentamer channel, Vaidehi and Goddard (1997) proposed the
pentamer channel stiffening Model (PCSM). Drug action on HRV-1A constricts or stiffens
the pentamer channel sufªciently that the RNA cannot exit, thus preventing uncoating.

Using MPSim (see the section on this program) on the KSR-64 processor parallel com-
puter, we showed a strong correlation (see ªgure 6.7) of drug effectiveness (minimum in-
hibitory concentration, MIC) with the strain energy increase calculated for various drugs.
Here we deªned the strain energy as the energy required to expand the pentamer channel to
25 Å. The strain energy was calculated using MPSim with the Amber FF for the viral pro-
teins and the Dreiding FF for the drugs.

Figure 6.7 shows that all effective drugs cause an increase in the strain energy required
to open the pentamer channel. The best drug, WIN56291 (MIC = 0.1 �M), shows the
sharpest increase in the strain energy compared with the native HRV-1A or an ineffective
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Figure 6.6
Structure of a rhinovirus. The complete icosahedral viral capsid (300 Å diameter) is shown at the bottom right.
The four viral proteins making up the asymmetric unit of the virus are shown in the top half. The five asymmetric
units forming the pentamer are shown in the bottom left. Twelve such pentamers form the complete viral capsid.
(See plate 20.)



drug, WIN54954 (MIC = 2.5 �M). This suggests that the PCSM can be used to predict the
efªcacy of a drug before synthesis and testing. Three drugs—MSC1, MSC2, and MSC3—
were tested in this way.

6.3.3 Calculation of Binding Energy Using Free Energy Perturbation Theory

A major application of MD simulations is for drug design, where high binding energy is
expected to be a necessary condition for a good drug. MD provides microscopic-level in-
formation (atomic and molecular positions, velocities, etc.) about the dynamics of
macromolecules; this information can be averaged over time (using appropriate formulas
from statistical mechanics) to obtain the macroscopic thermodynamic properties of a sys-
tem, such as the free energy, temperature, and heat capacity. Thus, one assumes that the
macroscopic property Gobs can be expressed as an average over the ensemble of conforma-
tion from the MD, Gobs = �G�ens, and that this can be expressed as the time average of
G(ri) over the trajectory over a sufªciently long time interval. This is written as

G G r
t

G r dti
t

t

obs time=< > =
−>∞ ∫( ) lim ( ) ,

1
0

(6.20)
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Figure 6.7
Pentamer stifness for HRV-1A with various Winthrop drugs. The MIC values for the drugs are given in parenthe-
sis. MSC1, MSC2, and MSC3 denote new candidates for drug molecules.



where G(ri), ri is a function of time and is generated as the trajectory of the MD
simulations.

The problem is that the convergence of (6.20) is sufªciently slow that the error may be
large compared with the difference in bond energies for the drugs. This problem is solved
by transforming the system slowly from drug A (� = 0) to drug B (� = 1) and integrating
the difference in G (�) along the trajectory. This is called free energy perturbation (FEP)
theory. It has been demonstrated to give a quantitative estimate of the relative free energy
of binding of various drug molecules or inhibitors to its receptors. The integration in (6.20)
is replaced by ªnite sum over timesteps. The free energy of molecular systems can be cal-
culated (van Gunsteren and Weiner 1989) using equation (6.20). The free energy differ-
ence given by

G G RT
V V
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i( ) ( ) ln expλ λ λλ λ− = − < −
−⎛
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⎡
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provides a means of calculating the free energy difference any two states A(�) and A(�i).
However, unless the states share a signiªcant fraction of conformation space, convergence
is very slow. The convergence time can be reduced by calculating the relative free energy
difference between closely related states, using the thermodynamic cycle. To visualize the
method (see ªgure 6.8), we consider the relative binding of two ligands, L1 and L2, to a re-
ceptor that is a protein or DNA. The appropriate thermodynamic perturbation cycle
(Zwanzig 1956) for obtaining the relative binding constant is given in ªgure 6.8.

The ratio of the binding constants for L1 and L2 can be calculated from the equation

K

K
G G RTL2

L1
L2 L1= − −exp[ ( ) /Δ Δ (6.22)

where R denotes the gas constant and KL1 and KL2 are the binding constants for L1 and L2.
Simulation of steps 1 and 3 involves replacement of solvent molecules in the binding
pocket of the protein (receptor) by the ligand and removing the ligand from the solvent and
binding it to the protein. These are very slow processes for the time scale of MD simula-
tions. However, it is possible to simulate steps 2 and 4 using MD if the chemical composi-
tion and the structure of the ligands are very closely related, as described in the example
below. Hence the free energy difference for steps 1 and 2 is related to the free energy dif-
ference between steps 2 and 4 by (ªgure 6.8):

Δ Δ Δ ΔG G G G3 1 2 4− = −

The crucial factor in the simulations of steps 2 and 4 is in the adequacy of the sampling in
the conªguration space of the system. Longer MD simulations are required for accurate
free energies.
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This method has been used extensively to study the relative binding energies of drugs
and inhibitors for enzymes (van Gunsteren and Weiner 1989; Marrone et al. 1997; Plaxco
and Goddard 1994) and inhibitors. Here we describe brieºy one of the recent applications
(Marrone et al. 1996) of the free energy perturbation simulations to the study of inhibition
of the enzyme adenosine deaminase by 8R-coformycin and (8R)-deoxycoformycin. The
inhibition of the enzyme adenosine deaminase, which deaminates the base adenosine,
could provide an effective treatment of some immunological disorders. Thus MD simula-
tions can play a critical role in designing inhibitors for this enzyme since it gives a good
model for the binding site of the inhibitors in the enzyme and also provides an estimate of
their binding energies. The coformycin and deoxycoformycin molecules differ in the sugar
moiety attached to them, which is ribose in the case of coformycin and deoxyribose for
deoxycoformycin. The molecular structure of these two substrates is shown in ªgure 6.9.

It is clear that these two inhibitors differ only by only a small functional group and
hence provide a case well suited for free energy perturbation calculations. Molecular dy-
namics and free energy simulations of coformycin and deoxycoformycin and their com-
plexes with adenosine deaminase show a difference of �1.4 kcal/mol in binding energy
between deoxycoformycin and coformycin. Deoxycoformycin and coformycin differ by a
hydroxyl group, but the relative binding energy is small enough, showing that this
hydroxyl group is buried near a ºexible hydrophilic region of the enzyme conformation
rather than being sequestered in a hydrophobic pocket. Thus, detailed structural aspects of
the transition state analog have been derived in this study (Marrone et al. 1996).

6.3.4 Quantitative Structure–Activity Relationships

Following the calculation of relative binding constants, one of the most important steps in
the process of drug discovery is the study of QSAR (Franke 1984; Fanelli et al. 1998). The
aim is to explain the experimental data obtained for binding of various ligands to a recep-
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Figure 6.8
Thermodynamic cycle for the calculation of the relative free energies of binding.



tor, at the molecular level, in terms of physiochemical properties of the ligands, and to pre-
dict or estimate similar biodata for new analogs. QSARs are equations that relate an
observed experimental quantity for ligand binding, for example, the minimum inhibitory
concentration measured routinely in drug industries, to the calculated molecular properties
of various regions of a drug molecule. QSARs are widely used today in the pharmaceutical
industry to design new drugs or inhibitors. Figure 6.10 shows the major steps involved in a
QSAR analysis.

Today computational chemistry using QM–MD simulations allows us to deªne and
compute ad hoc shape and size descriptors for the different conformations assumed by
drugs in biotest solutions. Together with the statistically sound experimental data mea-
sured on well-identiªed target receptors, these descriptors are essential elements for ob-
taining simple, consistent, comparable, and easily interpretable theoretical QSAR models
based on ligand similarity–target receptor complementarity paradigms. The molecular
properties calculated can be of varied natures. For example, based on the structural for-
mula of the drugs, they can be broken into fragments, and the properties of the subsystem
or fragments that contribute to the drug activity can be calculated. Intermolecular interac-
tion properties such as polarizability or the hydrophilic or hydrophobic nature of groups
can be computed. Thus, QM–MD simulations are used extensively in pharmaceutical com-
panies to derive QSARs (Fanelli et al. 1998).

6.4 Summary

Atomistic simulations constitute a powerful tool for elucidating the dynamic behavior of
biological systems. They can be used in a variety of problems in biological research and
drug design, as suggested in this chapter. The major thrust in this area is the simulation of
large systems (hundreds of angstroms) for long time scales (microseconds).
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Figure 6.9
Molecular structure of adenosine deaminase inhibitors X = H for deoxycoformycin and X = OH for coformycin.



The next challenge is to ªnd accurate ways to describe the dynamics of biological sys-
tems at a coarse grain level while retaining the accuracy of atomic-level MD in order to ex-
amine dynamic behavior for very long times and large distance scales. The dream here
would be eventually to simulate the processes of an entire cell, where the coarse grain de-
scription would describe the elastic properties of the cell membrane plus the chemical na-
ture of the receptors, but without explicit atoms. In this approach, the grid points of the
coarse grain would embody chemical and physical properties so that expanding the grid
would lead automatically to a description of binding some new molecule or the active
transport of a molecule down a channel. Thus, one can focus down to the atomic level to
determine the molecular properties and then back to the coarse grain for the large-scale
motions.

Probably the most important challenge in biology is the prediction of accurate three-
dimensional structures and the functions of proteins (tertiary structure) entirely from the
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Figure 6.10
Principal steps involved in QSAR analysis.



gene sequence (primary structure). Enormous progress is being made here (Debe et al.
1999), but there is not yet success in ab initio predictions.
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