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We present a state transfer protocol that is mathematically equivalent to quantum teleportation,
but uses classical nonseparability instead of quantum entanglement. In our implementation we take
advantage of nonseparability among three parties: orbital angular momentum (OAM), polarization,
and the radial degrees of freedom of a beam of light. We demonstrate the transfer of arbitrary OAM
states, in the subspace spanned by any two OAM states, to the polarization of the same beam.

I. INTRODUCTION

Entanglement in quantum systems leads to many of
the surprising consequences of the quantum mechanical
description of nature. For many decades the aim of physi-
cists has been to realize and confirm such phenomena in
experimental settings. Such efforts came to fruition in
a series of seminal observations that validated quantum
mechanics and contradicted some classical alternatives
such as local hidden variable theories [1–4].

Although entanglement is often thought as an
exclusively-quantum phenomenon, the mathematical
structure behind it that quantifies the degree of nonsep-
arablity can be applied to any two vector spaces. In fact,
in his seminal 1935 paper Schrödinger [5] pointed out that
the mathematics that he utilized was already known by
mathematicians [6]. This mathematical structure when
applied to describe the non-separability of different de-
grees of freedom has come to be known as classical entan-
glement [7–9]. Although the analogy between quantum
entanglement and the classical entanglement stops when
non-locality comes into picture, the identification of their
similarity has proven to be helpful in developing a new
perspective in determining the degree of polarization of
a beam of light [7, 8, 10, 11]. Furthermore, the violation
of Bell inequalities between different degrees of freedom
(DoF) of a beam of light has been the subject of several
notes recently [8, 12–16].

The above analogy between quantum entanglement
and its classical analog can be extended to multipartite
systems [17, 18]. In the original proposal by Spreeuw [17],
a beam is divided into several beams and by controlling
the amplitude and phase of each portion of the beam one
can mimic, a GHZ-state, some quantum gates, and tele-
portation. One of the most well-known consequence of
entanglement that involves more than two parties is the
phenomenon of teleportation, that was first proposed by
Bennett et al. [19] and was realized with quantum entan-
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glement by Bouwmeester et al. [20]. Since then teleporta-
tion has been proposed and realized in different systems
[21].

Teleportation allows us to transfer the state of one
party to a non-local party via a projection on a Bell state.
If the non-local parties are replaced by different DoFs of
a beam we end up with a procedure to transfer state of
one degree of freedom to another through a Bell-like pro-
jection. Although this may not be quite as intriguing a
phenomenon as teleportation, the capability to transfer
an arbitrary, and a priori unknown, state from one de-
gree of freedom to another is a non-trivial, and desirable
task [22–24]. In the following we report on the realiza-
tion of this phenomenon, i.e. state transfer between two
DoFs in an approach that mimics teleportation. In our
implementation we transfer an arbitrary state of any two
orbital angular momentum (OAM) modes of a laser beam
onto the polarization of the same laser beam. Although
the nonseparability between different degrees of freedom
of a laser beam has come to be referred to as classical
entanglement, one can argue that the term entanglement
should be reserved for the cases that involves inherently
quantum mechanical systems that cannot be described
classically. Thus we reserve the term entanglement for
quantum entanglement and refer to its classical analog
as classical nonseparability. The term classical nonsep-
arability simultaneously captures two different aspects:
First that the experiment that we are upon taking can be
described without invoking of quantum mechanics, and
is hence classical, and secondly that such nonseparability
in optical beams bares merely a mathematical similarity
to its quantum counterpart.

The manuscript is organized as follows. In the next
section we explain the procedure of the state transfer
protocol as an analog of teleportation when the non-local
parties are replaced by DoFs. In section III we explain
the details of our experiment and present a discussion on
our results and their implication. Concluding considera-
tions are presented in section IV.
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FIG. 1. Three examples of classical nonseparability. The left
panel represents a beam for which the radial and orbital an-
gular momentum (l = 3) degrees of freedom are nonseparable.
The middle panel shows a beam for which the orbital angular
momentum (l = 1) and polarization are nonseparable. The
panel on right represents a beam for which radial and polar-
ization degrees of freedom are nonseparable.

II. STATE TRANSFER AS AN ANALOG OF
TELEPORTATION

The original proposal by Bennett et al. [19] takes ad-
vantage of three parties. One we call Alice, the other
Bob, and a third party that we name Charlie. Initially
Alice’s state is separable from the other two parties and
Charlie and Bob share a joint maximally entangled state.
One then performs a projective measurement on a joint
Bell state of Alice and Charlie. When we post-select on
those measurements that have led to a specific Bell state,
Bob’s state will be the same as the initial Alice’s state.

To realize our protocol for coherence transfer we re-
place the three parties with three degrees of freedom of
a single optical beam. In our implementation, the three
degrees of freedom are the the radial degree of freedom,
polarization, and orbital angular momentum, that play
the roles of Charlie, Bob, and Alice respectively. In Fig. 1
we have presented three examples of nonseparability be-
tween different degrees of freedom of a spatial profile of
a beam of light. These can be considered analogs of Bell
states between different DoFs that we deal with in this
paper. In principle any three DoFs can be used to real-
ize such state transformation protocol as long as one can
perform arbitrary joint measurements on these observ-
ables/quantities.

In our realization we first produce a beam whose po-
larization and radial DoFs are nonseparable and both are
separable from the OAM:[

γ|l〉+ γ̄| − l〉
]
⊗
[
|r1, H〉+ |r2, V 〉

]
. (1)

|H〉, |V 〉 denote the horizontal and vertical polarizations.
We emphasize that although we adopt the ket-bra nota-
tion that is associated with quantum mechanics, the de-
scription of our experiment requires no invoking of quan-
tum mechanics and we adopt this notation to emphasize
the linear algebraic nature of different degrees of free-
dom. The polarization of an optical field arises from the
vectorial nature of electromagnetic field and techniques
for its manipulation are easy to implement. |l〉 denotes

FIG. 2. Transfer of an arbitrary OAM state to a polariza-
tion. The intensity is encoded in the brightness, the phase
in the color. The OAM information can be read from the
phase profile. For simplicity we have depicted a pure OAM
superposition of | ± 3〉. (top) The initial beam: OAM is sep-
arable from the other two DoFs and the polarization and ra-
dial DoFs are maximally nonseparable. (bottom, right) After
projection on a maximally nonseparable state of OAM and
radial, we end up with a polarization state that carries the
same information as the initial OAM state. The intensity of
each of polarization gives information about the amplitude of
each of the two OAM components and the phase between the
two polarizations, H and V , is the same as the phase between
the two OAM components. (bottom, left) The two angles ξ,
and η are half of the spherical angles on the Poincare sphere,
respectively.

an OAM mode, which is defined via the helical phase
structure ei`φ. OAM modes naturally arise as paraxial
solutions to the Maxwell equations in cylindrical coor-
dinates, and hence can be completely understood using
wave optics [25, 26]. Nevertheless, the OAM modes can
be useful in quantum optics too [22, 27]. Finally |r1〉, |r2〉
denote two radial modes, defined as two concentric, mu-
tually exclusive, annular regions with a uniform intensity
pattern. Note that |r1〉, |r2〉 are orthogonal since there is
no overlap between their corresponding spatial extents.
Radial modes have also been the subject of a few recent
investigations for their potential applicability in quantum
communication [28]. The transverse profile of a beam
represented by Eq. (1) is depicted in Fig. 2 (top). The de-
pendence of the phase on the azimuthal angle is identical
for both radial components since their OAM contents are
the same.

Now that we have prepared the state in Eq. (1),
the next step in the protocol is to implement a pro-
jective measurement onto one of the Bell states of
Charlie(radial)-Alice(OAM):

〈Φ±| = 〈r1, l| ± 〈r2,−l|, (2)

〈Ψ±| = 〈r1,−l| ± 〈r2, l|.

Depending on our choice, the state of Bob (polarization)
will be either γ|H〉 ± γ̄|V 〉 for projection onto |Φ±〉, and
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γ|V 〉 ± γ̄|H〉 for projection onto |Ψ±〉 respectively. We
choose to project onto |Φ+〉. In our projection we use a
pinhole in the far field (setup below); thus after the pro-
jection the light emerging from the pinhole represents a
single spatial mode that carries no orbital angular mo-
mentum. The transverse profile of such a beam is de-
picted in Fig. 2 (bottom, right). The polarization of this
beam is completely separable from the radial and OAM
DoFs and the emerging beam’s polarization state reads:

γ|H〉+ γ̄|V 〉. (3)

We note that the final Bob (polarization) state carries
the same information as the initial Alice (OAM) state
in Eq. (1). This result is independent of the the choice
of the initial state. Although our derivation has assumed
that Alice’s initial state to be a pure state, the derivation
can be easily generalized to accommodate mixed states
[19].

III. EXPERIMENTAL IMPLEMENTATION

A schematic representation of the setup is given in
Fig. 3. Our source of light is a cw He-Ne laser that emits
at the wavelength of 633 nm. In order to produce the
state prepared in Eq. (1) we first use a hologram to pro-
duce a coherent beam of two rings. The phase profiles of
both rings are identical and match the OAM state that is
to be teleported. In principle, one can choose to use any
two orthogonal OAM state. In our realization we used
the two OAM states {|10〉, |−10〉}. This choice minimizes
the cross talk between the two states that often results
from imperfect experimental realization of OAM projec-
tions. We use a telescope after the SLM1 to increase the
diameter of the initial beam to about 2 cm.

The laser beam is then passed through a polarizer and
then a half wave plate (HWP) whose aperture only cov-
ers the inner portion of the beam. The HWP is set to
45◦ in order to rotate the polarization of the inner disk to
the orthogonal polarization. We name this combination a
Bell-state synthesizer. After rotating the polarization of
the inner beam using a small half-wave plate, we measure
the power contained in each of the two rings. We then
match their power by adjusting the radii of the two rings
using SLM1. The last HWP induces a phase difference
between the two rings that can be cancelled by the spa-
tial light modulator used for shaping the laser beam [Fig
3, SLM1]. The beam emerging from the last HWP can
be set to possess an arbitrary state of OAM, along with
a polarization structure that is maximally nonseparable
from the radial DoF. As a result, the field can be formally
described by Eq. (1). At this stage, we need to project
onto a joint maximally nonseparable state of OAM and
radial degrees of freedom in order to realize the state
conversion. The SLM allows for performing a projection
onto the OAM state of l = −10 in the inner disk and a
simultaneous projection over l = 10 for the outer annular
ring. We use a phase-only liquid crystal SLM to shape

the wavefront of the horizontal polarization component
of the beam. To achieve a polarization-insensitive projec-
tion, we use the SLM in a double-pass geometry, with a
HWP in between the two reflections for rotating the po-
larization of the beam by 90◦. In both reflections SLM1
is imaged on SLM2 (the imaging optics is not shown in
the figure). We use a lens with a focal length of 30 cm
after the SLM to focus the beam onto a pinhole with
a diameter of 5 microns. The beam emerging from the
pinhole is approximately a single spatial mode with a po-
larization state that is related to the initial OAM state of
Alice. A combination of a polarizer, quarter wave plate,
and detector are used to measure the stokes parameters
and subsequently characterize the polarization state.

We test our protocol by first transferring pure states
of OAM. This has been done by converting the polar-
ization Stokes parameters into a two-dimensional Jones
vector and then finding the degree of similarity between
the initial (OAM) state owned by Alice and the final (po-
larization) state detected by Bob. In Fig. 4 we report the
fidelities between different initial OAM states and the
polarization state that was measured at the end.

The initial OAM states are chosen to be along the three
primary axes of the Bloch sphere for a two-dimensional
sub-space of {|10〉, | − 10〉}. Namely, we have transferred
the states {|10〉, |−10〉, |10〉+|−10〉, |10〉−|−10〉, |10〉+i|−
10〉, |10〉 − i| − 10〉}. The ideal converted states are then
supposed to be the following polarization state respec-
tively: {|H〉, |V 〉, |H〉+ |V 〉, |H〉 − |V 〉, |H〉+ i|V 〉, |H〉 −
i|V 〉}. The following equation provides the correspond-
ing mapping between OAM and polarization states:

|hl〉 = |10〉 7−→ |H〉,
|vl〉 = | − 10〉 7−→ |V 〉,
|dl〉 = (|10〉+ | − 10〉)/

√
2 7−→ |D〉,

|al〉 = (|10〉 − | − 10〉)/
√

2 7−→ |A〉,
|rl〉 = (|10〉+ i| − 10〉)/

√
2 7−→ |R〉,

|ll〉 = (|10〉 − i| − 10〉)/
√

2 7−→ |L〉. (4)

Note that although the quantum density matrix is by
definition a semi-positive definite matrix, the results of
state tomography for a pure state often turns out to have
negative eigenvalues [29]. This is primarily due to imper-
fect projective measurements and the noise in the exper-
iment. We have used the maximum likelihood recovery
algorithm to find a positive state that is the most prob-
able given the data from the measurement. The aver-
age fidelity of transferred states with their corresponding
initial states is approximately 99%, demonstrating a no-
tably good agreement with the theoretical predictions.

From a practical point of view pure states are an ide-
alization; irrespective of how carefully a state is pre-
pared, noise will inevitably render a pure state mixed.
It is then significant if an implementation can also ac-
commodate mixed states. Additionally, pure states are
only a restricted set of physical states in the Hilbert
space. The vast majority of states are mixed states [29].
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SLM1

QWP
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Pinhole

Polarizer
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Bell state
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FIG. 3. The setup to implement the state transfer from OAM to the polarization DoF; the beam emerging from a single
mode fiber is collimated and shined onto a spatial light modulator (SLM1). The beam emerging from the SLM1 has two rings
with identical azimuthal phase profiles (OAM states). Using a polarizer and a small half wave plate (Bell-state synthesizer),
orthogonal polarizations are introduced onto the two rings. To implement projection onto a radial-OAM maximally nonseparable
state, we divide the surface of SLM2 to two parts. The beam is first shined onto one half of SLM2 where we have impressed
a phase screen that has two rings with opposite OAM values. Then we use a half wave plate to rotate the polarization of the
beam 90 degrees and then shine the light on the second half of SLM2. This combination allows us to perform polarization
insensitive projections onto the radial-OAM maximally nonseparable state. To complete the projection we use a pinhole to
separate the projected light and then use different combinations of a quarter wave plate and a polarizer to measure the Stokes
parameters.

Since we always project onto the same Bell OAM-radial
state, our implementation allows us to also transfer the
mixed states. For demonstration we have also trans-
ferred three typical mixed states. To produce mixed
states we randomly switch the hologram on SLM1 and
use a long (10 minutes) integration time using a power-
meter. We randomly switch between two holograms
on SLM1 such that 75% of the time we prepare one
pure OAM state and 25% we prepare another pure
state. The states are chosen to be 0.75|h〉〈h|+0.25|v〉〈v|,
0.75|d〉〈d| + 0.25|a〉〈a|, and 0.75|r〉〈r| + 0.25|l〉〈l|. These
OAM states are ideally teleported to the polarization
states 0.75|H〉〈H|+0.25|V 〉〈V |, 0.75|D〉〈D|+0.25|A〉〈A|,
and 0.75|R〉〈R| + 0.25|L〉〈L|, respectively. In Fig. 4 we
have reported the fidelities between the polarization
states from the experiment with the ones from theory.
Note that the fidelity between two mixed states is de-

fined as ρ, σ is F = tr
√
ρ1/2σρ1/2. The average fidelities

for the three representative mixed states are found to
be 99.33%, which confirms the accurate operation of our
experimental realization.

Considering that the formalism of classical nonsepa-
rability applies to any three degrees of freedom, we an-
ticipate that this machinery can be utilized to transfer
the state of other DoFs to another, provided the tech-
nical complication in performing the appropriate rota-
tions and projections on other DoFs can be met. This
is a non-trivial problem. For example, the radial degree
of freedom that was utilized here as an ancilla has at-
tracted a lot of interest recently [28]. Nonetheless the

problem of efficient projection on arbitrary Laguerre-
Gaussian modes remain a challenge.

Our specific example provides the capability to map an
arbitrary state of any two OAM modes to a polarization
state in a one-to-one fashion. Given the important role
that transferring states between different degrees of free-
dom plays in recent experiments in quantum information
science [30, 31], we believe that our specific example has
the potential for a wide range of applications. It should
be noted that there are also other approaches that can
be used to transfer OAM state onto the polarization of
the beam [32, 33].

IV. CONCLUSION

While entanglement is an essential part of the quantum
paradigm, the mathematical idea behind it, i.e. nonsepa-
rability, may manifest itself in systems whose description
does not requiring the invoking of quantum theory. Care-
ful examination of such analogy may help us develop a
modern perspective toward old concepts [10, 11] as well
as develop techniques whose simplicity has not been ap-
preciated, and/or whose applicability have not been fully
exhausted yet.

In this manuscript we took inspiration from the
phenomenon of teleportation to develop a state transfer
protocol that is mathematically equivalent to telepor-
tation, but uses classical nonseparability instead of
entanglement. Initially the OAM modes are separable
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Fidelity of
Alice’s state Ideal Bob’s state transfer

|hl〉 |H〉 98.8± 0.4
|vl〉 |V 〉 98.8± 0.2
|dl〉 |D〉 98.9± 0.5
|al〉 |A〉 99.3± 0.3
|rl〉 |R〉 99.1± 0.4
|ll〉 |L〉 99.2± 0.3

3|hl〉〈hl|+ |vl〉〈vl| 3|H〉〈H|+ |V 〉〈V | 99.5± 0.4
3|dl〉〈dl|+ |al〉〈al| 3|D〉〈D|+ |A〉〈A| 99.3± 0.3
3|rl〉〈rl|+ |ll〉〈ll| 3|R〉〈R|+ |L〉〈L| 99.2± 0.2

FIG. 4. Fidelity of state transfer for different states: All
OAM states are in the subspace spanned by l = ±10. The
three last states are mixed states. For brevity of notation, we
have shown the unnormalized states.

from the radial and polarization of degree of freedom,
and polarization and the radial degree of freedom share
a maximally nonseparable state. Then we implement a
Bell state projection on OAM-radial degree of freedom.
The polarization of the beam emerging from this pro-
jection carries the same information as the initial OAM
states. Our protocol allows one to transfer an arbitrary,
and a priori unknown state of any two OAM mdoes of a
beam of light to its polarization state.
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