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Abstract

We study the implications of ’t Hooft anomaly (i.e. obstruction to gauging) on

conformal field theory, focusing on the case when the global symmetry is Z2. Using the

modular bootstrap, universal bounds on (1+1)-dimensional bosonic conformal field

theories with an internal Z2 global symmetry are derived. The bootstrap bounds

depend dramatically on the ’t Hooft anomaly. In particular, there is a universal upper

bound on the lightest Z2 odd operator if the symmetry is anomalous, but there is no

bound if the symmetry is non-anomalous. In the non-anomalous case, we find that the

lightest Z2 odd state and the defect ground state cannot both be arbitrarily heavy.

We also consider theories with a U(1) global symmetry, and comment that there is no

bound on the lightest U(1) charged operator if the symmetry is non-anomalous.
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1 Introduction and Summary of Results

It is well known that ’t Hooft anomalies (i.e. obstruction to gauging) of global symmetries

have dramatic consequences on the gapped phases of quantum systems.1 For example, a

non-trivial ’t Hooft anomaly implies that, in a gapped phase, the symmetry must either be

spontaneously broken, or there is a topological quantum field theory (TQFT) matching the

anomaly. In this paper, we study the constraints from ’t Hooft anomalies on the gapless

1Throughout this paper, the term “anomaly” will always refer to the ’t Hooft anomaly of a global

symmetry. We emphasize that a symmetry with ’t Hooft anomaly is still a true global symmetry, but there

is an obstruction to gauging it. This is to be contrasted with a different but related concept, the Adler-Bell-

Jackiw anomaly [1, 2], where the axial “symmetry” is not a true global symmetry because the associated

current is not conserved.
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phases of quantum systems – described by conformal field theory (CFT) – employing the

techniques of the conformal bootstrap (see [3–6] for reviews).

An intrinsic set of observables in a CFT are the local operators and their correlation

functions. Using the operator-state map, the local operators are in one-to-one correspondence

with the states in the Hilbert space H quantized on the sphere. The scaling dimension ∆

of the local operator is mapped to the energy of the state on the sphere, whose finite size

renders the spectrum discrete. Does the ’t Hooft anomaly constrain the spectrum of local

operators in any way? Specifically, given a global symmetry G with ’t Hooft anomaly α, we

ask:

1. Is there a universal upper bound on the scaling dimension ∆ of the lightest G-charged

local operator?

2. How does the bound, if exists, depend on the ’t Hooft anomaly α?

We approach these general questions from the simplest possible setup. We consider a bosonic,

unitary CFT in (1+1) spacetime dimensions with an internal, unitary Z2 global symmetry,

either with or without ’t Hooft anomaly.2 We find that the bound depends dramatically on

the ’t Hooft anomaly of the global symmetry. Our key finding is that:

• There is a universal upper bound on the scaling dimension ∆ of the lightest Z2 odd

operator if the Z2 is anomalous, but not otherwise.

This result is another manifestation of the moral that an anomalous global symmetry is

harder to “hide” in the infrared: it either implies the vacuum cannot be trivially gapped in

a gapped phase, or it constrains the light charged operator spectrum in a gapless phase.3

This universal upper bound for an anomalous Z2 is shown in Figure 1.

We argue that the same relation between the existence of a universal bound and the ’t

Hooft anomaly also holds true if the symmetry group is U(1). Indeed, previous universal

bounds for the lightest U(1) charged operator in the literature [7–9] are restricted to U(1)

global symmetries generated by holomorphic currents, which are always anomalous (i.e.

cannot be gauged). However, there are more general U(1) global symmetries that are not

generated by holomorphic currents (e.g. the momentum and the winding symmetry in the

free compact boson theory), and they can be non-anomalous. For any such non-anomalous

U(1), we point out that there is no bound on the lightest U(1) charged operator. We further

discuss the interpretation of our bounds from the weak gravity conjecture [10] in AdS3/CFT2.

2We use (1+1)d and 2d interchangeably.
3The scaling dimension of the lightest non-vacuum operator in a given sector of the CFT is referred to

as the “gap” in that sector. Equivalently, this is the gap in the Hilbert space quantized on a spatial circle,

whose finite size renders the spectrum discrete. The gapless phase of the system is described by the CFT on

a real line R, where the gap vanishes.
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Figure 1: Upper bound on the lightest Z2 odd operator in a 2d CFT with an anomalous Z2

symmetry, as a function of the central charge c for c ≥ 1. The region below the curve is

allowed. The ŝu(2)1 WZW model with ∆−gap = 1
2

saturates the bound at c = 1.

Below, we provide an overview of our methods for deriving the above universal bounds.

Topological Defect Lines and Anomalies

An invariant way to characterize a global symmetry and its ’t Hooft anomaly is by the

associated (invertible) topological defect lines L [11–23]. See [24,25] for modern applications

of topological defect lines to renormalization group flows and gauging.4 These are extended

objects in quantum field theory whose contraction of a loop around a local operator φ(x)

implements the symmetry transformation. In the case of a U(1) continuous global symmetry

that is associated to a conserved Noether current Jµ(x), the contour integral of the latter

along a curve L defines a continuous family of topological defect lines eiθ
∫
L ds

µJµ labeled by

an angle θ. The topological property of the line follows from the conservation of the current

Jµ.

The topological defect lines obey a fusion relation that is simply the group multiplication

law of the associated global symmetry. Furthermore, the locality property of the topological

defect lines implies that they obey crossing relations, such as the one depicted in Figure 6.

The more general structure of the crossing relations is described by the mathematics of

fusion categories [26,27]. The ’t Hooft anomalies of the global symmetry are encoded in and

classified by the crossing relations.

4In this paper, we focus on invertible topological defect lines, which are associated to global symmetries.

There are also non-invertible (“non-symmetry”) topological defect lines that have interesting consequences

on the dynamics of quantum field theory (QFT) under renormalization group (RG) flows [25].
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In the presence of a global symmetry, a theory can be quantized with twisted boundary

conditions on a spatial circle. The twisting can be understood as the insertion of a topological

defect line associated to the global symmetry. This defines a Hilbert space which will be

called the defect Hilbert space HL. The ’t Hooft anomaly constrains the spin content of HL
as follows:

s ∈

{
Z
2
, (non-anomalous Z2) ,

1
4

+ Z
2
, (anomalous Z2) ,

(1.1)

Note that even though we start with a bosonic CFT, there are anyonic or fermionic operators

living at the end of the Z2 line, depending on whether the Z2 is anomalous or not. In the

non-anomalous case, this is analogous to the emergent fermionic excitations of lattice spin

models [28], and we will review a general CFT derivation in [25]. This spin selection rule

in turn constrains the light operator spectrum in the Hilbert space of local operators H via

modular transformations, as we will discuss below.

Modular Bootstrap

Our method for deriving universal bounds is by exploiting the general consistency condition

of 2d CFTs on a torus. In particular, the invariance the torus partition function Z(τ, τ̄)

under modular transformations puts strong constraints on the operator content of the theory.

For example, by considering a high/low temperature limit of the partition function, Cardy

famously derived a universal formula for the asymptotic density of heavy local operators [29].

Extending this success, the modern modular bootstrap program has been developed to study,

among others, a medium temperature expansion of the torus partition function and its

consistency with modular invariance. It generalizes the Cardy constraints on the heavy

operators to, in particular, the gap and degeneracies in the spectrum in any 2d CFT [30–

36]. It has been proven that the lightest primary operator above the vacuum is universally

bounded from above by c
6

+ 0.474 for all c > 1 CFTs [30]. In the large c limit, this bound

has recently been improved to c
9.1

+O(1) [36].

In the presence of a Z2 topological defect line L, we can consider torus partition functions

with L extending along the time or spatial direction, which we denote as ZL(τ, τ̄) and

ZL(τ, τ̄), respectively. They admit the following interpretation as sums over different Hilbert

spaces:

ZL(τ, τ̄) = TrHL [qL0−c/24q̄L̄0−c/24] , ZL(τ, τ̄) = TrH[ L̂ qL0−c/24q̄L̄0−c/24] , (1.2)

where L̂ is the generator of the Z2. The modular crossing equation we are to explore is

Crossing: Z(−1/τ,−1/τ̄) = Z(τ, τ̄) ,

ZL(−1/τ,−1/τ̄) = ZL(τ, τ̄) .
(1.3)
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On the other hand, the positivity statement is that the expansions of Z±(τ, τ̄) and ZL(τ, τ̄)

in Virasoro characters χh(τ)χh̄(τ̄) have non-negative coefficients:

Z±(τ, τ̄) ≡ 1

2
[Z(τ, τ̄)± ZL(τ, τ̄)] =

∑
(h,h̄)∈H

n±
h,h̄
χh(τ)χh̄(τ̄) ,

ZL(τ, τ̄) =
∑

(h,h̄)∈HL

(nL)h,h̄ χh(τ)χh̄(τ̄) ,

Positivity: n±
h,h̄
, (nL)h,h̄ ∈ Z≥0.

(1.4)

The information of the ’t Hooft anomaly enters through the spin content of the defect Hilbert

space HL. An equivalent way to state the dependence on the anomaly is that the partition

function ZL is invariant under the Γ0(2) congruence subgroup if the Z2 is non-anomalous,

and invariant under Γ0(4) if the Z2 is anomalous. The relation between the modular crossing

equations and anomalies has been discussed extensively in [37–41].

Summary of Results

The conformal bootstrap program has produced drastic improvements to computational

techniques that make possible the precision study of constraints from modular invariance [42].

Employing these techniques, we find precise bounds in various sectors of the Hilbert space

as functions of the central charge c. At small values of c, our bounds are saturated by a

number of theories, including the free compact boson, the (E7)1 WZW model, and several

B- and D-series WZW models. We highlight our results below:

• For either the non-anomalous or anomalous case, there is a bound on the lightest Z2

even primary. The bounds for c < 25 are presented in Figures 14 and 15.

• When the Z2 is anomalous, we find an analytic bound for the lightest Z2 odd operator

for 1 < c < 3:

∆−gap ≤ (ŷ + 1)
c

12
, (1.5)

where ŷ is the largest root of a cubic polynomial α[M−(∆, t)] (4.17), whose coefficients

depend on c. More refined bounds that apply to a larger range of values of c are

presented in Figure 15 (also Figure 1).

• When the Z2 is non-anomalous, we find that the lightest Z2 odd state (“order”) and the

defect Hilbert space ground state (“disorder”) cannot both be arbitrarily heavy relative

to c.5 This “order-disorder” bound is presented in Figure 17.

5In the anomalous case, the same statement is also true, but follows trivially from the existence of an

upper bound on the lightest Z2 odd state alone.
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• RG flows preserving only a Z2 symmetry generically do not end at gapless fixed points

with 1 < c < 7 without fine-tuning. If the Z2 is anomalous, then the range is further

extended to 1 < c < 7.81.

This paper is organized as follows. In Section 2, we review the formulation of a Z2

symmetry and its ’t Hooft anomaly using topological defect lines, and derive the modular

properties of the torus partition functions with defect insertions. In Section 3, we set up

the modular bootstrap equations, and introduce the linear functional method that we use to

derive bounds. In Section 4, we present an analytic functional that implies a simple bound

on the Z2-odd operators in the presence of ’t Hooft anomaly, and argue for the non-existence

of a bound when the Z2 is non-anomalous. Section 5 presents further refined bounds and

discusses the physical implications. Finally, Section 6 discusses how our results for Z2 extend

to theories with U(1) symmetry. In the appendices, we review a list of theories with Z2

symmetry, determine the ’t Hooft anomalies, and compute the lightest scaling dimension in

each sector of each theory.

2 Z2 Symmetry and Its Anomaly in Two Dimensions

We consider unitary, bosonic 2d conformal field theories with an internal, unitary global

symmetry group. We assume that the symmetry is unbroken, and there is a unique weight

(h = 0, h̄ = 0) operator, namely, the identity operator. In 2d, the unitary operator imple-

menting a global symmetry transformation is a topological defect line. The definition and

general properties of these topological defect lines and their ’t Hooft anomalies are discussed

extensively in [24, 25] from a modern viewpoint. In this section, we present a self-contained

review of [25] specialized to the case of Z2 symmetry.

2.1 Topological Defect Lines and the Defect Hilbert Space

For quantum field theory in any spacetime dimension, a (0-form) global symmetry trans-

formation is implemented by a codimension-one topological defect [43,44]. Physical observ-

ables, including correlation functions, can be dressed with these topological defects. The

basic property of topological defects is that correlation functions are invariant under any

continuous deformation of the defects that preserves their junctions. This implies that the

stress tensor commutes with the topological defect up to contact terms. Throughout this

paper, we assume that the conformal field theory is on a 2d manifold with vanishing Ricci

7



scalar.6

When the global symmetry transformation is U(1), the defect associated to a rotation by

angle θ is Uθ(Σ) = exp[iθ
∫

Σ
?J ], where Jµ(x) is the Noether current and Σ is a codimension-

one manifold (sometimes taken to be a constant time slice). The topological property follows

from the conservation of the Noether current, d ? J = 0.

In 2d, such codimension-one topological defects are lines. Consider the topological line L
associated to an internal unitary Z2 symmetry in a bosonic 2d CFT. The Z2 line implements

a Z2 action on the Hilbert spaceH when quantized on a circle S1. This action can be realized

by wrapping the Z2 line along the compact S1 direction at a fixed time on the cylinder S1×R,

acting on a state |φ〉 ∈ H prepared at an earlier time (see Figure 2). We will denote this Z2

unitary operator as

L̂ : H → H . (2.1)

Via the operator-state correspondence, the topological line also implements the Z2 action

on local operators. As we sweep the Z2 line past a Z2 even/odd local operator φ(x), the

correlation function changes by a ± sign (see Figure 4).

The fusion of topological lines obeys the group multiplication law. Namely, as we bring

two parallel Z2 circles together, they fuse to a trivial line (see Figure 3). Thus L̂2 = +1.

Since the Z2 line is its own inverse, we do not need an orientation for the line. We can

decompose H into the Z2 even and odd subsectors under L̂:

H = H+ ⊕H− . (2.2)

Consider placing the theory on a cylinder S1 × R with L running along the time R
direction (see Figure 5). The topological line L intersects with the spatial S1, and therefore

modifies the quantization by a twisted periodic boundary condition. This defines a defect

Hilbert space denoted by HL.7 Via the operator-state correspondence, a defect Hilbert space

state |ψ〉 ∈ HL is mapped to an operator living at the end of the Z2 line.8

6On a curved manifold, there is an interesting orientation-reversal anomaly for an anomalous Z2 line,

coming from the contact term between the stress tensor and the line. See Section 2.4 of [25]. This results in

a phase change as we deform an anomalous Z2 line across a manifold with nonzero Ricci scalar curvature.
7When the Z2 is non-anomalous, the Z2 even sector H+

L of the defect Hilbert space HL before gauging is

the twisted sector of the orbifold theory.
8It was shown in Section 2.2.4 of [25] that the defect Hilbert space HL of a topological defect line

L is never empty in a 2d unitary, compact, bosonic CFT with a unique vacuum. By the operator-state

correspondence, it means that every topological defect line must be able to end on some (non-topological)

point-like operator(s), i.e. all lines are breakable.

On the other hand, in a 2d theory with degenerate vacua, the defect Hilbert space HL might be empty.

For example, this is the case in the Z2 gauge theory describing the spontaneously broken phase. By the

operator-state correspondence, such a line is not breakable.

8



|ϕ> ∈ H

Figure 2: The black line depicts the topological defect line L for the global symmetry Z2.

The Z2 action on the Hilbert space can be realized by wrapping the line around the compact

circle on the cylinder.

=

Figure 3: The topological lines obey the group multiplication law under fusion.

Since the topological line commutes with the stress tensor, the states in the defect Hilbert

space HL are organized into representations of the left and right Virasoro algebras. In

particular, the defect Hilbert space states can be diagonalized to have definite conformal

weights (h, h̄).

We can generalize the above construction by inserting multiple vertical topological lines

along the time direction on the cylinder. This defines a more general defect Hilbert space

HLL···L. In the case of Z2 lines, we can fuse these vertical lines pairwise to the trivial line.

This shows that the defect Hilbert space of an even number of lines is isomorphic to the

Hilbert space H of local operators, while that of an odd number of lines is isomorphic to the

defect Hilbert space HL. In particular, the defect Hilbert space HLL, which via the operator-

state correspondence are the operators living on the line, is isomorphic to the Hilbert space

H of local operators.

Finally, we should require that the global symmetry acts faithfully on local operators,

i.e. the only topological defect line that commutes with all local operators is the trivial line.

It follows that the defect Hilbert space HL contains no weight-(0, 0) state, otherwise the

9



ϕ
= (±1) ϕ

Figure 4: As we sweep the Z2 line past a local operator φ, the correlation function might

change by a sign.

|ψ> ∈ HL

ψ(x)

Figure 5: The defect Hilbert space HL of a Z2 line quantized on a circle S1. A state in

the defect Hilbert space is mapped to an operator living at the end of the Z2 line via the

operator-state correspondence.

topological line can be “opened up” to commute with all local operators. See Section 2.2.5

of [25] for a detailed discussion.

2.2 ’t Hooft Anomaly

In a bosonic 2d theory, the ’t Hooft anomaly of a unitary Z2 symmetry is classified by the

group cohomology H3(Z2, U(1)) = Z2, which manifests in the crossing relation of L. The

3d Symmetry-Protected Topological phase is exp[2πi
2

∫
3d
A ∪ A ∪ A] where A is the discrete

background one-form gauge field.

Consider a general correlation function of local operators and topological lines. Let us

focus on a local patch depicted by the gray circle on the left in Figure 6, where there are

two segments of Z2 lines. This defines a state of weight (h = 0, h̄ = 0) in the defect Hilbert

space HLLLL on the boundary of this patch. Since HLLLL ' H by fusing the four vertical

10



Z2 lines, the subspace of such weight-(0, 0) states, denoted by VLLLL, is one-dimensional and

generated by the identity operator.

Next, we perform a crossing in that local patch without modifying the configuration

outside the patch, so that we end up with the configuration on the right in Figure 6. How

is the new correlation function related to previous one? Since VLLLL is one-dimensional, the

state corresponding to the right figure must be proportional to the state on the left. We will

denote this proportionality constant by α.

What is the constraint on α? By applying the crossing in Figure 6 twice, we return to the

original configuration in the local patch, multiplied by α2. Thus we conclude that α2 = 1. In

more general terms, this consistency condition is the cocycle condition of H3(G,U(1)), which

classifies the bosonic anomaly of a global symmetry G [37, 45,46], in the case of G = Z2.

As we will argue now, a non-anomalous Z2 line has α = +1, while an anomalous Z2 line

has α = −1. Indeed, a configuration of Z2 lines can be thought of as a background Z2 gauge

field on the manifold. The crossing in Figure 6 can be achieved by performing a Z2 gauge

transformation in the area between the two lines. If the correlation function is not invariant

under the gauge transformation in the presence of background gauge fields (i.e. if α = −1),

then it is by definition anomalous.

= α

Figure 6: The crossing relation of a Z2 line L (shown in black) on a local patch of a 2-

manifold. By applying this crossing relation twice, we conclude that α has to be either +1

or −1.

Another pragmatic way to detect the anomaly (α = −1) is by the ambiguity/inconsistency

in constructing the torus partition function of the Z2 orbifold theory.9 Let us attempt to

compute the torus partition function of the would-be orbifold theory, which can be written

as a sum of four terms (times a factor of 1
2
). The first two terms account for the contributions

from the Z2 even states in the H, while the last two terms are from the Z2 even states in

the defect Hilbert space HL. A potential ambiguity arises for the last term, which is shown

in Figure 7. When α = +1, there is no ambiguity in resolving the cross “+” of two Z2

9Since H2(Z2, U(1)) = 1, we do not have to consider the discrete torsion [47].
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Figure 7: A Z2 action can be defined unambiguously on the defect Hilbert spaceHL when the

bulk Z2 is non-anomalous. Because α = +1 in Figure 6, there is no ambiguity in resolving

the cross “+” of the two lines.

lines, hence there is no ’t Hooft anomaly (i.e. no obstruction to orbifolding). On the other

hand, if α = −1, then the cross “+” in Figure 7 is ambiguous and depends on the choice of

resolution. In particular, the two resolutions in Figure 8 differ by a sign, and neither yields a

modular invariant torus partition function. Thus we cannot consistently compute the torus

partition function of the would-be orbifold theory when α = −1, which means that the Z2

is anomalous.

2.3 Spin Selection Rule

All local operators in a bosonic 2d CFT have integer spins s ≡ h− h̄, by the requirement of

mutual locality. However, an operator ψ living at the end of a topological defect line, which

by the operator-state correspondence maps to a state in the defect Hilbert space HL, need

not obey this rule. This is because as we circle a local operator φ around ψ, the former will

be acted on by the topological defect line attached to ψ.

In this subsection, we derive the constraints on the spins h − h̄ of states in the defect

Hilbert space HL. Indeed, we find that the states in the defect Hilbert space HL generally

do not have integer spins. Along the way, we also discuss an interesting spin-charge relation

for states in the defect Hilbert space. The constraints on the spins for a Zn line can be found

in Section 4.4 of [25].

Let us start by defining a Z2 action on the defect Hilbert space HL, analogous to the L̂
action on the Hilbert space H of local operators. The first attempt is to represent such an

action on HL as in Figure 7. However, such a configuration is potentially ambiguous because

of the cross “+” between the two lines. To make sense of the cross, there are two possible

resolutions, as shown in Figure 8, and each defines an action on the defect Hilbert space HL.

12



L+
 L-



Figure 8: When the Z2 is anomalous (i.e. α = −1), the two resolutions L̂± of the cross

“+” lead to different actions on the defect Hilbert space HL. From Figure 6, we see that

L̂+ = αL̂−.

We denote these two actions on HL by

L̂± : HL → HL . (2.3)

The two actions are related by a crossing move (Figure 6):

L̂+ = αL̂− . (2.4)

Thus, when the Z2 is non-anomalous (α = +1), the configuration in Figure 7 is unambiguous

and can be interpreted as either L̂+ or L̂−. However, when the Z2 is anomalous (α = −1),

then the two resolutions differ by a sign, and the configuration in Figure 7 is ambiguous.

L+
 L+



= α

Figure 9: The square of L̂+ can be computed using the crossing relation in Figure 6.

Let us discuss how L̂± acts on the a state with conformal weight (h, h̄) in the defect Hilbert

space HL. First, applying the crossing move to the left of Figure 9 and then unwinding the

13



line, we have

(L̂+)2 = α , (L̂−)2 = α . (2.5)

To determine L̂±|h, h̄〉, we perform an operator-state map from the cylinder to the plane.

After this map, we see that the action of L̂± corresponds to the unwinding of a Z2 line, as

depicted in Figure 10, giving

L̂±|h, h̄〉 = e±2πi(h−h̄)|h, h̄〉 . (2.6)

This phase in (2.6) is only consistent with (2.5) if the spin s = h− h̄ obeys

s ∈

{
Z
2
, (α = +1, non-anomalous Z2) ,

1
4

+ Z
2
, (α = −1, anomalous Z2) ,

(2.7)

for any |h, h̄〉 ∈ HL.

Importantly, if the Z2 is anomalous, it follows that the scaling dimensions ∆ = h+ h̄ of

states in the defect Hilbert space HL are bounded from below by 1
4
:

(α = −1) ∆ ≥ 1

4
, ∀ |h, h̄〉 ∈ HL. (2.8)

This fact will be crucial when we argue for a universal bound on operators in the Z2 odd

sector, when the Z2 is anomalous (see Section 4.2). This lower bound on the defect Hilbert

space ground state implies that an anomalous Z2 line in a gapped phase – where all the

operators in H and HL have vanishing weight – is unbreakable (i.e. HL is empty).

Finally, let us comment on an interesting spin-charge relation in the defect Hilbert space

HL. Since L̂+ differs from L̂− only by an overall phase α, we focus on the former from now

on. From (2.6), we see that the eigenvalue of L̂+ is determined by the spin s of the state in

the defect Hilbert space HL. The spin-charge relation on HL is then as follows. When the

Z2 is non-anomalous,

(α = +1) L̂+ =

{
+1 , if s ∈ Z ,
−1 , if s ∈ 1

2
+ Z .

(2.9)

Note that even though the 2d CFT is bosonic, we encounter half-integral spin operators

living at the end of Z2 lines. These states are Z2 odd, and are projected out if we were

to gauge the Z2 symmetry. These half-integral spin states are the gapless version of the

emerging fermionic excitations from string-like objects in the lattice spin models [28]. On

the other hand, when the Z2 is anomalous,

(α = −1) L̂+ =

{
+i , if s ∈ 1

4
+ Z ,

−i , if s ∈ −1
4

+ Z .
(2.10)
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Hence there are anyonic excitations at the endpoints of anomalous Z2 lines.

Let H+
L denote the subsector of HL which has L̂+ = +1 in the non-anomalous case, or

that with L̂+ = +i in the anomalous case. Similarly, let H−L denote the subsector of HL
in which all states have L̂+ = −1 in the non-anomalous case, or that with L̂+ = −i in the

anomalous case. The defect Hilbert space Hilbert space HL can be decomposed as

HL = H+
L ⊕H

−
L . (2.11)

= e2π i s
ψ ψ

Figure 10: Using the operator-state correspondence map from the cylinder S1 × R to the

plane R2, we can map the action of L̂+ on a state |ψ〉 ∈ HL to a “lassoing” configuration on

the plane (left figure). The Z2 line can then be unwound to give the right figure, at a price

of a phase due to the fractional spin of the operator ψ living at the end of the defect.

2.4 Relation to 3d TQFTs

If we couple a 2d CFT with Z2 symmetry to a 3d SPT and gauge the 2d-3d system, then

the operators living at the end of the original Z2 line (which no longer exists in the gauged

theory) now become the endpoints of the anyons in the 3d TQFT. Hence the spin selection

rule (2.7) in HL is related to the spins of the anyons in the 3d TQFT. We discuss this relation

in more detail below.10

The Anomalous Case We start with a 2d bosonic CFT with an anomalous Z2 symmetry.

The spin selection rule in HL is s = h − h̄ ∈ 1
4

+ Z
2
. We couple the 2d CFT to a the 3d

SPT 2πi
2

∫
3d
A ∪ A ∪ A, where by anomaly inflow the Z2 symmetry of this 2d-3d system can

now be gauged. In the 3d bulk, we obtain the Dijkgraaf-Witten theory [48] associated to

the nontrivial element of H3(Z2, U(1)) = Z2. This 3d bosonic TQFT admits a continuum

description [43,49,50]

S =
2i

2π

∫
3d

bda+
2i

4π

∫
3d

ada , (2.12)

10We thank Zohar Komargodski and Pavel Putrov for discussions on this point.
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where a and b are (continuous) 1-form gauge fields. There are four anyons: the trivial line

1, the electric line e, the magnetic line m, and the dyonic line d. Their spins are given by11

Anyon 1 e = ei
∮
a m = ei

∮
b d = ei

∮
a+b

Spin 0 0 −1
4

1
4

(2.13)

In the gauged 2d-3d system, the Z2 even local operators of the ungauged theory are local

operators on the 2d boundary. The Z2 odd local operators of the ungauged theory are now

the endpoints of the electric line e, whose spin is 0. The operators with spin 1
4

+ Z in the

defect Hilbert space HL are the endpoints of the dyonic line d, which has spin 1
4
. Finally,

the rest of the operators with spin −1
4

+ Z in HL are the endpoints of the magnetic line m,

which has spin −1
4
. We summarize the above relation as follows:

Ungauged 2d CFT H+ : s ∈ Z H− : s ∈ Z H+
L : s ∈ 1

4
+ Z H−L : s ∈ −1

4
+ Z

Anyon 1 e d m

The Non-Anomalous Case The spin selection rule in HL for a non-anomalous Z2 is

s = h− h̄ ∈ Z
2
. We start with a 2d CFT with a non-anomalous Z2 coupled to a trivial 3d Z2

SPT, and then make the Z2 gauge field dynamical. In the bulk, we obtain the 3d Z2 gauge

theory (without the Dijkgraaf-Witten twist):

S =
2i

2π

∫
3d

bda , (2.14)

where a and b are 1-form continuous gauge fields. The anyons in this 3d TQFT are

Anyon 1 e = ei
∮
a m = ei

∮
b d = ei

∮
a+b

Spin 0 0 0 1
2

(2.15)

In the gauged 2d-3d system, the 2d operators become the endpoints of different anyons as

follows:

Ungauged 2d CFT H+ : s ∈ Z H− : s ∈ Z H+
L : s ∈ Z H−L : s ∈ 1

2
+ Z

Anyon 1 e m d

2.5 Computation of the Anomaly

The above discussion shows that given a bosonic 2d CFT with a Z2 symmetry, there is a

simple algorithm to compute its anomaly: one first puts the theory on a cylinder S1 × R in

11Recall that the spin of an anyon in 3d TQFT is defined modulo integer, while the spin s = h − h̄ of a

2d CFT operator is a real number.
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the presence of a Z2 line along the time R direction, which modifies the periodic boundary

condition (as in Figure 5). Then, from the spins of the states in this Hilbert space HL, we

can determine the anomaly from the spin selection rule (2.7).

The spectrum of the defect Hilbert space HL is determined by the Z2 action on H via a

modular S transformation. We first start with the torus partition function with the Z2 line

wrapped around the spatial S1 at a constant time. This can be interpreted as a trace over

H with a Z2 action inserted:

ZL(τ, τ̄) ≡ TrH[L̂ qL0−c/24q̄L̄0−c/24] , (2.16)

where L̂ : H → H is the Z2 symmetry realized on the Hilbert space H. Here, q = exp(2πiτ)

and q̄ = exp(−2πiτ̄). The modular S : τ → −1/τ transformation then gives us the partition

function over the defect Hilbert space HL:

S[ZL](τ, τ̄) = ZL(τ, τ̄) ≡ TrHL [qL0−c/24q̄L̄0−c/24],

where S[f ](τ, τ̄) ≡ f(−1/τ,−1/τ̄). In this way, we obtain the defect Hilbert space spectrum

from the Z2 action on the Hilbert space H of local operators. The spin content of ZL(τ, τ̄)

then reveals the anomaly of the Z2 symmetry.

We can further perform a modular T : τ → τ + 1 transformation on ZL(τ, τ̄) to obtain

the left figure of Figure 8:

T [ZL](τ, τ̄) = ZL
+

L (τ, τ̄) ≡ TrHL [L̂+ qL0−c/24q̄L̄0−c/24],

where T [f ](τ, τ̄) ≡ f(τ + 1, τ̄ + 1). The modular S transformation of ZL
+

L then depends on

the anomaly:

S[ZL
+

L ](τ, τ̄) = ZL
−

L (τ, τ̄) = αZL
+

L (τ, τ̄) , (2.17)

where we have used L̂+ = αL̂−. The computation of more general discrete group anomalies

from the torus partition function is discussed in [37] (see also [38, 40,41]).

These modular properties can be summarized as follows. When the Z2 is non-anomalous,

the partition function ZL(τ, τ̄) is invariant under ST 2S and T , which generate the congruence

subgroup Γ0(2). When the Z2 is non-anomalous, the partition function ZL(τ, τ̄) is invariant

under ST 4S and T , which generate the congruence subgroup Γ0(4).

We illustrate this computation in two examples, one with a non-anomalous Z2, the c =

1/2 Ising model, and the other with an anomalous Z2, the c = 1 self-dual free compact

boson.
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2.5.1 Non-Anomalous Example: Ising Model

The 2d Ising model has three Virasoro primaries, the vacuum 1 with h = h̄ = 0, the energy

operator ε with h = h̄ = 1
2
, and the spin field σ with h = h̄ = 1

16
. There is a Z2 symmetry

that flips the sign of the spin field

L̂ : 1→ 1 , ε→ ε , σ → −σ . (2.18)

The torus partition function of the Ising model can be written as the sum of the contri-

butions from the three primaries (and their descendants):

Z(τ, τ̄) = |χ0(τ)|2 + |χ 1
2
(τ)|2 + |χ 1

16
(τ)|2 . (2.19)

Their characters are

χ0(τ) =
1

2

(√
θ3(τ)

η(τ)
+

√
θ4(τ)

η(τ)

)
, χ 1

2
(τ) =

1

2

(√
θ3(τ)

η(τ)
−

√
θ4(τ)

η(τ)

)
, χ 1

16
(τ) =

√
θ2(τ)

2η(τ)
,

(2.20)

where the θi are the Jacobi theta functions, defined as θ2(τ) = 2q1/8
∏∞

i=1(1 − qi)(1 + qi)2,

θ3(τ) =
∏∞

i=1(1−qi)(1+qi−1/2)2, θ4(τ) = 2q1/8
∏∞

i=1(1−qi)(1−qi−1/2)2, and η is the Dedekind

eta function defined as η(τ) = q1/24
∏∞

i=1(1 − qi). The torus partition function with the Z2

action (Z2 line inserted along the spatial direction) is

ZL(τ, τ̄) = |χ0(τ)|2 + |χ 1
2
(τ)|2 − |χ 1

16
(τ)|2 . (2.21)

To perform the modular S transformation of ZL(τ, τ̄), we note that the modular S matrix

is

S =
1

2

 1 1
√

2

1 1 −
√

2√
2 −
√

2 0

 . (2.22)

It follows that the defect Hilbert space partition function is:

ZL(τ, τ̄) = S[ZL](τ, τ̄) = χ0(τ)χ 1
2
(τ̄) + χ 1

2
(τ)χ0(τ̄) + χ 1

16
(τ)χ 1

16
(τ̄) . (2.23)

Hence, we see that there are three primaries in the defect Hilbert space HL, with weights

(h, h̄) = (0,
1

2
), (

1

2
, 0), (

1

16
,

1

16
) . (2.24)

Via the operator-state correspondence, they are mapped to operators living at the end of the

Z2 line. The (0, 1
2
) and (1

2
, 0) states are the free Majorana fermions with half integral spins.
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The scalar ( 1
16
, 1

16
) state in the defect Hilbert space is the disorder operator µ(x), which is

not mutually local with the spin field σ(x) because the latter is Z2 odd.

The spin spectrum in HL corresponds to the non-anomalous (α = +1) spin selection rule

in (2.7). We therefore conclude that the Z2 symmetry in the Ising model is non-anomalous.

Indeed, it is well-known that the Ising CFT is self-dual under the Z2 gauging.

We can further do a modular T transformation on ZL to obtain ZL
+

L :

ZL
+

L (τ, τ̄) = −χ0(τ)χ 1
2
(τ̄)− χ 1

2
(τ)χ0(τ̄) + χ 1

16
(τ)χ 1

16
(τ̄) . (2.25)

One can easily check that ZL
+

L is invariant under S, hence ZL
+

L (τ, τ̄) = ZL
−
L (τ, τ̄), consistent

with α = +1. From ZL
+

L , we see that the two free fermions are Z2 odd and the disorder

operator µ(x) is Z2 even. If we perform the Z2 orbifold, then the two free fermions are

projected out, while the disorder operator survives in the orbifold theory. On the other

hand, the original spin field σ is projected out because it is Z2 odd. Therefore, under Z2

orbifolding, the order σ and disorder µ operators are exchanged, implementing the Kramers-

Wannier duality [51].

2.5.2 Anomalous Example: ̂su(2)1 WZW Model

The c = 1 ŝu(2)1 WZW model can be equivalently described by the self-dual free compact

boson. It has two current algebra primaries, the vacuum |0, 0〉 and the spin-1
2

primary (see

Appendix A for our convention)

|h =
1

4
, h̄ =

1

4
〉±,± = exp

[
± iXL(0)± iXR(0)

]
|0, 0〉 . (2.26)

This theory has an anomalous Z2 global symmetry which commutes with the ŝu(2)× ŝu(2)

current algebra, and acts on the primaries by

L̂ : |0, 0〉 7→ |0, 0〉 , |1
4
,
1

4
〉±,± 7→ −|

1

4
,
1

4
〉±,± . (2.27)

It is well known that the 2d CP1 model at θ = π flows to the ŝu(2)1 WZW model in the IR.

This Z2 anomaly has been analyzed in the UV CP1 sigma model in [52,53].

The torus partition function without any line is

Z(τ, τ̄) = |χ0(τ)|2 + |χ 1
4
(τ)|2 , (2.28)

where

χ0(τ) =
θ3(2τ)

η(τ)
, χ 1

4
(τ) =

θ2(2τ)

η(τ)
, (2.29)
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are the ŝu(2) current algebra characters.12 The modular S matrix is

S =
1√
2

(
1 1

1 −1

)
. (2.30)

The torus partition function with the Z2 line inserted along the spatial direction is

ZL(τ, τ̄) = |χ0(τ)|2 − |χ 1
4
(τ)|2 . (2.31)

The partition function over the defect Hilbert space is the modular S transformation:

ZL(τ, τ̄) = S[ZL](τ, τ̄) = χ0(τ)χ 1
4
(τ̄) + χ 1

4
(τ)χ0(τ̄) . (2.32)

Hence we learn that the defect Hilbert space HL has the following two current algebra

primaries:

|1
4
, 0〉± ↔ e±iXL(0) , |0, 1

4
〉± ↔ e±iXR(0) . (2.33)

Note in particular that they have spins ±1
4
. The corresponding operators e±iXL,R(0) are not

local and are attached to the end of the Z2 line. From the spin selection rule (2.7), we

conclude that this Z2 in the self-dual free compact boson theory is anomalous.

Next, we can perform a modular T transformation on ZL(τ, τ̄) to obtain the left figure

of Figure 8:

Z
L+
L (τ, τ̄) = TrHL [L̂+ q

L0−1/24q̄L̄0−1/24] = T [ZL](τ, τ̄) = iχ0(τ)χ 1
4
(τ̄)− iχ 1

4
(τ)χ0(τ̄) . (2.34)

It follows that the spin-1
4

states have L̂+-charge +i, while the spin-(−1
4
) states have L̂+-

charge −i. On the other hand, the right figure of Figure 8 can be obtained by acting T−1

on ZL(τ, τ̄):

Z
L−
L (τ, τ̄) = TrHL [L̂− qL0−1/24q̄L̄0−1/24] = T−1[ZL](τ, τ̄) = −iχ0(τ)χ 1

4
(τ̄) + iχ 1

4
(τ)χ0(τ̄) .

(2.35)

Since Z
L+
L (τ, τ̄) = −ZL−L (τ, τ̄), we have confirmed the α = −1 sign in Figure 6.

3 Modular Bootstrap

We now discuss how the torus partition functions with different configurations of topological

defect lines are related under modular S transforms, and how these relations together with

12As a slight abuse of notation, in this section, χh(τ) denotes the current algebra character of a primary

with weight h, not the Virasoro character (3.1).
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the Hilbert space definition of these partition functions allow a systematic study of universal

constraints. The 2d CFT will be assumed to be compact, unitary, bosonic, and with c =

cL = cR > 1.

With the exception of Section 4, we will define the gap in a sector of the spectrum as

the scaling dimension of the lightest non-degenerate Virasoro primary. We will be mainly

interested in deriving an upper bound (which depends on the central charge) on the gap in

each sector of the spectrum, and stressing the role of the ’t Hooft anomaly. 13

3.1 Partition Functions and Characters

We consider the following four torus partition functions dressed with topological defect lines:

no line Z(τ, τ̄), a single line along the spatial direction ZL(τ, τ̄), a single line along the time

direction ZL(τ, τ̄), and Z
L+
L (τ, τ̄) as defined in Section 2.5. We remind the readers their

definitions in terms of traces over the Hilbert space H and the defect Hilbert space HL:

Z(τ, τ̄) = TrH[ qL0−c/24q̄L̄0−c/24 ]

ZL(τ, τ̄) = TrH[ L̂ qL0−c/24q̄L̄0−c/24 ]

ZL(τ, τ̄) = TrHL [ qL0−c/24q̄L̄0−c/24 ]

ZL
+

L (τ, τ̄) = TrHL [ L̂+ qL0−c/24q̄L̄0−c/24 ]

where L̂ : H → H is the Z2 symmetry action on H while L̂+ is an action defined on the

defect Hilbert space HL (see Figure 8). The consistency of the partition functions under the

modular T transform is guaranteed by the spin selection rule derived in Section 2.3. In the

13There is no universal lower bound in each sector stronger than the unitarity bound, which is 1
4 in HL

for an anomalous Z2, and 0 in every other case. For example, in the Hilbert space H of local operators, one

can achieve an arbitrarily small gap by considering a sigma model CFT with a large target space. For the

defect Hilbert space of an anomalous Z2, there is a universal lower bound 1
4 on the ground state, but it is

saturated by the self-dual boson. Thus the non-trivial question is whether there is an upper bound on the

gap in each sector.
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remainder, we will study the nontrivial constraints imposed by the modular S transform on

the partition functions.

The assumption of c > 1 (together with the unitarity bound h, h̄ > 0) simplifies the

possible modules of the Virasoro algebra. There is one degenerate module, i.e. the vacuum

module h = 0, and a continuous family of non-degenerate modules labeled by a positive

conformal weight h > 0. The Virasoro characters are given by

χ0(τ) = (1− q)q
− c−1

24

η(τ)
, χh>0(τ) =

qh−
c−1
24

η(τ)
. (3.1)

Combining the left with the right, there are three kinds of Virasoro primaries:

(vacuum) χ0(τ)χ0(τ̄) ,

(conserved current) χ0(τ)χh̄>0(τ̄), χh>0(τ)χ0(τ̄) ,

(non-degenerate) χh>0(τ)χh̄>0(τ̄) .

(3.2)

Since the Z2 line commutes with the stress tensor up to contact terms, the defect Hilbert

space states fall into representations of the Virasoro algebras. It follows that the torus

partition function Z(τ, τ̄) and ZL(τ, τ̄) are both given by a non-negative sum over Virasoro

characters,

Z(τ, τ̄) =
∑

(h,h̄)∈H

nh,h̄ χh(τ)χh(τ̄) , (3.3)

ZL(τ, τ̄) =
∑

(h,h̄)∈HL

(nL)h,h̄ χh(τ)χh(τ̄) , (3.4)

where nh,h̄ ∈ Z≥0 and (nL)h,h̄ ∈ Z≥0 are the degeneracies of Virasoro primaries of weight

(h, h̄) in H and in the defect Hilbert space HL, respectively. In H, states have non-negative

conformal weights h, h̄ and integer spins:

(h, h̄) ∈ H : h, h̄ ≥ 0 , h− h̄ ∈ Z . (3.5)

On the other hand, the defect Hilbert space states obey a novel spin selection rule (2.7) that

depends on the anomaly:

(h, h̄) ∈ HL : h, h̄ ≥ 0 , h− h̄ ∈ 1− α
8

+
Z
2
, (3.6)

where a non-anomalous Z2 has α = +1 while an anomalous Z2 has α = −1.

Recall that H can be decomposed into the Z2 even and odd subsectors H = H+ ⊕H−.
Let the degeneracies of primaries with weight (h, h̄) in H± be n±

h,h̄
∈ Z≥0, respectively. By
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definition, nh,h̄ = n+
h,h̄

+ n−
h,h̄

, and they are related to Z(τ, τ̄) and ZL(τ, τ̄) by

Z+(τ, τ̄) ≡ 1

2

[
Z(τ, τ̄) + ZL(τ, τ̄)

]
=

∑
(h,h̄)∈H+

n+
h,h̄
χh(τ)χh̄(τ̄) , (3.7)

Z−(τ, τ̄) ≡ 1

2

[
Z(τ, τ̄)− ZL(τ, τ̄)

]
=

∑
(h,h̄)∈H−

n−
h,h̄
χh(τ)χh̄(τ̄) . (3.8)

For the defect Hilbert space, recall that H+
L is the subsector which has L̂+ =

√
α, and H−L

is the subsector which has L̂+ = −
√
α. Here

√
−1 is taken to be +i. Let (n±L)h,h̄ ∈ Z≥0 be

the degeneracies of Virasoro primaries with weight (h, h̄) in H±L , respectively. By definition,

(nL)h,h̄ = (n+
L)h,h̄ + (n−L)h,h̄, and they are related to ZL(τ, τ̄) and ZL

+

L (τ, τ̄) by

1

2

[
ZL(τ, τ̄) +

1√
α
ZL

+

L (τ, τ̄)

]
=

∑
(h,h̄)∈H+

L

(n+
L)h,h̄ χh(τ)χh̄(τ̄) , (3.9)

1

2

[
ZL(τ, τ̄)− 1√

α
ZL

+

L (τ, τ̄)

]
=

∑
(h,h̄)∈H−L

(n−L)h,h̄ χh(τ)χh̄(τ̄) . (3.10)

3.2 Modular Crossing Equation

From Section 2.5, the crossing equations for the torus partition functions Z(τ, τ̄), ZL(τ, τ̄),

ZL(τ, τ̄), ZL
+

L (τ, τ̄) under the modular S transform are
Z(τ, τ̄)

ZL(τ, τ̄)

ZL(τ, τ̄)

ZL
+

L (τ, τ̄)

 −→S


Z(−1/τ,−1/τ̄)

ZL(−1/τ,−1/τ̄)

ZL(−1/τ,−1/τ̄)

ZL
+

L (−1/τ,−1/τ̄)

 =


1

1

1

α




Z(τ, τ̄)

ZL(τ, τ̄)

ZL(τ, τ̄)

ZL
+

L (τ, τ̄)

 (3.11)

Note that the anomaly α = ±1 explicitly enters into the crossing equation.

The dependence on the anomaly in the modular transform of ZL
+

L (τ, τ̄) can be equiva-

lently implemented via the spin selection rule (2.7). Once the spin is specified, the action

of T on a state is determined. In this way, we only have to consider the three partition

functions, Z(τ, τ̄), ZL(τ, τ̄), ZL(τ, τ̄), while the fourth one ZL
+

L (τ, τ̄) can be obtained by

applying T on ZL(τ, τ̄), i.e. ZL
+

L (τ, τ̄) = T [ZL](τ, τ̄).

Define

Z(τ, τ̄) ≡

Z+(τ, τ̄)

Z−(τ, τ̄)

ZL(τ, τ̄)

 . (3.12)
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Every component of the vector Z has a non-negative expansion on the Virasoro characters

(see (3.4), (3.7), and (3.8)). Then the crossing equation (3.11) under S reduces to

Z(−1/τ,−1/τ̄) = F Z(τ, τ̄) , (3.13)

where the crossing matrix is

F ≡

1
2

1
2

1
2

1
2

1
2
−1

2

1 −1 0

 . (3.14)

In this new way of writing the crossing equation, while the anomaly α does not explicitly

enter into the equation, the allowed spins in the defect Hilbert space HL are constrained by

the anomaly via (2.7).

We claim that for the purpose of constraining the gaps or scalar gaps in the various

sectors, we can assume without loss of generality that in all sectors,

Z(τ, τ̄) = Z(τ̄ , τ), (3.15)

which is equivalent to

n±
h,h̄

= n±
h̄,h
, (n±L)h,h̄ = (n±L)h̄,h. (3.16)

The resulting bounds apply to all partition functions, even the ones that do not satisfy

(3.15). In particular, they apply to CFTs with cL = cR but no time-reversal symmetry. The

reason is as follows. First, imposing this extra constraint clearly makes the bounds stronger

or remain the same. Conversely, for any modular covariant Z(τ, τ̄) that does not necessarily

satisfy (3.15), its gap and scalar gap are the same as those of Z′(τ, τ̄) ≡ 1
2
(Z(τ, τ̄) + Z(τ̄ , τ)),

which does satisfy (3.15).14 Therefore, imposing (3.16) cannot make the bounds stronger.

Hence the claim. By assuming (3.16), the partition function in every sector takes the form

Z(τ, τ̄) =
∑
h

nh,hχh(τ)χh(τ̄) +
∑
h>h̄

nh,h̄ [χh(τ)χh̄(τ̄) + χh̄(τ)χh(τ̄)] . (3.17)

3.3 The Linear Functional Method

The most general putative spectrum S = {H+,H−,HL} we will consider contains the fol-

lowing:

1. Vacuum (h = h̄ = 0) only in the untwisted Z2 even sector H+.

2. Conserved currents (h = 0 or h̄ = 0, but not both) in all sectors, including twisted.

3. Non-degenerate primaries (h, h̄ > 0) in all sectors.

14In this work, we do not use the fact that the degeneracies are integers, so we are allowed to divide by 2.
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Furthermore, the spins in H are integers while those in the defect Hilbert space HL obey

the spin selection rule (2.7).

The first assumption requires some explanations. Since we assume that there is a unique

vacuum in H that is invariant under the global symmetry, there is no weight-(0, 0) operator

in the Z2 odd sector H−. In the defect Hilbert space HL, on the other hand, the existence

of a weight-(0, 0) state would have implied that the Z2 symmetry commutes with all local

operators (see Section 2.2.5 of [25]), thus violating the assumption that global symmetry

acts faithfully on local operators.

Let us write the modular crossing equation (3.13) in component form as15

Zi(−1/τ,−1/τ̄)−
∑
j=±,L

F j
i Zj(τ, τ̄) = 0, (3.18)

where the index i, j runs over +,−,L, corresponding to the untwisted Z2 even, untwisted Z2

odd, and the defect Hilbert spaces, respectively. Next, we define Z̃i(τ, τ̄) ≡ Zi(−1/τ,−1/τ̄),

and introduce the following shorthand for characters

χh,h̄(τ, τ̄) ≡ χh(τ)χh̄(τ̄), χ̃h,h̄(τ, τ̄) ≡ χh(−1/τ)χh̄(−1/τ̄). (3.19)

The linear functional method is implemented as follows. Suppose α is a linear functional

acting on functions of τ, τ̄ , then

0 =
∑
j

(δ ji α[Z̃j]− F j
i α[Zj]) =

∑
j,h,h̄

(nj)h,h̄
(
δ ji α[χ̃h,h̄]− F

j
i α[χh,h̄]

)
, (3.20)

where (ni)h,h̄’s are all non-negative integers. A putative spectrum S = {H+,H−,HL} is

ruled out if there exists a functional such that for each j = +,−,L,∑
i=±,L

(
δ ji α[χ̃h,h̄]− F

j
i α[χh,h̄]

)
≥ 0, ∀ (h, h̄) ∈ Hj . (3.21)

In practice, the functional α will be taken to be linear combinations of derivatives ∂mτ ∂
m̄
τ̄

evaluated at τ = −τ̄ = i.

To give an upper bound on the gap in a particular sector labeled by j = ±,L, we assume

that the non-degenerate primaries in Hj all have scaling dimensions above a certain value

∆j
gap, and ask if a functional α exists that satisfies the non-negativity conditions. If it exists,

then the assumption is ruled out, so we lower ∆j
gap and try again; if no such functional α

exists, then we raise ∆j
gap and try again. This process is repeated until we find the smallest

15For notational convenience, we will allow ourselves to freely raise and lower the ± index, and identify

Z± = Z±, (n±)h,h̄ = (n±)h,h̄, etc. However, the ZL is completely different from ZL; the former is the defect

Hilbert space partition function, while the latter is the partition function of H weighted by the Z2 action L̂.
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∆j
gap (to within the targeted precision) for which such α exists. This smallest ∆j

gap is then the

best bound on the the gap in the j sector. Note that we can subject S to other assumptions,

say the gaps in the other sectors, or the existence or non-existence of certain conserved

currents, to get varying bounds on the gap.

The gaps in the subsectors H±L of HL can be distinguished from the spin-charge relations

(2.9) and (2.10). For the defect Hilbert space, however, we will only study the overall gap

in HL but not in the individual subsectors in this paper.

We end this section with a technical comment. In practice, it is easier to work with the

reduced partition function Ẑ(τ, τ̄), defined as

Ẑ(τ, τ̄) ≡ |τ |
1
2 |η(τ)|2Z(τ, τ̄) . (3.22)

The reduced partition functions Ẑ±(τ, τ̄), ẐL(τ, τ̄) satisfy the same crossing equation (3.13)

as before, i.e. Ẑ(−1/τ,−1/τ̄) = F Ẑ(τ, τ̄). The advantage of working with the reduced

partition functions is that they can be expanded on the reduced Virasoro characters

χ̂h,h̄(τ, τ̄) ≡ |τ |
1
2 |q−

c−1
24 (1− q)|2 , χ̂h,h̄(τ, τ̄) ≡ qh−

c−1
24 q̄h̄−

c−1
24 , (3.23)

which are simpler functions than the Virasoro characters.

4 Analytic Bound on the Z2 Odd Operators

We begin with an analytic study of the crossing equation, to serve as a conceptual guideline

and a warmup for the systematic study of the modular bootstrap in Section 5. We focus on

the upper bound on the lightest primary in each sector and how it depends on the ’t Hooft

anomaly. In this section, we define the gap in each sector to be the lightest (nontrivial)

primary, which can either be a conserved current or a non-degenerate primary. In Section 5,

the gap will be defined as the lightest non-degenerate Virasoro primary in the sector of

interest.

We pay special attention to the bound on the lightest Z2 odd primary in H−, denoted

by ∆−gap. In particular, we will find that

• There is a universal upper bound on the lightest Z2 odd primary if the Z2 is anomalous,

but not otherwise.

In Section 4.3, we derive such a bound for an anomalous Z2 for 0 ≤ c ≤ 3, while a stronger

numerical bound for larger values of c will be presented in later sections.
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4.1 Free Compact Boson Example

Let us consider the lightest Z2 odd operator in the Hilbert space H of local operators. Since

the Z2 is a global symmetry, this operator must necessarily be a Virasoro primary. When

do we expect there to be an upper bound on the scaling dimension for this operator?

A motivating example is the c = 1 free compact boson theory with radius R, i.e.

X(z, z̄) ∼ X(z, z̄)+2πR. We review the theory and analyze its Z2 symmetries and anomalies

in Appendix A. At every radius R, there are two non-anomalous U(1) global symmetries,

the momentum U(1)n and the winding U(1)w. We consider the Z2 subgroups of these U(1)n
and U(1)w, and denote them by Z(1,0)

2 and Z(0,1)
2 , respectively. While the Z(1,0)

2 and Z(0,1)
2 are

separately non-anomalous, there is a mixed anomaly between the two. Consequently, the

diagonal Z(1,1)
2 subgroup is anomalous. The anomalies can be computed, for example, by

comparing the spin content in the defect Hilbert space (A.9) to the spin selection rule (2.7).

Each current algebra primary On,w(z, z̄) = exp[i( n
R

+wR)XL(z) + i( n
R
−wR)XR(z̄)] has the

following Z2 charges:

Z(1,0)
2 Z(0,1)

2 Z(1,1)
2

On,w(z, z̄) eiπn eiπw eiπ(n+w)
(4.1)

Let us examine the lightest Z2 odd primary in the c = 1 free compact boson theory

for each of the above Z2 symmetries. The lightest (non-anomalous) Z(0,1)
2 odd primary is

the minimal winding exponential operator O0,1, which has scaling dimension R2

2
(see (A.3)).

This minimal winding state becomes arbitrarily heavy as we take the radius R to be large.

Hence, for c = 1, there is no upper bound on the lightest Z(0,1)
2 odd primary. Similarly, the

lightest (non-anomalous) Z(1,0)
2 odd primary is the minimal momentum operator O1,0, whose

scaling dimension is 1
2R2 , so there is no bound either.

The above c = 1 example can be extended to larger values of c by considering the tensor

product with any other CFT to produce a theory with Z2 symmetry whose lightest odd

primary is not bounded from above. Indeed, in Section 5.3, the numerical bootstrap finds

no bound for 1 ≤ c ≤ 25. It is therefore reasonable to expect that for all c ≥ 1 CFTs, there

is no upper bound for the lightest Z2 odd primary if the Z2 is non-anomalous, α = +1.

By contrast, the lightest (anomalous) Z(1,1)
2 odd primary is either the minimal momentum

operator O1,0 or the minimal winding operator O0,1. It is impossible to make both of them

heavy as we vary R, so we do have an upper bound: the lightest Z(1,1)
2 odd primary is

bounded from above by 1
2

on the moduli space of the free compact boson. In Section 4.3

(and more generally in Section 5.3), we will show that for general c ≥ 1, there is a bound on

the lightest Z2 odd primary if the symmetry is anomalous α = −1.
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We summarize the above discussions in the following table:

Z(1,0)
2 Z(0,1)

2 Z(1,1)
2

anomaly α +1 +1 −1

lightest odd op. O1,0 O0,1 O1,0 or O0,1

∆−gap
1

2R2
R2

2
Min( 1

2R2 ,
R2

2
)

(4.2)

4.2 The Cardy Limit

In the free compact boson example, we saw that there is a bound in H− if the Z2 is anoma-

lous. In this subsection, we argue that this is true more generally by taking the high/low

temperature (Cardy) limit of the modular S transformation of the torus partition function.

The lower bound (2.8) on the scaling dimension in the defect Hilbert space will turn out to

be the key.

Let us review the standard Cardy argument for a modular invariant partition function

Z(τ, τ̄). For simplicity, we set τ = −τ̄ = it, with t > 0. We have,

Z(t) = Z(1/t) . (4.3)

Now we take t → 0, so that the righthand side is dominated by the vacuum. The equation

becomes ∫
d∆ ρ(∆) e−2πt(∆− c

12
) ∼ e

π
6t
c , (4.4)

where ρ(∆) is the density of states with respect to the scaling dimension ∆. The Casimir

energy c
12

results in a divergence as we take t→ 0, which must be reproduced on the lefthand

side by the exponential growth of the high energy state:

log ρ(∆) ∼ 2π

√
c∆

6
. (4.5)

With the Z2, we consider the t→ 0 limit of

ZL(t) = ZL(1/t) . (4.6)

The righthand side is dominated by the defect Hilbert space ground state with scaling di-

mension ∆L: ∫
d∆

[
ρ+(∆)− ρ−(∆)

]
e−2πt(∆− c

12
) ∼ e

π
6t

(c−12∆L) , (4.7)

where ρ±(∆) are the densities of Z2 even/odd states of scaling dimension ∆, respectively.

In the anomalous case (2.8), ∆L of the defect Hilbert space ground state is bounded

from below by 1
4
, so the divergence on the righthand side of (4.7) is smaller than that of
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(4.4) as t → 0. This means that the weighted density of states ρ+(∆) − ρ−(∆) has, if

any, a slower exponential growth exp

(
2π
√

c−12∆L
6

)
than that of the total density of states

ρ(∆) = ρ+(∆) + ρ−(∆) in (4.5). This means that there must be huge cancellations between

the Z2 even and odd heavy states when the Z2 is anomalous. Hence, the Z2 odd states

cannot be pushed to be arbitrarily heavy for an anomalous Z2.

By contrast, ∆L for a non-anomalous Z2 can be arbitrarily close to 0, so the Z2 odd

states can be arbitrarily heavy, consistent with the analysis in Section 4.1.

The common weakness in the above arguments is that by taking the Cardy limit alone, we

only arrive at asymptotic formulae for the relation between the defect Hilbert space ground

state and the heavy Z2 odd states, but we do not have quantitative control over the regime

of validity of the formulae. The quantitative bound will be derived in Section 4.3 (and more

generally in Section 5.3), by considering the medium temperature expansion of the modular

crossing equation.

4.3 Analytic Bound on the Z2 Odd Operators

In this subsection, we derive an analytic bound for the lightest Z2 odd primary under an

anomalous Z2, for 0 ≤ c ≤ 3. For simplicity, we only use the dilitation symmetry, instead

of the full Virasoro symmetry. We also ignore the dependence on the spin h − h̄, and only

keep track of the scaling dimension ∆ = h + h̄ of the operators. We set τ = −τ̄ = it, and

expand the torus partition function in each sector as

Z±(t) ≡ 1

2

[
Z(t)± ZL(t)

]
=
∑

∆∈H±
(N±)∆g∆(t) ,

ZL(t) =
∑

∆∈HL

(NL)∆g∆(t) ,
(4.8)

where (N±)∆ ∈ Z≥0 and (NL)∆ ∈ Z≥0 are the degeneracies of all states (not necessarily

primaries) with scaling dimension ∆, in H± and in HL, respectively. Here, g∆(t) is the

scaling character that counts the contribution from a single operator of dimension ∆:

g∆(t) = e−2πt(∆− c
12

) . (4.9)

The only dependence on the anomaly α is that the scaling dimensions in the defect Hilbert

space HL is bounded from below by (see (2.8)):

∆ ≥ 1− α
8

, ∀ ∆ ∈ HL . (4.10)
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This difference turns out to be crucial for the existence of a bound in H− in the anomalous

case.

Let us write the modular crossing equation Z(1/t)−F Z(t) = 0 (3.13) as a vector equation

with contributions from the three sectors H± and HL:∑
∆∈H+

(N+)∆ M
+
i (t) +

∑
∆∈H−

(N−)∆ M
−
i (t) +

∑
∆∈HL

(NL)∆ M
L
i (t) = 0 , i = ±,L (4.11)

where the matrix M j
i (∆, t) is defined as

M j
i (∆, t) ≡ δ ji g∆(1/t)− F j

i g∆(t) . (4.12)

For a fixed j, we write Mj(∆, t) to denote a vector-valued function of ∆ and t with compo-

nents M j
i (∆, t).

To bound the lightest Z2 odd primary, we look for a real linear functional α that acts

on vector-valued functions of t (with 3 components). If for some ∆−gap > 0, we can find a

functional α such that
α[M+(∆, t)] ≥ 0 , ∀ ∆ ≥ 0 ,

α[M−(∆, t)] ≥ 0 , ∀ ∆ ≥∆−gap ,

α[ML(∆, t)] ≥ 0 , ∀ ∆ ≥ 1− α
8

,

(4.13)

then by applying α on (4.11), we reach a contradiction unless there is a Z2 odd operator in

H below ∆−gap. In this way, we obtain an upper bound ∆−gap on the lightest Z2 odd primary.

Consider a derivative basis for linear functionals acting on vector-valued functions V of

t:16

αn,i[V(t)] ≡ e2π(∆− c
12

)

(
6t

πc

d

dt

)n
Vi(t)

∣∣∣
t=1
. (4.14)

We will expand our functional on this basis. When acting linear functionals on M, there

are linear relations among αn,i, and the number of independent functionals is determined by

the matrix rank of I − (−)nF. For the F considered here (3.14), there is one independent

functional at each even derivative order, and two at each odd order. Thus the most general

cubic linear functional takes the form

α =
∑
n even

γn,1αn,1 +
∑
n odd

2∑
i=1

γn,iαn,i . (4.15)

As a proof of principle, we restrict our functionals to derivative order 3, i.e. 0 ≤ n ≤ 3.

Stronger numerical bounds using more general functionals will be presented in Section 5.3.

16This is a linear functional in the sense that it acts on functions of t over the field of functions of ∆. The

normalization and exponential factor are chosen for later convenience.
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In Sections 4.1 and 4.2, we argued that a universal bound on the lightest Z2 odd primary

should only exist if there is ’t Hooft anomaly. We find that, indeed, there is no cubic linear

functional satisfying (4.13) if the Z2 is non-anomalous (α = +1). However, if we only need

to maintain positivity for ∆ ≥ 1
4

in the defect Hilbert space, such as in the anomalous case,

then we are able to construct linear functionals for c sufficiently small. In particular, the

following choice of linear functional satisfies (4.13) for 0 < c < 3: 17

γ0,1 =
(πc+ 18)2

π2c2
, γ1,1 =

4π2c3 − 9(π − 8)πc2 − 36(3π − 4)c+ 540

4π2(c− 3)c2
,

γ1,2 = −9 (π(8 + π)c2 + 4(32 + 3π)c− 60)

4π2(c− 3)c2
, γ2,1 = 0, γ3,1 = γ3,2 = −1.

(4.16)

Its actions on Mj(∆, t) give (see Figure 11)

α[M+(∆, t)] =
1

2c2π2
(y + 1)(2πcy − cπ − 18)2 ,

α[M−(∆, t)] =
4π2c2y3 − 72πcy2 − (πc+ 18)2

2c2π2
− (πc+ 18) (πc2 − 9(6 + π)c+ 54) y

2c2π2(c− 3)
,

α[ML(∆, t)] = −(πc+ 18)2(cy + c− 3)

2c2π2(c− 3)
,

(4.17)

where y ≡ 12∆
c
− 1. The resulting upper bound on the lightest Z2 odd primary in the

anomalous case is given by

∆−gap ≤ (ŷ + 1)
c

12
, (4.18)

where ŷ is the largest root of α[M−(∆, t)].
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Figure 11: Linear functional (4.16) acted on Mj(∆, t) for c = 2.

17At c = 3, we can alternatively choose the following linear functional γ1,1 = − 9
16 −

32
π2 − 9

π , γ
1,2 =

27
16 + 72

π2 + 21
π , γ

2,1 = 3(6+π)
π , γ0,1 = γ3,2 = 0, γ3,1 = −1. This gives ∆−gap =

24+5π+
√

3(384+112π+9π2)

8π ≈ 3.559.
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Figure 12: Upper bound on the lightest Z2 odd primary in H as a function of the central

charge c. The region below the curve is allowed. A stronger bound is presented in the right

figure of Figure 15.

4.4 Tensor Product with TQFTs

In any spacetime dimension d, given a bosonic anomaly α for a discrete, internal, global

symmetry G, it was shown that there exists a d-dimensional TQFT with symmetry G and

anomaly α [54, 55]. Therefore, for any bosonic QFT with the symmetry G and anomaly α′,

we can take the tensor product theory QFT ⊗ TQFT, and consider the diagonal symmetry

G, to realize the anomaly αα′.

In 2d, such a TQFT with a nontrivial anomaly always has a degenerate vacua, i.e. it

describes the spontaneously broken phase. For example, the TQFT with an anomalous

Z2 has two degenerate vacua, one Z2 even and the other Z2 odd. Now, if we take the

tensor product of a CFT with a non-anomalous Z2 symmetry, together with this anomalous

Z2 TQFT, then the tensor product theory has a diagonal anomalous Z2 symmetry whose

lightest odd operator is the weight-(0, 0) vacuum that trivially satisfies our bound derived

in Section 4.3.

However, in higher than two spacetime dimensions, the TQFT mentioned above always

has a unique vacuum. By taking the tensor product, it follows that we can modify the

anomaly of a discrete, internal, global symmetry G of a bosonic QFT without changing the

local operator spectrum. Hence, there can never be a bound on the scaling dimensions and

degeneracies of G-charged local operators that depends on such anomaly.18

18We thank David Simmons-Duffin for pointing out this argument to us.
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5 General Bootstrap Bounds

In this section, we perform a numerical study to obtain bounds that harness the full power of

Virasoro symmetry and the modular covariance of partition functions, for small to moderate

values of the central charge c. Allowing τ to take general values in the upper half plane also

lets us distinguish spin, and in particular makes possible the derivation of bounds on the

scalar gap.

In Section 5.1, we discuss the general expectations for whether particular bounds should

exist. Section 5.2 is a precision test at c = 1, where we find our bounds to be saturated

by the free compact boson. In Section 5.3, we study the bounds on the lightest even/odd

operators for c ≥ 1, and by saturation by a number of WZW models. In Section 5.4, we

present a “order-disorder” bound for a non-anomalous Z2. In Section 5.5, we derive bounds

on the scalar primaries, and discusses their implications on renormalization group flows. In

Section 5.6, we present an analytic derivation of the large c asymptotics of certain bounds.

5.1 When is there a Bound?

We will be interested in the upper bound on the lightest non-degenerate primary in each

sector.19 We start with the following question: In which sector do we expect a bound, and

how does it depend on the anomaly?

As we have already seen in Section 4.1, the c = 1 free compact boson theory is an

illuminating example. By examining the different sectors in the free compact boson theory,

and exploring its conformal moduli space, we find that (X means there is a bound, while x

means there is no bound):

H+ H− HL H− ⊕HL
Non-Anomalous X x x X

Anomalous X X x X

(5.1)

If there is no bound in eitherH− orHL of the free compact boson theory, then by considering

the tensor product theory with any other CFT, we can produce examples of c > 1 CFT whose

gap can be arbitrarily large in that sector. By contrast, if there is a bound in a given sector

of the c = 1 free compact boson theory, then it does not immediately follow that such a

bound persists to higher c.

19Note that the notion of the gap in Section 4.3 is different from here. In Section 4.3, the gap ∆−gap is

defined as the lightest Z2 odd primary in H, which can either be a conserved current or a non-degenerate

primary. By contrast, in this section, ∆j
gap are defined as the lightest non-degenerate Virasoro primary in

each sector.
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We will show that the same conclusion (5.1) is true for CFTs with larger values of

the central charge. We show explicitly by analytic and numerical bootstrap that there are

universal bounds in H+ and H− ⊕ HL for all c > 1 CFTs, to arbitrary large c, in both

the non-anomalous and the anomalous cases (see Section 5.6). For the bound in H− in

the anomalous case, we cannot find an analytic bound that is valid to arbitrarily large c.

Nevertheless, we find numerical bounds at least up to c ≤ 25, and expect the bounds to

continue to exist for c > 25. We will denote the bound in H± as ∆±gap, and in H− ⊕HL as

∆
ord/dis
gap . The meaning of the superscript ord/dis will be explained in Section 5.4.

5.2 Bootstrap Bounds for c = 1

We begin with a precision study of the bounds for c = 1, and match with the free compact

boson. This analysis serves as a consistency check for our numerical method. Even though

there are additional degenerate Virasoro modules at c = 1, the free compact boson partition

function for any R can always be expanded on the vacuum and non-degenerate characters

(3.1) with non-negative coefficients.

The spectra, symmetries, and anomalies in the free compact boson are discussed in Sec-

tion 4.1 and in Appendix A. We recall that at generic radii, the Z2 symmetries include a

non-anomalous momentum Z(1,0)
2 , a non-anomalous winding Z(0,1)

2 , and their diagonal sub-

group Z(1,1)
2 which is anomalous.

Let us study the bounds on the lightest Z2 even and odd non-degenerate primaries, as

functions of the scaling dimension of the lightest primary in the defect Hilbert space HL,

denoted by (∆gap)L, is varied. See Figure 13. The bounds are saturated by the free compact

boson in continuous ranges of the radii R.20 See Appendix A for the gaps in the c = 1 free

compact boson theory with respect to various Z2 symmetries as functions of the radius R.

Some comments on the numerical bounds shown in Figure 13 are in order:

• The absolute upper bound on the scaling dimension for the non-degenerate Virasoro

primary is the maximal value of the plot as we vary (∆gap)L. Note that there is no

bound on the lightest Z2 odd primary in the non-anomalous case, which is consistent

with our analysis in Sections 4.1 and 4.2.

20In the anomalous case, we do not assume the existence of a spin- 1
4 conserved current in the defect

Hilbert space (but we do allow the existence of all other conserved currents). Otherwise, the bounds away

from (∆gap)L = 1
4 are weaker and are not saturated by the free compact boson. However, though we do

not assume the existence of a spin- 1
4 conserved current, this does not rule out the free compact boson at

self-dual radius R = 1, because the weight-( 1
4 , 0) conserved current module and one of the weight-( 1

4 , 1) non-

degenerate modules combine via the recombination rule to mimic a weight-( 1
4 , 0) non-degenerate module,

which is allowed when the gap in the defect Hilbert space is 1
4 .
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• In the non-anomalous case, the gap (∆gap)L = 1
8

in the defect Hilbert space is realized

at R = 1 simultaneously by the momentum Z(1,0)
2 and winding Z(0,1)

2 . To the right,

(∆gap)L >
1
8
, the shown gaps (solid lines) correspond to the momentum Z(1,0)

2 ; to the

left, (∆gap)L <
1
8
, they correspond to the winding Z(0,1)

2 .

• In both the non-anomalous and anomalous cases, the bootstrap bounds on the lightest

Z2 odd non-degenerate primaries are saturated by the entire moduli space of the free

compact boson, from R = 1 to R =∞.

• In the non-anomalous case, the bootstrap bounds on the lightest Z2 even non-degenerate

primary are saturated by the free compact boson with radii between R =
√

2 and R = 2.

To the left of R =
√

2, the bounds become flat, because a gap of (∆gap)L = 1
4

can also

be interpreted as a gap of any smaller value.21 To the right of R = 2, the bounds

become flat and unsaturated.

• In the anomalous case, the situation for the bounds on the lightest Z2 even non-

degenerate primary is similar to that described in the previous point. The jump in

the bound at R = 1 is because the lightest Z2 even primary becomes a spin-one con-

served current, and is thus excluded from our definition of the gap in Section 5.1. See

Appendix A for more details.
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Figure 13: Dots: Upper bounds on the lightest Z2 even and odd non-degenerate primaries,

varied over the scaling dimension of the lightest primary in the defect Hilbert space HL, for

c = 1, at derivative order 19. In the anomalous case, we do not assume the existence of

a conserved current with spin ±1
4

in the defect Hilbert space. Solid lines: Free compact

boson.

21In other words, the bootstrap bounds on ∆j
gap must be monotonically decreasing with increasing (∆gap)L.

35



5.3 Bootstrap Bounds on the Z2 Even/Odd Operators

Next we extend the bootstrap analysis to c ≥ 1. The upper bounds on the lightest Z2

even/odd non-degenerate primaries are shown in Figures 14 and 15. The green-to-red curves

are the bounds at increasing derivative orders, from 3 to 19. To stress the importance of the

’t Hooft anomaly, Figure 16 juxtaposes the bounds with and without it.

The convergence of the bounds with increasing derivative order becomes slower at larger

values of the central charge. In particular, at a fixed derivative order d, the bound on ∆−gap

in the presence of ’t Hooft anomaly only exists up to a finite value of the central charge

cmax(d), which increases with d.

Our bounds are saturated or almost saturated by various WZW models at level 1.22 We

list these cases in Appendix B.7. When the Z2 is non-anomalous, we find that the bound on

∆+
gap is a plateau at ∆+

gap = 1 between 1 ≤ c ≤ 5
2
. At integral and half integral values of c on

this plateau, the bound is saturated by the ŝo(2c)1 WZW model, which can be described as

the theory of n free Majorana fermions summed over the spin structures.23 The Z2 symmetry

is a center symmetry that commutes with the current algebra.

When the Z2 is anomalous, we find two theories saturating our bounds. At c = 1,

the bounds ∆+
gap ≤ 2 and ∆−gap ≤ 0.5 are saturated by the self-dual boson discussed in

Section 2.5.2. At c = 7, the bound ∆+
gap ≤ 2 is saturated by the (E7)1 WZW model.24

We summarize our findings below:

• There is a universal bound on the lightest Z2 odd non-degenerate primary if the Z2 is

anomalous, but not otherwise.

• There is a universal bound on the the lightest Z2 even non-degenerate primary, with or

without ’t Hooft anomaly. They are compared in Figure 16.

• Suppose we have a CFT whose lightest Z2 even non-degenerate primary is larger than

∆+
gap for α = +1 but smaller than ∆+

gap for α = −1, such as in the blue region in Figure

16, then we can conclude that the Z2 symmetry must be anomalous, and vice versa if

the primary is in the yellow region.

22Recall that ŝo(2)1 = û(1)2 is the tensor product of two Ising CFTs, and ŝo(3)1 = ŝu(2)2.
23At c = 5

2 , the ŝo(5)1 WZW model with ∆+
gap = 1 almost saturates the numerical bound, which is

∆+
gap ' 1.0057 at derivative order 19. To know whether or not this is an example of saturation requires

numerical data at higher derivative orders.
24We also find a kink near c = 1.30 and ∆+

gap = 1, but the extremal functional method reads off degeneracies

that are not integer valued. Hence, we do not expect it to be saturated by a physical theory.
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Figure 14: Non-anomalous Z2: Upper bound on the lightest Z2 odd non-degenerate pri-

mary. The green-to-red curves are the bounds at increasing derivative orders, from 3 to 19.

The black dots mark the WZW models that (almost) saturate the bound.

(E7)1
●

●
●

●

su(6)1sp(6)1

su(2)1

5 10 15 20 25
c0

1

2

3

4

5

6
Δgap
+

●●

su(2)1

5 10 15 20 25
c

2

4

6

8

10
Δgap
-

Figure 15: Anomalous Z2: Upper bounds on the lightest Z2 even and odd non-degenerate

primaries. The green-to-red curves are the bounds at increasing derivative orders, from 3 to

19. The black dots mark the WZW models that (almost) saturate the bound.
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Figure 16: Juxtaposition of non-anomalous and anomalous bounds on the lightest Z2 even

non-degenerate primary at derivative order 19. We do not display the comparison for the

bounds on the lightest Z2 odd primary, because there is no bound when the Z2 is non-

anomalous.

5.4 Order versus Disorder

In the non-anomalous case, there is no bound in either the odd sector H− or the defect

Hilbert space HL. However, as we will see, there is a bound on the lightest non-degenerate

primary in the union of H−⊕HL. In other words, the lightest Z2 odd primary and the defect

Hilbert space ground state cannot both be too heavy relative to c. We denote the scaling

dimension of this lightest operator by ∆
ord/dis
gap , for reasons we explain below. Note that in

the anomalous case, since there is already a bound in H− alone, we are guaranteed to have

a bound in H− ⊕HL.

Consider two phases separated by a second order phase transition, where on one side

the symmetry is spontaneously broken and the other side unbroken. The two phases can be

obtained by perturbing the CFT at the critical point with a relevant operator, whose sign

determines which phase we reach after the flow. Whereas the symmetry-breaking phase can

be probed by the non-vanishing two-point function of an order operator at asymptotically

large separation, the symmetry-preserving phase can be probed by that of a non-local disor-

der operator. As we turn on the relevant deformation to reach the broken phase, the power

law fall-off of the order operator two-point function at the critical point gets corrected to

acquire a nonzero constant at large separation, and similarly for the disorder operator in

the unbroken phase. Since the degree of the fall-off is determined by the scaling dimension

of the operator, to be able to achieve constant asymptotic two-pint function, we expect the

order and disorder operators to be light operators in H− and HL, respectively, at the critical

CFT point. For example, in the critical Ising CFT, the lightest Z2 odd primary is the spin
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field σ(x), which is the order operator for Z2. The defect Hilbert space ground state, on the

other hand, is the disorder operator µ(x).

In the gapped phase, it has recently been shown in [56] that in an Ising symmetric spin

chain, the order and disorder parameters cannot both be nonzero.25 In the gapless phase,

an analogous statement may be that the order and the disorder operators of a CFT with Z2

symmetry cannot both be too heavy. Although generally the order and disorder operators

in a CFT may not be the lightest operator in their respective spectra, our bound on ∆
ord/dis
gap

has a similar flavor as the one proven in [56] for spin chains in the gapped phase. Motivated

by this analogy, we will denote the gap in H− ⊕HL as ∆
order/dis
gap .

The bootstrap bound on ∆
ord/dis
gap is presented in Figure 17. We find that the bounds

between c = 1 and c = 6 form a straight line given by ∆
ord/dis
gap ≤ c

4
, where at integral and

half-integral values of c, the bound is saturated by the ŝo(2c)1 WZW model.
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Figure 17: Non-anomalous Z2: Upper bound on ∆
ord/dis
gap in H− ⊕ HL. The green-to-red

curves are the bounds at increasing derivative orders, from 3 to 19. The black dots mark

the ŝo(2c)1 WZW models that saturate the bound at c ∈ Z
2

for 1 ≤ c ≤ 6.

5.5 Scalar Bounds and Renormalization Group Flows

Another quantity of physical interest is the bound on the Z2 even/odd scalar primaries in a

CFT, which are related to relevant deformations if ∆ < 2. Consider an RG flow preserving

a Z2 symmetry in the UV. As the flow approaches a candidate IR fixed point, if there is a

symmetry-preserving relevant operator at a fixed point, then a generic flow would be driven

away. This implies that without fine-tuning, the flow would miss the fixed point. See,

for example, [57–59] for applications of this idea. A bound on relevant deformations that

25We thank Michael Levin for a discussion on this point and sharing a draft on related questions.
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preserve various global symmetries would provide strong constraints on RG flows.

Using the modular bootstrap techniques, we obtain bounds on the lightest Z2 even non-

degenerate scalar primaries in both the anomalous and non-anomalous cases. We also present

a bound on the Z2 odd scalar primary in the anomalous case. See Figures 18 and 19.26

We summarize our findings below:

• In the absence of ’t Hooft anomaly, a Z2-preserving relevant deformation always exists

for 1 < c < 7.81.

• In the presence of ’t Hooft anomaly, a Z2-preserving relevant deformation always exists

for 1 < c < 7, and a Z2-breaking relevant deformation always exists for 1 < c < 6.59.

At c = 7, the (E7)1 WZW model has a Z2-preserving marginal operator which is a

current bilinear Ja(z)J̄ b(z̄).

• The statements above imply that RG flows preserving only a Z2 symmetry generically

do not end at fixed points with 1 < c < 7 without fine-tuning. If the Z2 is anomalous,

then the range is further extended to 1 < c < 7.81.27
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Figure 18: Non-anomalous Z2: Upper bounds on the lightest Z2 even scalar primary. The

green-to-red curves are the bounds at increasing derivative orders, from 3 to 19. The red

curve crosses ∆+
gap = 2 at c ≈ 7.81.

26In the ordinary modular bootstrap, it was observed that no bound on the lightest scalar primary exists

for c ≥ 25 [33]. The explanation there is the existence of a modular invariant partition function with

continuous spectrum, no vacuum, and only non-scalar primaries at c = 25. The same partition function can

also be applied to solve the modular bootstrap equation with a Z2 symmetry, and hence we do not have a

bound when c > 25.
27This statement is true even if the the Z2 acts trivially in the IR. In that case there is no symmetry

forbidding the relevant operators near the IR fixed point. By the result of [33], there is always a relevant

operator if 1 < c < 8, hence the flow will generically miss such a fixed point without fine-tuning.
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Figure 19: Anomalous Z2: Upper bounds on the lightest Z2 even and odd scalar primaries.

The green-to-red curves are the bounds at increasing derivative orders, from 3 to 19. The

red curves crosse ∆±gap = 2 at c = 7 and c ≈ 6.59, respectively.

5.6 Large c

In this subsection, we analytically derive bounds that are valid to arbitrary large c on the

lightest primaries in H+ and in H− ⊕HL. We only use functionals up to 3 derivative order

with τ = −τ̄ = it, so the bounds are far from the strongest possible. With finite derivative

order, we cannot find a functional that gives a bound inH− for arbitrarily large c (see Section

5.3). The large c bounds in H+ and in H− ⊕HL we obtain in this subsection apply to both

the anomalous and non-anomalous cases.

We follow the strategy in Section 4.3 but now utilizing the full Virasoro symmetry.

Specifically, we use the reduced Virasoro characters (4.9) in place of the scaling character

g∆(t):

χ̂0(t) = t
1
2 e2π c−1

12
t(1− e−2πt)2 , χ̂∆>0(t) = t

1
2 e−2π(∆− c−1

12
)t . (5.2)

Here we make an additional assumption to simplify the analysis. We assume that the parti-

tion functions can be expanded in the vacuum and non-degenerate characters alone, without

the need for conserved currents. In other words, our bounds in this subsection apply to

CFTs without conserved currents.28

28More generally, the bounds in this subsection apply to what are called generic-type CFTs in [33]. In

generic-type CFTs, each holomorphic conserved current of spin s ≥ 1 is accompanied by a primary of weight

(s, 1), and similarly for the anti-holomorphic currents, so that the recombination rule χh(τ)
h→0−→ χ0(τ)+χ1(τ)

disguises the combination of modules as a non-degenerate module at the unitarity bound. This way, the

partition function admits an expansion in the vacuum and non-degenerate characters alone.
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We now define the matrix (4.12) in terms of the reduced Virasoro characters,

M j
i (∆, t) ≡ δ ji χ̂∆(1/t)− F j

i χ̂∆(t), y =
12∆

c
− 1. (5.3)

As in Section 4.3, we will expand our functional in the derivative basis as (c.f. (4.14) and

(4.15))

α =
∑
n even

γn,1αn,1 +
∑
n odd

2∑
i=1

γn,iαn,i ,

αn,i[V(t)] ≡ e2π(∆− c−1
12

)

(
6t

πc

d

dt

)n
Vi(t)

∣∣∣
t=1
.

(5.4)

While we manage to find analytic functionals to put bounds on the lightest primaries,

the exact expressions are not illuminating to present. Therefore, we will present them in 1/c

expansions.

Z2 even sector H+ We consider the ansatz

γ1,2 = γ3,2 = 0, (5.5)

such that the action of α is identical in H− and HL, and demand that the corresponding

α[Mj(∆, t)] has a double zero at y = 1 for j = −,L. Together with the requirement that

α annihilates the vacuum, the linear functional is completely fixed (up to overall rescaling).

The resulting linear functional satisfies the positivity conditions (analogous to (4.13)) for

c > 2. To first order in 1/c, the expansion coefficients of the functional α are given by

γ0,1 = −1 +
1

c

(
12− 12

π
− 12 coth(π)

)
+O(c−2),

γ1,1 = 1 +
6

c

(
−4 +

5

π
+ 4 coth(π)

)
+O(c−2),

γ2,1 = 1 +
6

c

(
2− 5

π
− 2 coth(π)

)
+O(c−2),

γ3,1 = −1.

(5.6)

Its action on Mj(∆, t) gives

α[Mj(∆, t)] =
1

2

(−1 + y)(1 + y)(1 + 3y)

(−1 + y)2(1 + y)

(−1 + y)2(1 + y)


+

6

πc

−(y + 1)(7y + 1)− π(y(y + 6) + 1)(coth(π)− 1)

(y − 1)2(1 + π(coth(π)− 1))

(y − 1)2(1 + π(coth(π)− 1))

+O(c−2).

(5.7)
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The resulting bound on the lightest Z2 even primary is

∆+
gap ≤

c

6
− 1 +

2

π
+ coth(π) +O(c−1) ≈ c

6
+ 0.6404 +O(c−1) , (5.8)

which applies to both the anomalous and the non-anomalous cases.

Order-Disorder H− ⊕HL We consider the ansatz

γ0,1 = γ1,2 = 0, (5.9)

such that the action of α is identical in H− and HL, and demand that α[Mj(∆, t)] has a

double zero at y = 1 for j = −,L. Together with the requirement that α annihilates the

vacuum, the linear functional is completely fixed (up to overall rescaling). The resulting

linear functional satisfies the positivity conditions (analogous to (4.13)) for all c > 1. To

first order in 1/c, the expansion coefficients are given by

γ0,1 = 3 +
36

c
(coth(π)− 1) +O(c−2),

γ1,1 = 1 +
6

c

(
−4 +

1

π
+ 4 coth(π)

)
,

γ2,1 = −3 +
1

c

(
54

π
+ 36(coth(π)− 1)

)
+O(c−2),

γ3,1 = −1.

(5.10)

Its action on Mj(∆, t) gives

α[Mj(∆, t)] =
1

2

 3(y − 1)2(y + 1)

(y − 1)(y + 1)(y + 3)

(y − 1)(y + 1)(y + 3)


+

6

πc

 3π(y − 1)2(coth(π)− 1)

−2y(3y + 1)− π(y(3y + 2) + 3)(coth(π)− 1)

−2y(3y + 1)− π(y(3y + 2) + 3)(coth(π)− 1)

+O(c−2).

(5.11)

The resulting upper bound on the lightest primary in H− ⊕HL is

∆ord/dis
gap ≤ c

6
− 1 +

1

π
+ coth(π) +O(c−1) ≈ c

6
+ 0.3221 +O(c−1) , (5.12)

which applies to both the anomalous and the non-anomalous cases.
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6 U(1) Symmetry and the Weak Gravity Conjecture

In this section, we consider bosonic 2d CFTs with U(1) global symmetry.29 We will see

that the existence of a universal upper bound on the lightest U(1) charged operator again

depends on the ’t Hooft anomaly.

6.1 U(1) Symmetry and its Anomaly

Consider the global symmetry generated by a conserved spin-one current, Jµ(z, z̄) (with

∂µJµ = 0), in a bosonic 2d CFT. We require that

• The symmetry is globally U(1), not R.

• The U(1) global symmetry acts faithfully on the local operators.

Let J ≡ Jz and J̄ ≡ Jz̄. In any compact unitary 2d CFT, unitarity implies ∂J̄ = 0 and

∂̄J = 0, so each of them is separately a u(1) Lie algebra generator. Globally, however, the

holomorphic current J(z) may not generate a U(1) group, but rather an R. The same is

true for the anti-holomorphic current J̄ . We denote their zero modes by J0 ≡
∮

dz
2πi
J(z) and

J̄0 ≡ −
∮

dz̄
2πi
J̄(z̄).

The topological line implementing a U(1) rotation by η is

Uη = exp

[
2πiη

(∮
L
dzJ(z)−

∮
L
dz̄J̄(z̄)

)]
. (6.1)

The assumption that the symmetry is U(1) instead of R implies that η is circle valued, i.e.

Uη = Uη+1, so we may take η ∈ [0, 1). The faithfulness assumption requires that Uη is not

an identity operator unless η is an integer. Furthermore, the U(1) charge of a local operator

in the Hilbert space H is always an integer,

Q = J0 + J̄0 ∈ Z . (6.2)

The OPEs of J and J̄ are

J(z)J(0) ∼ k

z2
, J̄(z̄)J̄(0) ∼ k̄

z̄2
. (6.3)

Note that the levels k and k̄ are physically meaningful and cannot be scaled away if we

assume that our symmetry is globally a U(1) acting faithfully on all local operators.30

29We thank Nathan Benjamin for discussions.
30For example, had we rescaled both J → 2J and J̄ → 2J̄ , the new topological line operator Uη with

η = 1
2 would act trivially on the Hilbert space, violating the faithfulness condition.
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When k̄ = 0 (k = 0), this U(1) global symmetry is generated by a holomorphic (anti-

holomorphic) current. But more generally, the current associated to a U(1) global symmetry

can be neither purely holomorphic nor anti-holomorphic, even though its holomorphic and

anti-holomorphic component each separately generates a different R or U(1) global symme-

try.

Using the topological line Uη of a U(1) global symmetry, we can similarly consider the

defect Hilbert space defined in Figure 5. The defect Hilbert space Hη of the topological line

Uη is related to the bulk Hilbert space H by a simultaneous spectral flow [60] on both the

left and the right of opposite amounts (see, for example, [61]):

hη = h− ηJ0 +
kη2

2
, Jη0 = J0 − ηk ,

h̄η = h̄+ ηJ̄0 +
k̄η2

2
, J̄η0 = J̄0 + ηk̄ .

(6.4)

For non-integer η, these are the quantum numbers of a non-local operator living at the end

of the topological line Uη. However, for η ∈ Z, the topological line Uη is trivial, and (6.4)

are the quantum numbers of local operators. In other words, starting with an operator in

H, the U(1) global symmetry (instead of R) implies the existence of infinitely many spectral

partners by applying (6.4) with η ∈ Z.

In particular, integer quantization of the spin hη=1 − h̄η=1 demands that

k − k̄
2
∈ Z , (6.5)

where we have used the fact that the U(1) charges Q = J0 + J̄0 are integers. The integer
k−k̄

2
is the ’t Hooft anomaly of a U(1) global symmetry in a bosonic 2d quantum field

theory. Indeed, if k−k̄
2
6= 0, the states in the defect Hilbert space Hη have U(1) charges

Qη = Jη0 + J̄η0 = Q − η(k − k̄), which are not integers for generic η. This implies that the

theory is not invariant under the U(1) transformation in the presence of the U(1) topological

line defect, which is the hallmark of ’t Hooft anomaly.31

Some comments are in order:

1. The Z2 subgroup of a U(1) is anomalous if k−k̄
2

is odd, and non-anomalous if k−k̄
2

is

even.

2. A holomorphic U(1) has k 6= 0 and k̄ = 0 (so J̄ is a trivial operator), which is always

anomalous. Similarly, an anti-holomorphic U(1) is also always anomalous.

31This is similar to the Z2 case, where the Z2 eigenvalues (2.10) are ±i in the defect Hilbert space HL
when the Z2 is anomalous.
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3. The integral spectral flow (6.4) of the identity operator is given by

h =
kη2

2
, h̄ =

k̄η2

2
, Q = −η(k − k̄) , η ∈ Z . (6.6)

In particular, when the U(1) is anomalous, i.e. when k 6= k̄, there are always spectral

flow partners of the identity that are charged (see, for example, [8, 61]). Hence an

anomalous U(1) global symmetry guarantees the existence of charged operators via

spectral flow, while this is not true for an R global symmetry. However, when the U(1)

is non-anomalous, i.e. k = k̄, the spectral flows of the identity are all charge neutral.

Free compact boson example Let us illustrate the above discussion with the c = 1 free

compact boson. We normalize the OPE to be

X(z, z̄)X(0, 0) ∼ −1

2
log |z|2 . (6.7)

Hence ∂X(z)∂X(0) ∼ − 1
2z2

and ∂̄X(z̄)∂̄X(0) ∼ − 1
2z̄2

. The current algebra primaries are

the exponential operators On,w(z, z̄) = exp
[
i
(
n
R

+ wR
)
XL(z) + i

(
n
R
− wR

)
XR(z̄)

]
labeled

by the momentum n ∈ Z and the winding number w ∈ Z. We have the OPE

i∂X(z)On,w(0) ∼
(
n
R

+ wR
)

2z
On,w(0) , i∂̄X(z̄)On,w(0) ∼

(
n
R
− wR

)
2z̄

On,w(0) . (6.8)

For generic R, the charges of i∂X(z) and i∂̄X(z̄) are irrational. Hence, the holomorphic

current i∂X and the anti-holomorphic current i∂̄X generate two R symmetries, not U(1).

On the other hand, there are two U(1) global symmetries, the momentum U(1)n and

the winding U(1)w for all radii, under which On,w has charges n and w, respectively. The

currents of the momentum and winding U(1)’s are combinations of ∂X(z) and ∂̄X(z̄):

U(1)n : J(z) = iR∂X(z) , J̄(z̄) = iR∂̄X(z̄) , (6.9)

U(1)w : J(z) =
i

R
∂X(z) , J̄(z̄) = − i

R
∂̄X(z̄) , (6.10)

under which On,w has integer charges n and w, respectively. We find that

U(1)n : k = k̄ =
R2

2
, (6.11)

U(1)w : k = k̄ =
1

2R2
. (6.12)

In particular, they both obey k = k̄, which means that they are non-anomalous. Note

that while k and k̄ are not separately quantized in general, k−k̄
2

is always an integer. Any
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combination of the momentum U(1)n and winding U(1)w with an integer coefficient is also a

U(1) symmetry. When R2 is rational, there exists a U(1) that is generated by a holomorphic

current, and another U(1) generated by an anti-holomorphic current. The chiral algebra is

hence enhanced at rational R2.

The spectral flow (6.4) for U(1)n by one unit η = 1 takes the exponential operator On,w
to On,w−1, and similarly for the spectral flow of U(1)w.

6.2 Bounds on the U(1) Charged Operator

We start with a simple statement for all c ≥ 1 bosonic 2d CFTs:

• There is no universal upper bound on the lightest U(1) charged operator if the U(1) is

non-anomalous (i.e. k = k̄).

Indeed, in the c = 1 free compact boson theory, the lightest charged operator under the non-

anomalous winding U(1)w is the minimal winding operator O0,1, which has scaling dimension
R2

2
. By taking the radius to be arbitrarily large, the minimal winding operator is arbitrarily

heavy, and hence there is no upper bound on the lightest charged operator for this non-

anomalous U(1)w. To arrive at the same conclusion for larger values of c, we tensor product

the free compact boson theory with any other CFT, and consider the U(1)w of the former.

Again, the lightest charged operator of this c > 1 CFT can be made arbitrarily heavy by

taking the radius of the boson to be large. While this tensor product construction does not

rigorously cover the entire range of c ≥ 1, we expect the statement to be true for all c ≥ 1.

In [7–9], a bound on the lightest charged operator is derived for a holomorphic U(1),

which always has an ’t Hooft anomaly. Hence, it is consistent with the above statement.

More generally, we argue that, just as in the Z2 case, the existence of a bound on the lightest

charged operator is not directly related to holomorphicity, but to the ’t Hooft anomaly.32

Indeed, consider an anomalous U(1) global symmetry with

k − k̄
2
∈ 2Z + 1 . (6.13)

The Z2 subgroup of this U(1) is anomalous, α = −1. From Section 4.3 and Section 5.3,

we know that there is a bound on the lightest Z2 odd operator, which is also a bound on

32Incidentally, the authors of [8] considered the ZN subgroup of a holomorphic U(1) with k = 2N and

k̄ = 0. This ZN is a non-anomalous subgroup of an anomalous U(1). Indeed, while they obtained a universal

bound on charged operators for the anomalous U(1), they did not find a bound for the non-anomalous ZN
subgroup. This is consistent with our general observation that there is a bound only when the symmetry is

anomalous.
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the lightest U(1) charged operator when (6.13) is true. In particular, both k and k̄ can be

nonzero, and the U(1) can be neither holomorphic nor anti-holomorphic.

This leads us to argue that there is a bound on the lightest U(1) charged operator if the

symmetry is anomalous, but not otherwise. We will leave the study for bounds on the lightest

charged operator for a general U(1) global symmetry for the future.

Let us finally comment on the interpretation of our bounds from the weak gravity con-

jecture in AdS3/CFT2 [8].33 The ’t Hooft anomaly of a U(1) current in an even-dimensional

holographic CFT is captured by the level of the Chern-Simons term for the dual gauge field

aµ in AdS [62] (see also [63] for the specific context of AdS3/CFT2). In the presence of

a 3d Chern-Simons term, the gauge field acquires a mass, and there is no electric charge

confinement. In this case, there are finite-energy charged particles in the bulk, and the weak

gravity conjecture applies. Indeed, we expect there to be a bound on the lightest charged

operator in the CFT when the U(1) is anomalous. The importance of the Chern-Simons

term was already emphasized by [8] in the formulation of the weak gravity conjecture in

AdS3/CFT2.

In the absence of the Chern-Simons term, on the other hand, charged particles are con-

fined. Consequently, the argument for the weak gravity conjecture does not apply to such a

U(1). This is perhaps consistent with our observation in the boundary CFT that there is no

bound on the lightest charged U(1) operator if the U(1) is non-anomalous. However, this ar-

gument is not complete because there could be mixed Chern-Simons terms with other gauge

fields in the bulk, rendering the photon massive.34 We leave a more complete treatment for

the future.

7 Outlook

Continuous global symmetries are typically associated to conserved currents, and some of

their ’t Hooft anomalies enter into the current correlation functions, and constrain the local

operator data. Rather surprisingly, our investigation shows even discrete ’t Hooft anomalies

place strong constraints on the light charged operator spectrum in 2d CFTs. There are

several interesting open avenues for future study:

33We thank Clay Cordova and Kantaro Ohmori for discussions on this point.
34In AdS3/CFT2, the most natural boundary condition for a Chern-Simons gauge theory is to hold az

fixed if the level is positive, and az̄ fixed if the level is negative [63], giving rise to holomorphic and anti-

holomorphic currents on the boundary, respectively. To couple to a non-holomorphic U(1) symmetry, we can,

for example, start with two U(1) gauge fields in AdS3 with a mixed Chern-Simons term iN
4π

∫
AdS3

(adb+ bda),

and choose to hold both az + γbz and az̄ − γbz̄ fixed on the boundary, with γ any real number. For a generic

irrational γ, the boundary U(1) symmetry is neither holomorphic nor anti-holomorphic.
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• Extend the analysis to general discrete and continuous internal global symmetries in

two dimensions.

• Even more generally, one can incorporate the non-invertible (“non-symmetry”) topo-

logical defect lines [14, 19, 25] into the modular crossing equation, and study how the

bounds on local operators depend on the associated fusion category.

• Generalize to spacetime symmetries such as the time-reversal symmetry.

• Extend to fermionic theories which depend on the choice of the spin structure. For

example, the ’t Hooft anomaly for an internal Z2 symmetry in a 2d fermionic CFT is

classified by Z8.

• Higher dimensional generalizations.

Let us ask whether our story generalizes to spacetime dimensions greater than two.

The answer is negative for a discrete, internal, global symmetry G in a bosonic QFT. As

discussed in Section 4.4, given such a G and its anomaly α in d > 2 spacetime dimensions,

there is always a d-dimensional TQFT with a unique vacuum that carries this symmetry

and anomaly [54, 55]. Therefore, we can modify the anomaly of a d-dimensional QFT by

taking its tensor product with the above TQFT, without changing the local operator data.

Hence, in d > 2, there cannot possibly be an anomaly-dependent bound on the local operator

spectrum for discrete, internal, bosonic symmetries.

On the other hand, there are symmetries and anomalies that cannot be carried by TQFTs.

For example, every continuous global symmetry is associated to a conserved current, which

cannot exist in a TQFT. It is therefore interesting to ask whether such an anomaly has

non-trivial implications on the charged local operator spectrum.
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A c = 1 Free Compact Boson

The moduli space of c = 1 CFTs consists of two branches, the S1 branch and the S1/Z2

branch, together with three isolated theories. This appendix reviews the S1 branch, which

has the description of the free compact boson X(z, z̄) = XL(z) + XR(z̄) at radii R ∈ R>0

(with R and 1
R

identified via T-duality). The free boson field is normalized such that

X(z, z̄)X(0, 0) ∼ −1
2

log |z|2. In H, the exponential operators are

On,w(z, z̄) = eipLXL(z)+ipRXR(z̄), (A.1)

which are labeled by two integers, the momentum number n and the winding number w:

pL =
n

R
+ wR, pR =

n

R
− wR, n, w ∈ Z . (A.2)

The conformal weights of On,w are

(h, h̄) = (
p2
L

4
,
p2
R

4
). (A.3)

The global symmetry at a generic radius contains (U(1)n×U(1)w)oZ2, where the last Z2

acts as X → −X. The U(1)n and U(1)w correspond to momentum and winding, which act

by phases einθ and eiwθ on the exponential operator (A.1), respectively. We will focus on the

(Z(1,0)
2 ×Z(0,1)

2 )×Z2 subgroup. More explicitly, the two Z2 symmetries that are subgroups of

the U(1)’s are simultaneous shifts in XL and XR such that the exponential operators have

signs eiπn and eiπw, respectively. If we parameterize such a shift by

(XL, XR)→ (XL, XR) + (`L, `R), (A.4)

then the condition for every exponential operator to have charge ±1 under this shift is
`L+`R
R

, (`L − `R)R ∈ πZ. For generic R, this condition can be achieved if (`L, `R) belongs to

the lattice spanned by

v1 =
π

2
(R,R), v2 =

π

2
(

1

R
,− 1

R
). (A.5)

Let us denote the Z2 generated by m1v1 + m2v2 as Z(m1,m2)
2 , with mi = 0, 1. In particular,

Z(1,0)
2 and Z(0,1)

2 are the momentum and winding Z2, respectively. The topological line for

Z(m1,m2)
2 is35

exp

[
i

π
(m1v1 +m2v2) ·

(∮
dz∂XL , −

∮
dz̄∂̄XR

)]
. (A.6)

There is no ’t Hooft anomaly for the momentum Z(1,0)
2 , nor for the winding Z(0,1)

2 alone,

but there is a mixed anomaly between the momentum Z(1,0)
2 and the winding Z(0,1)

2 . This

means that the defect Hilbert spaces of Z(1,0)
2 have ±1 charges under Z(1,0)

2 , but ±i charges

under Z(0,1)
2 , and vice versa.

35The extra sign in front of ∂̄XR comes from
∮
dsµjµ =

∮
dzjz −

∮
dz̄j̄z̄.
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Defect Hilbert space HL The defect Hilbert space states of Z(m1,m2)
2 (mi = 0, 1) are

given by

exp

[
i

π
(s1v1 + s2v2) · (XL,−XR)

]
= exp

[
i

2

(
(s1R +

s2

R
)XL − (s1R−

s2

R
)XR

)]
, (A.7)

with s1 = m1 mod 2 and s2 = m2 mod 2. In particular, the defect Hilbert space ground

states correspond to s1 = m1 and s2 = m2. The conformal weights of (A.7) is

h =
1

16

(
s1R +

s2

R

)2

, h̄ =
1

16

(
s1R−

s2

R

)2

. (A.8)

Note that the spin is

h− h̄ =
s1s2

4
. (A.9)

This is consistent with the spin selection rule and the mixed anomaly between Z(1,0)
2 and

Z(0,1)
2 . The momentum Z(1,0)

2 and winding Z(0,1)
2 charges of the operator (A.7) are

Z(1,0)
2 : e±

iπs2
2 , Z(0,1)

2 : e±
iπs1
2 . (A.10)

To be completely explicit:

• The Z(1,0)
2 defect Hilbert space ground states are

exp

[
±iR

2
(XL −XR)

]
, (h, h̄) = (

R2

16
,
R2

16
). (A.11)

whose spin corroborates with the absence of an anomaly. Note that this defect Hilbert

space ground state has +1 charge under Z(1,0)
2 , but ±i charges under Z(0,1), implying

the mixed anomaly between the two Z2 symmetries.

• Similarly, the Z(0,1)
2 defect Hilbert space ground states are

exp

[
± i

2R
(XL +XR)

]
, (h, h̄) = (

1

16R2
,

1

16R2
). (A.12)

Note that this defect Hilbert space ground state has +1 charge under Z(0,1)
2 , but ±i

charges under Z(1,0), implying the mixed anomaly between the two Z2 symmetries.

• The Z(1,1)
2 defect Hilbert space ground states are

exp

[
±
(
i

2
(R +

1

R
)XL −

i

2
(R− 1

R
)XR

)]
, (h, h̄) = (

(R + 1/R)2

16
,
(R− 1/R)2

16
),

exp

[
±
(
i

2
(R− 1

R
)XL −

i

2
(R +

1

R
)XR

)]
, (h, h̄) = (

(R− 1/R)2

16
,
(R + 1/R)2

16
),

(A.13)

satisfying the anomalous spin selection rule s ∈ Z
2

+ 1
4
.
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• When R2 ∈ N, there exist holomorphic currents in one of the four Hilbert spaces

H,H(1,0),H(0,1),H(1,1). For example, there are currents with (s1, s2) = ±(1, R2), giving

rise to a pair of defect Hilbert space states with weight (R
2

4
, 0). These states are in

H(1,0) if R2 is even, and in H(1,1) if R2 is odd. The above can be generalized to when

R2 is rational.

• Finally, for the Z2 that acts as X → −X, the defect Hilbert space ground states are

two-fold degenerate, corresponding to the two fixed points, and have conformal weights

( 1
16
, 1

16
).

Hilbert space of local operators H We list the lightest Z2 even/odd states in H with

respect to various Z2 symmetries below, to compare with the bootstrap bounds in Section

5.2. Without loss of generality, we assume R ≥ 1.

• With respect to the non-anomalous momentum Z(1,0)
2 , the (n,w) = (±2, 0), (0,±1)

states are even, while the (n,w) = (±1, 0), (±1,±1) states are odd. The maximal gap

in the even sector is 1, realized at R =
√

2.

• With respect to the non-anomalous winding Z(0,1)
2 , the (n,w) = (±2, 0), (±1, 0) states

are even, while the (n,w) = (0,±1), (±1,±1) states are odd. The maximal gap in the

even sector is 1
2
, realized at R = 1.

• With respect to the anomalous Z(1,1)
2 , the (n,w) = (±2, 0), (±1,±1) states are even,

while the (n,w) = (±1, 0), (0,±1) states are odd. The maximal gap in the even sector is

2, realized at R = 1, where the (n,w) = (±1,±1) states become conserved currents and

are thus excluded from the definition of the gap. For 1 < R < 3
1
4 , the states with the

lowest scaling dimensions are the (n,w) = (±1,±1) operators with scaling dimension
R2+1/R2

2
, while for R > 3

1
4 , they are the (±2, 0) scalars with scaling dimension 2

R2 .

B WZW Models

Let us consider the center symmetries in WZW models for simple Lie groups. Their anomalies

have been computed in [41,64]. We will consider the WZW models whose center contains a

Z2 subgroup.

Let us start with some basics of the WZW models. We follow the conventions in [65].

Let g be a simple Lie algebra and r = rank(g). The central charge of the g WZW model at

level k is

c =
k dim g

k + h∨
, (B.1)
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where h∨ is the dual Coxeter number. Given a positive integer level k, the current algebra

module is labeled by a weight λ satisfying

0 ≤
r∑
i=1

a∨i λi ≤ k , (B.2)

where a∨i are the comarks. Here λi ∈ Z≥0 are the Dynkin labels of λ, and we write λ =

(λ1, λ2, · · · , λr). The conformal weight of a current algebra primary of weight λ is

hλ =
(λ, λ+ 2ρ)

2(k + h∨)
, (B.3)

where ρ = (1, 1, · · · , 1) is the Weyl vector. We will only consider diagonal WZW models

where the left and the right modules are identical for every primary. The current algebra

primary will be denoted by |hλ, hλ〉.

We write the Dynkin labels of an affine weight λ̂ as λ̂ = [λ0, λ1, · · · , λr]. The affine fun-

damental weights are denoted by ω̂0 = [1, 0, · · · , 0], ω̂1 = [0, 1, · · · , 0], ..., ω̂r = [0, 0, · · · , 1],

B.1 Z2 Center Symmetry and its Anomaly

We focus on the Z2 center symmetry (if exists) of the diagonal WZW model for a simple Lie

algebra g. The advantage of considering the Z2 center symmetry is that it commutes with

the left and the right current algebras, so many calculations can be done with the help of

the current algebra ĝ. The nontrivial centers of simple Lie algebras are

g Ar Br Cr D2n D2n+1 E6 E7

Center Zr+1 Z2 Z2 Z2 × Z2 Z4 Z3 Z2

(B.4)

while G2, F4, E8 have no center. Among the above, the centers of A2n−1, Br, Cr, Dr, E7 have

Z2 subgroups.

Each element of the center group is associated to an outer automorphism of the affine Lie

algebra ĝ. We list the outer automorphism A associated to the generator of each Z2 center

subgroup in Table 1. The Z2 acts on the current algebra primary |hλ, hλ〉 as

Z2 : |hλ, hλ〉 → e2πi(Aω̂0,λ)|hλ, hλ〉 . (B.5)

The ’t Hooft anomaly α of the Z2 center subgroup in the level k WZW model is computed

in [41] as

α = e2πik|Aω̂0|2 , (B.6)

where ω̂0 = [1, 0, · · · , 0] is the 0-th affine fundamental weight. We list the anomaly for each

Z2 in the rightmost column in Table 1.
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g Action of the Z2 Outer Automorphism Aω̂0 α

A2n−1 A[λ0, λ1, · · · , λ2n−1] = [λn, λn+1, · · · , λ2n−1, λ0, λ1, · · · , λn−1] ω̂n eiπkn

Br A[λ0, λ1, · · · , λr] = [λ1, λ0, · · · , λr−1, λr] ω̂1 1

Cr A[λ0, λ1, · · · , λr] = [λr, λr−1, · · · , λ1, λ0] ω̂r eiπkr

Dr=2n≥4 A[λ0, λ1, · · · , λr] = [λ1, λ0, λ2, · · · , λr, λr−1] ω̂1 1

Ã[λ0, λ1, · · · , λr] = [λr, λr−1, λr−2, · · · , λ1, λ0] ω̂r eiπkn

AÃ[λ0, λ1, · · · , λr] = [λ2n−1, λ2n, λ2n−2, · · · , λ2, λ0, λ1] ω̂r−1 eiπkn

Dr=2n+1 A[λ0, λ1, · · · , λr] = [λ1, λ0, λ2, · · · , λr−2, λr, λr−1] ω̂1 1

E7 A[λ0, λ1, · · · , λ7] = [λ6, λ5, λ4, λ3, λ2, λ1, λ0, λ7] ω̂6 eiπk

Table 1: The outer automorphisms associated to the Z2 centers in simple affine Lie algebras.

Note that the center Z2×Z2 of D2n+2 has three Z2 subgroups, whose generators are A, Ã, AÃ.

We also list the ’t Hooft anomaly for each Z2 in the level k WZW model.

B.2 A Series

ŝu(2)k As a warm-up, let us start with the diagonal ŝu(2)k WZW model of central charge

c = 3k
k+2

. The current algebra primary |j, j〉 is labeled by the spin j = λ1
2
∈ Z

2
, with 0 ≤ j ≤ k

2
.

The scaling dimension of |j, j〉 is:

∆j =
2j(j + 1)

k + 2
. (B.7)

The center Z2 charge of |j, j〉 acts as

Z2 : |j, j〉 → (−1)2j|j, j〉 . (B.8)

The center Z2 is anomalous if k ∈ 2N− 1, and non-anomalous otherwise.

We summarize the lightest Z2 even/odd non-degenerate Virasoro primaries in each ŝu(2)k
WZW model. Degenerate primaries such as Ja−1|0, 0〉 are excluded in accordance with our

definition of the gap in Section 5.

• ŝu(2)k=1 (α = −1)

Z2 even : Ja−1J̄
b
−1|0, 0〉 , ∆+

gap = 2 ,

Z2 odd : |j =
1

2
, j =

1

2
〉 , ∆−gap =

1

2
.

(B.9)

This is the self-dual free compact boson discussed in Section 2.5.2.

• ŝu(2)k>1 (α = eiπk)

Z2 even : |j = 1, j = 1〉 , ∆+
gap =

4

k + 2
,

Z2 odd : |j =
1

2
, j =

1

2
〉 , ∆−gap =

3

2(k + 2)
.

(B.10)

54



̂su(2n)k Let us move on to the ŝu(2n)k WZW models with n > 1. The central charge is

c = (4n2−1)k
k+2n

. The center of SU(2n) is Z2n. The generator of Z2n acts on the current algebra

primary |hλ, hλ〉 by the phase exp[2πi
2n

∑2n−1
j=1 jλj]. It follows that the Z2 subgroup acts by a

phase

Z2 : |hλ, hλ〉 → eiπ
∑2n−1
j=1 jλj |hλ, hλ〉 . (B.11)

From Table 1, the Z2 is anomalous if and only if both k and n are odd. For any k, the

lightest Z2 even and odd current algebra primaries are, respectively,

(α = eiπkn) Z2 even : λ = (0, 1, 0, · · · , 0) = Λ2� , ∆+
gap =

2(n− 1)(2n+ 1)

n(k + 2n)
,

Z2 odd : λ = (1, 0, 0, · · · , 0) = � , ∆−gap =
4n2 − 1

2n(k + 2n)
.

(B.12)

Note that the scaling dimension ∆ of the current algebra primary Λ2� is always lighter than

2 (of Ja−1J̄
b
−1|0, 0〉), so it is also the lightest Z2 even Virasoro primary. Also, the lightest

Z2 odd current algebra primary is trivially the lightest odd Virasoro primary, because the

generators of the current algebra are Z2 even. The same applies to all the other WZW

models in the later subsections.

B.3 B Series

The Br = ̂so(2r + 1) WZW model at level k has central charge c = k(2r2+r)
k+2r−1

. The Z2 center

is always non-anomalous. The lightest even/odd current algebra primaries are

(α = +1) Z2 even : λ = (1, 0, · · · , 0) , ∆+
gap =

2r

k + 2r − 1
,

Z2 odd : λ = (0, · · · , 0, 1) , ∆−gap =
2r2 + r

4(k + 2r − 1)
.

(B.13)

The free fermions The ̂so(2r + 1) WZW model at level 1 with c = 2r+1
2

can be described

as 2r + 1 free Majorana fermions summed over spin structures, so that we end up with a

bosonic theory. There are three current algebra primaries labeled by the affine weights ω̂0,

ω̂1, and ω̂r. Their conformal weights are hω̂0 = 0, hω̂1 = 1
2
, hω̂r = 2r+1

16
. Their characters

are

χω̂0 =
1

2

(
θ
r+1/2
3 + θ

r+1/2
4

ηr+1/2

)
, χω̂1 =

1

2

(
θ
r+1/2
3 − θr+1/2

4

ηr+1/2

)
, χω̂r =

1√
2

θ
r+1/2
2

ηr+1/2
, (B.14)
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where θi = θi(0|τ). When r = 0, we recover the Ising characters (2.20). The r = 1 theory is

the ŝu(2)2 WZW model. Under the modular S transformation, θ3/η → θ3/η, θ2/η ↔ θ4/η.

θ3(τ)

η(τ)
→ θ3(τ)

η(τ)
,

θ2(τ)

η(τ)
↔ θ4(τ)

η(τ)
. (B.15)

The even and odd current algebra primaries under the center Z2 are

H+ : |0, 0〉 , |1
2
,
1

2
〉 , H− : |2r + 1

16
,
2r + 1

16
〉 . (B.16)

The torus partition function with the insertion of a spatial Z2 line is

ZL(τ, τ̄) = |χω̂0(τ)|2 + |χω̂1(τ)|2 − |χω̂r(τ)|2 . (B.17)

Applying S, we derive the defect Hilbert space partition function

ZL(τ, τ̄) = χω̂0(τ)χω̂1(τ̄) + χω̂1(τ)χω̂0(τ̄) + |χω̂r(τ)|2 . (B.18)

Hence, the current algebra primaries in the defect Hilbert space are

HL : |0, 1

2
〉 , |1

2
, 0〉 , |2r + 1

16
,
2r + 1

16
〉 . (B.19)

In the Ising model (r = 1), these are the free chiral fermions and the disorder operator µ(x)

(See Section 2.5.1). The lightest non-degenerate Virasoro primary in the defect Hilbert space

is the disorder operator with ∆ = 2r+1
8

, if r ≤ 5, or the current algebra descendant Ja−1|0, 1
2
〉

with ∆ = 3
2

if r ≥ 6. Considered together with the Z2 odd sector H−, we conclude that

(α = +1) ∆ord/dis
gap =

{
2r+1

8
, if 1 ≤ r ≤ 5 ,

3
2
, if r ≥ 6 .

(B.20)

On the other hand, ∆+
gap = 1.

B.4 C Series

The Cr = ŝp(2r) WZW model at level k has central charge c = k(2r2+r)
k+r+1

. The Z2 center

is anomalous if and only if both k and r are odd. The lightest even/odd current algebra

primaries are

(α = eiπkr) Z2 even : λ = (0, 1, 0, · · · , 0) , ∆+
gap =

2r

k + r + 1
,

Z2 odd : λ = (1, 0, · · · , 0, 0) , ∆−gap =
2r + 1

2(k + r + 1)
.

(B.21)

56



B.5 D Series

For the D2n WZW models, there are three Z2 subgroups of the center. We focus on the first

one, denoted by A in Table 1. This Z2, which is always non-anomalous α = +1, can be

uniformly discussed in both the D2n+1 and the D2n cases. We will return to the other two

Z2 subgroups in the D2n WZW models in the special case of k = 1.

The Dr = ŝo(2r) WZW model at level k has central charge c = k(2r2−r)
k+2r−2

. The lightest

even/odd current algebra primaries under the Z2 specified above are

(α = +1) Z2 even : λ = (1, 0, · · · , 0) , ∆+
gap =

2r − 1

k + 2r − 2
,

Z2 odd : λ = (0, · · · , 0, 0, 1), (0, · · · , 0, 1, 0) , ∆−gap =
r(2r − 1)

4(k + 2r − 2)
.

(B.22)

The free fermions The (Dr)1 = ŝo(2r)1 WZW model with c = r can be described as 2r

free Majorana fermions summed over spin structures. There are four modules in the WZW

model, corresponding to the affine weights ω̂0, ω̂1, ω̂r−1, and ω̂r. Their conformal weights h

are hω̂0 = 0 , hω̂1 = 1
2
, hω̂r−1 = hω̂r = r

8
. Their characters are

χω̂0 =
1

2

(
θr3 + θr4
ηr

)
, χω̂1 =

1

2

(
θr3 − θr4
ηr

)
, χ ≡ χω̂r−1 = χω̂r =

1

2

θr2
ηr
. (B.23)

The r = 1 theory is the tensor product of two Ising models.

There is a Z2 symmetry that commutes with the current algebra which is always non-

anomalous. The modules ω̂0 and ω̂1 are even under this Z2, while the modules ω̂r−1 and ω̂r
are odd. That is

H+ : |0, 0〉, |1
2
,
1

2
〉 , H− : 2|r

8
,
r

8
〉 . (B.24)

The torus partition function ZL is

ZL(τ) = |χω̂0(τ)|2 + |χω̂1(τ)|2 − 2|χ(τ)|2 . (B.25)

Under S, we obtain the defect Hilbert space partition function

ZL(τ, τ̄) = χω̂0(τ)χω̂1(τ̄) + χω̂1(τ)χω̂0(τ̄) + 2 |χ(τ)|2 . (B.26)

The defect Hilbert space spectrum is

HL : |0, 1

2
〉, |1

2
, 0〉, 2|r

8
,
r

8
〉 . (B.27)

The lightest non-degenerate Virasoro primary in the defect Hilbert space HL is either the

current algebra descendant Ja−1|0, 1
2
〉, or the current algebra primary | r

8
, r

8
〉, i.e. (∆gap)L = r

4
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if r ≤ 6 and (∆gap)L = 3
2

if r ≥ 6. The gap in the odd sector H−, on the other hand, is

always r
4
. Hence the gap for this non-anomalous Z2 int he c = r ŝo(2r)1 WZW model is

(α = +1) ∆ord/dis
gap =

{
r
4
, if 1 ≤ r ≤ 6 ,

3
2
, if 6 ≤ r ,

(B.28)

and ∆+
gap = 1. This explains the kink in Figure 14.

For ŝo(2r)k with r = 2n, there are two other Z2 subgroups denoted by Ã and AÃ in

Table 1. Let us discuss the second one Ã. The anomalies and gaps are the same for the

third one AÃ. We will denote the Z2 associated to Ã by Z̃2, which is anomalous if and only

if both k and n are odd, i.e. α = eiπkn.

In ŝo(4n)1, the Z̃2 acts on the current algebra primaries as

Z̃2 : |1
2
,
1

2
〉 → −|1

2
,
1

2
〉 ,

|hω̂2n−1 , hω̂2n−1〉 → (−1)n−1|hω̂2n−1 , hω̂2n−1〉 ,
|hω̂2n , hω̂2n〉 → (−1)n|hω̂2n , hω̂2n〉 .

(B.29)

The torus partition function with a spatial Z̃2 line inserted is ZL̃ = |χω̂0|2 − |χω̂1|2. The

defect Hilbert space partition function is

ZL̃(τ, τ̄) = χω̂0(τ)χ(τ̄) + χ(τ)χω̂0(τ̄) + χω̂1(τ)χ(τ̄) + χ(τ)χω̂1(τ̄) . (B.30)

Hence, the defect Hilbert space spectrum is

HL̃ : |0, n
4
〉, |n

4
, 0〉, |1

2
,
n

4
〉, |n

4
,
1

2
〉 . (B.31)

According to the spin selection rule (2.7), Z̃2 is anomalous if n is odd (here k = 1).

The various gaps for non-degenerate Virasoro primaries of the c = 2n ŝo(4n)1 WZW

model for Z̃2 are

(α = eiπn) ∆̃+
gap = Min(2,

n

2
) , ∆̃−gap = Min(1,

n

2
) , ∆̃ord/dis

gap = Min(1,
n+ 2

4
,
n

2
) . (B.32)

B.6 E7

Finally, the ê7 WZW model at level k has c = 133k
k+18

. The center Z2 is anomalous if and only

if k is odd, i.e. α = eiπk.

At level 1, there are two current algebra modules, the vacuum |0, 0〉 and |3
4
, 3

4
〉 with

weight λ = (0, 0, 0, 0, 0, 1, 0). The latter is odd under the anomalous center Z2. By the spin
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selection rule (2.7), there cannot be any spin 0 operator in HL, hence the only states in the

defect Hilbert space are |0, 3
4
〉 and |3

4
, 0〉, which are degenerate. The gaps for non-degenerate

Virasoro primaries are

(α = −1) k = 1 : ∆+
gap = 2 , ∆−gap =

3

2
, ∆ord/dis

gap =
3

2
, (B.33)

where the operator corresponding to ∆+
gap = 2 is Ja−1J̄

b
−1|0, 0〉.

At higher level k > 2, the lightest even and odd current algebra primaries are

(α = eiπk) Z2 even : λ = (1000000) , ∆+
gap =

36

k + 18
,

Z2 odd : λ = (0000010) , ∆−gap =
57

2(k + 18)
.

(B.34)

B.7 (Almost) Saturating Examples

There are many WZW models that saturate or almost saturate the numerical bootstrap

bounds we present in Section 5.

Non-Anomalous ∆+
gap

• c = 1: Ising2, ∆+
gap = 1.

• c = 3
2
: ŝo(3)1 = ŝu(2)2, ∆+

gap = 1.

• c = 2: ŝo(4)1, ∆+
gap = 1.

• c = 5
2
: ŝo(5)1 = (B2)1, ∆+

gap = 1.

• c = 8: ŝo(16)1 = (D8)1, ∆̃+
gap = 2.36

Non-Anomalous ∆
ord/dis
gap

• c = n
2
, n ∈ N, 1 ≤ n ≤ 12: ŝo(n)1, ∆

ord/dis
gap = n

8
.

Anomalous ∆+
gap

• c = 1: ŝu(2)1, ∆+
gap = 2.

• c = 21
5

: ŝp(6)1=(C3)1, ∆+
gap = 6

5
.

36The tilde sign over ∆ means that it is the gap with respect to the Z̃2 symmetry in the D8 WZW model.

59



• c = 5: ŝu(6)1 = (A5)1, ∆+
gap = 4

3
.

• c = 7: (E7)1, ∆+
gap = 2.

Anomalous ∆−gap

• c = 1: ŝu(2)1, ∆−gap = 1
2
.

C More Examples of c > 1 CFTs with Z2 Symmetry

C.1 Monster CFT

The (holomorphic) cL = 24 and cR = 0 Monster CFT has two non-anomalous Z2 symmetries,

usually denoted by Z2A and Z2B. Their ZL are

Z2A(q) =
η(τ)24

η(2τ)24
+ 212η(2τ)24

η(τ)24
+ 24 =

1

q
+ 4372q + 96256q2 + 1240002q3 +O(q4) ,

Z2B(q) =
η(τ)24

η(2τ)24
+ 24 =

1

q
+ 276q − 2048q2 + 11202q3 +O(q4) .

(C.1)

In H, the Z2 even and odd gaps are both h±gap = 2, for either Z2A or Z2B.

The modular S transforms of (C.1) are the defect Hilbert space partition functions ZL:

Z2A(q) = 212 η(τ)24

η(τ/2)24
+
η(τ/2)24

η(τ)24
+ 24 =

1

q1/2
+ 4372q1/2 + 96256q + 1240002q3/2 +O(q2) ,

Z2B(q) = 212 η(τ)24

η(τ/2)24
+ 24

= 24 + 4096q1/2 + 98304q + 1228800q3/2 + 10747904q2 +O(q5/2) . (C.2)

The gaps in the defect Hilbert space are (hgap)L = 1
2

for Z2A, and (hgap)L = 1 for Z2B.

We can take the tensor product of a holomorphic and an anti-holomorphic Monster

CFT, and compare its gaps with our bootstrap bounds. We find that they are well within

our numerical bounds in Section 5.

C.2 Tensor Product Theories

Consider the tensor product of two copies of the same CFT. There is a non-anomalous Z2

exchange symmetry. The defect Hilbert space ground state has weight (h, h̄) = ( c
32
, c

32
),
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where c is the central charge of the product theory. Hence the universal bound on ∆
ord/dis
gap

for a non-anomalous Z2 cannot be stronger than c
16

. This is indeed consistent with Figure

14.
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