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Numerical simulations of the linear and nonlinear two-dimensional Navier-Stokes equa-
tions are used to parametrically investigate hypersonic boundary layers over ultrasonic
absorptive coatings consisting of a uniform array of rectangular pores (slots) with a range
of porosities and pore aspect ratios. Based on our previous work, we employ a tempo-
rally evolving approximation appropriate to slowly-growing second-mode instabilities. We
consider coatings operating in attenuative regimes where the pores are relatively deep and
acoustic waves and second mode instabilities are attenuated by viscous effects inside the
pores, as well as cancellation/reinforcement regimes with alternating regions of local minima
and maxima of the coating acoustic absorption, depending on the frequency of the acoustic
waves. The focus is on reinforcement cases which represent a worst case scenario (minimal
second-mode damping). For all but one of the cases considered, the linear simulations
confirm the results of linear instability theory that employs an approximate porous-wall
boundary condition. A particular case with a relatively shallow cavities and very high
porosity showed the existence of a shorter wavelength instability that is not predicted by
theory. Finally, nonlinear simulations of the same cases led to the same conclusions as
linear analysis; in particular, we did not observe any ”tripping” of the boundary layer by
small scale disturbances associated with individual pores.

Nomenclature
Ar  Cavity aspect ratio, 2b/ H 0 Angle of incidence of acoustic wave
a Speed of sound A Streamwise extent of the domain
b Cavity half-width A Streamwise wavelength
f Frequency, f*H/a., 1 Dynamic viscosity
H  Cavity depth v Kinematic viscosity
M. Mach number, U, /a, p Density
Npore Number of pores per A o Temporal growth rate of second mode, 0*§ /U,
R Reflection coefficient 10) Porosity, 2b/s
Re  Acoustic Reynolds number, pu, a0/ iy w Angular frequency of second mode, w*§ /U,

Res Reynolds number, p.Ucd/ pie

Cavit . Superscript
; VIR Sbaciis ! Linear pertubation quantity
T Temperature . - .

- * Dimensional quantity

t Time
U Freestream streamwise velocity Subscript
u,v Streamwise and normal velocities 0 Stagnation quantity
x,y Streamwise and normal directions e Property at the boundary layer edge
) Boundary layer thickness w Property at the wall
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I. Introduction

Laminar-turbulent transition during hypersonic flight represents a severe restriction to vehicle perfor-
mance,’ since early transition causes a significant increase (by a factor of 3-8) in heat transfer that translates
to higher cost and weight of thermal protection systems (TPS).%3 State-of- the-art active and reactive lam-
inar flow control (LFC) methods* seem to be not practical under the severe conditions of hypersonic flight.
In contrast, a passive ultrasonic absorptive coating (UAC), which consists of a thin perforated layer of reg-
ular microstructure, has been shown to significantly increase laminar run in wind-tunnel experiments.>©
Additional experimental and theoretical studies” '° have confirmed the UAC stabilizing effect on the second
mode (or Mack mode), which is the dominant instability causing transition in predominantly two-dimensional
boundary layers at hypersonic speed (rather than the first mode associated with Tollmien-Schlichting waves).
These studies showed the robustness of the UAC stabilization concept and motivated our current direct nu-
merical simulations (DNS) and theoretical efforts to mature the UAC-LFC methodology and provide a basis
for design of UAC-TPS test articles that could be manufactured and deployed on a flight vehicle.

In previous works, two unit problems that bracket the flow physics of the full UAC problem were inves-
tigated. The first study!! introduced a computationally tractable and efficient method to account for the
detailed flow physics associated with micro-cavities that attenuate second-mode instabilities in hypersonic
boundary layers. Linear stability theory® (LST) and DNS provided evidence that it is sufficient for many
purposes to consider temporally (rather than spatially) evolving boundary layers and instabilities. As the
computational domain can be limited to a single wavelength of the instability, the computational cost is
significantly reduced. The same approach has been used in a recent work on UAC with streamwise slots and
square pores, with similar results.!?

The second study'®'* examined the interaction of acoustic waves with an array of equally-spaced two-
dimensional micro-cavities on a flat plate without external boundary-layer flow. This fundamental problem
is of interest here because the second-mode instability represents high-frequency (ultrasonic) acoustic waves
trapped in the boundary layer. In particular, the DNS and theoretical modeling!® highlighted, for sufficiently
shallow cavities, the presence of alterning local minima and maxima of the reflection coefficient (i.e., maxima
and minima of the absorptive acoustic property of the coating) at some specific frequencies. This behavior
is due to reflections of acoustic waves from the bottom of the cavities that lead to destructive/constructive
reinforcement at these specific frequencies. Such properties are mainly observed for pores of large aspect
ratio, because for cavities that are deep and narrow, the acoustic waves are strongly attenuated by viscous
effects in the pores.

In practice, the second-mode frequency is related to the boundary layer thickness and decreases as the
instability travels downstream in spatially-evolving boundary layers. In contrast, the acoustic properties of
the coating are independent of the boundary layer properties. Consequently, it is expected that the operating
condition of a uniform UAC would alternate between local minima and maxima of the coating acoustic
absorption, depending on the streamwise position along the vehicle. The conservative way to design coatings
is therefore to pick the attenuative regime since the performance will not vary much along the streamwise
position on the vehicle, whereas the cancellation/reinforcement regime leads to significant fluctuation of the
performance. However, an optimum attenuative coating typically requires many deep pores, which could be
a difficult to manufacture.

In this paper, the temporal stability analysis is extended to investigate alternatives to the conservative
UAC designs, under the assumption that their stabilizing perfomances are directly related to their acoustic
scattering performances. Nine different coatings are considered, spanning the range of typical UAC pa-
rameters relevant to practical applications. The properties of the second-mode instability for a hypersonic
boundary layer over a flat plate and over the different UAC are compared, using linear stability theory®
(LST) and linear direct numerical simulations (LDNS). First, the flow conditions are set up such that the
frequency of the dominant second-mode instability matches a frequency of minimum absorption of the UAC,
as identified by the acoustic scattering study. This particular setup corresponds to a reinforcement regime
(i.e., “worst-case scenario”), to quantify the performance of the different UAC in unfavorable conditions.
Then, a second configuration where the UAC operate at a cancellation regime with maximum acoustic ab-
sorption is also considered (i.e., “best-case scenario”), to confirm that stronger stabilization is obtained in
this case. Finally, nonlinear direct numerical simulations of the UAC including the outer flow are performed
to validate these alternate UAC designs, and examine potential detrimental and tripping effects.
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II. Acoustic properties of porous coatings

A. Previous work

The acoustic scattering properties of two-dimensional porous coatings were investigated using DNS and
theoretical modeling.'3'® The existing theoretical model considered the reflection of plane monochromatic
acoustic waves of an ultrasonic frequency band from a plane surface covered by a porous coating (figure 1).
The reflection coeflicient, R, characterizing the ratio of the reflected wave amplitude to the incident wave
amplitude, is computed as a function of the acoustic wave frequency f = f*H/a,, and angle of incidence 0,
for coatings of different porosity ¢ = 2b/s, at various acoustic Reynolds number Re = py,a.,b/ 11,y relevant to
hypersonic flight. Here, b is the cavity half-width, s is the pore spacing, H is the pore depth, a is the speed
of sound, p and p are the gas density and viscosity, respectively. The subscript w denotes the property at
the wall, and the superscript * refers to the dimensional quantity.

acoustic ray

rigid frame

) r_ _’2b<_/

NI/
\/
\%
cavities solid backing

Figure 1. Schematic of the reflection of acoustic wave from equally spaced 2-D cavities.

The key assumptions and main results are summarized here, since they are the starting point of the
present work:

1. The theoretical model assumes that the cavity half-width b, depth H and spacing s satisfy the con-
ditions b ~ s < Ages, and H ~ Aycs, where \y.s is the wavelength of incident acoustic wave. These
conditions can be reformulated using the porosity ¢, the cavity aspect ratio Ar = 2b/H and the
nondimensionalized frequency of the incident acoustic wave f as

1

SArf <1, %Arf <1, Fol (1)

For typical UAC parameters, the range of frequencies 0.1 < f < 1.5 corresponds to the ultrasonic
frequency band, and is sufficient to capture the frequency of the most amplified second-mode instability
waves observed in experiments® ' and numerical simulations.? 117

2. The reflection coefficient is largely independent of the angle of incidence, up to 8 ~ 30° for all the
conditions considered. For the second-mode instability waves, the angle of incidence was shown to be
smaller than 23° for cases relevant to UAC design.!® Therefore, our analysis will only focus on the
acoustic properties of the porous coating at normal incidence (i.e., § = 0°).

3. There is a critical acoustic Reynolds number Re..;; for the cancellation/reinforcement regime, above
which acoustic disturbances are not completely absorbed inside the pores. In that case, interference
between incoming and outgoing (reflected from the cavity bottom) waves leads to a significant decrease
of the reflection coefficient at some specific frequencies. In the appendix, this critical Reynolds number
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is characterized and the presence of reflection from the cavity bottom can be anticipated for a range

of acoustic Reynolds numbers 50 < Re < 1000 relevant for practical UAC in high-altitude hypersonic
flight.

4. A simple model for the prediction of these specific frequencies was introduced and led to estimates
in good agreement with the theoretical and numerical results: f ~ 0.25, 0.75, etc. These frequencies,

corresponding to local minima of the reflection coefficient, are largely independent of the Reynolds
number.

5. The DNS showed the presence of a resonant acoustic mode caused by the coupling of small-scale scat-
tered waves generated by neighboring pores near the UAC surface. In this mechanism, the resonant
frequency can be estimated by the ratio of the porosity by the cavity aspect ratio, i.e., fres = ¢/Ar.
In most cases, these frequencies are higher than the ultrasonic frequency band relevant for UAC. Nev-

ertheless, the resonant acoustic modes may trip the outer boundary-layer flow similar to small-scale
distributed roughness.

B. Parametric study

In our previous studies, the 2-D micro-cavities considered had a constant length to depth ratio Ar = 0.12,
matching the aspect ratio of the cylindrical cavities used in the experiment by Rasheed et al..5 To further
investigate the effect of the cavity depth and the porosity, additional simulations are performed. Typically,
coatings with very deep pores (Ar < 0.05) or very high porosity (¢ > 0.8) are not of interest for practical
applications. Therefore, nine different coatings are considered here, for aspect ratio Ar = 0.06, 0.12, 0.3,
and porosity ¢ = 0.2, 0.48, 0.8. These parameters span the range of typical coating designs used in most
experimental and theroretical studies on UAC.

The reflection coefficient obtained from DNS is compared with the theoretical modeling in figure 2, for the
nine different designs. Overall, the comparison shows again excellent agreement between the two methods,
especially for low aspect ratio and low frequency. The discrepancies at Ar = 0.3 are due to the assumptions
in the theory mentioned in the previous section. Nevertheless, the theoretical model® is used in the rest of
the paper to efficiently provide estimates of the acoustic properties of the different coatings considered.

1
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Figure 2. Comparison of the reflection coefficient amplitude at normal incidence (6 = 0) from DNS (solid line)
and theory (dashed line) at acoustic Reynolds number Re = 100, for coatings of porosity ¢ = 0.2 ( )B
¢ =0.48 ( ), and ¢ = 0.8 ( ). (a) Cavity aspect ratio Ar = 0.06; (b) Ar =0.12; (¢) Ar =0.3.

Also, as discussed in section ITA, the presence of a resonant acoustic mode strongly affects the calculation
of the reflection coefficient,'® and the DNS results are not shown for ¢ = 0.2 in figure 2(b) and (c) at high
frequencies, where these resonances occur. In these geometries, the resonant disturbances may interact with
the boundary-layer flow and cause a detrimental tripping effect. The nonlinear simulations with the outer
boundary-layer flow performed in section IIID are aimed in part at addressing this issue.

From figure 2, it is clear that the most efficient attenuative coating is obtained for Ar = 0.06, ¢ = 0.8
(red curves in figure 2(a)), which would requires many deep pores. Such high porosity can be difficult to
achieve in practical application because of structural constraints. Also, the stabilizing effect might not be
required for such a wide range of frequency. By restricting our attention to a smaller range of acoustic wave
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frequency around the dominant second-mode frequency, similar or even better acoustic absorptive properties
could be obtained with less and larger pores (e.g., black curves in figure 2(b) around f = 0.7). The stability of
hypersonic boundary layers over UAC operating approximately in a local cancellation/reinforcement regime
is investigated in the next section.

Finally, the results also confirmed that a stronger cancellation regime can be obtained for different
combinations of porosity and aspect ratio. The existence of a global maximum of acoustic absorption, cor-
responding to an “optimum” cancellation regime, is presented in the appendix. While current studies on
UAC (including the one in this paper) aim at “robust” uniform designs which stabilize a range of frequen-
cies, improvement could potentially be obtained with non-uniform coatings that would lock the dominant
second-mode instability in that global maximum of acoustic absorption, and therefore always operate in the
“optimum” cancellation regime. The preliminary analysis of such “optimum” streamwise-dependent design
is also presented in the appendix.

III. Temporal boundary layer stability

A. Numerical setup

In previous work,'" a simplified configuration that considers a 2D temporally evolving boundary layer on
an infinite flat plate with UAC was shown to accurately capture the relevant flow physics for laminar flow
control. The restriction to two-dimensional cases is relevant here since the second-mode is initially two-
dimensional. The temporally evolving boundary layer neglects the spatial growth of the boundary layer, and
instead diffuses slowly with time. Over short time-scales associated with acoustic energy attenuation in UAC,
the laminar boundary layer is essentially frozen, consistent with either a spatial or temporal description of
the mean flow field. The results showed that the second-mode instability has a sufficiently slow streamwise
growth to allow spatial instability results to be accurately recovered from the temporal ones via the Gaster
transformation.'?

Details on the code algorithm, implementation and validations can be found in Refs. (11,20,21). In
the current study, simulations are performed for both the nonlinear (DNS) and linearized (LDNS) two-
dimensional Navier—Stokes equations. Periodic boundary conditions are used in the streamwise direction,
and the nominally laminar boundary layer spreads in time rather than streamwise position. The grid extends
up to 5H in the y-direction, with a large buffer zone at the top boundary, to avoid spurious reflections. All
the numerical simulations are performed on similar stretched Cartesian grid, with clustering of points near
the walls. For the configuration with the porous wall, the mesh contains about half a million grid points,
with 100 points per cavity depth, and 12 to 60 points across each cavity length, depending on the pore aspect
ratio.

The equations are solved for a perfect gas, with constant specific heat capacities, v = 1.4 and constant
Prandtl number Pr = 0.7. Here, the Mach number is M, = U./a. = 6, and the wall temperature ratio
Ty =T;/TF =14 is assumed to be uniform and constant. In this preliminary work, we consider constant
viscosity (i@ = po = pe) and conductivity. Temperature variation in these properties will be included
in future work. Nevertheless, we showed that the results are qualitatively similar to measurements with
temperature-dependent properties, and therefore relevant for UAC design.

All the computations are initialized with an error-function profile for the streamwise velocity (i.e., the
correct self-similar solution as M, — 0), uniform pressure and use the Crocco-Busemann relation to compute
the initial temperature profile for the chosen wall temperature ratio. The nonlinear simulations are advanced
in time until the boundary layer thickness reaches §/H = 2. The resulting boundary layer profile is then
frozen and used as the mean flow in linear simulations. An acoustic perturbation is added to the flow and
the linearized Navier-Stokes equations are solved. The least damped (or most unstable) eigenmode and
the corresponding eigenvalue are then determined from the long-time linear response of the boundary layer,
and the nondimensionalized temporal growth/damping rate o = ¢*6/U, and frequency w = w*0/U, are
computed. Similarly, the nonlinear simuations are restarted with the same added acoustic perturbation, to
quantify nonlinear effects.

Finally, the streamwise extent A of the domain was chosen to approximately correspond to the wavelength
of the most unstable second mode (see section IIIB), and to have an integer number of pores Ny, in the
domain. While the typical number of pores per wavelength of instability® is suggested to be about 10 to 20,
its value varies from 3 to 66 in the present simulations. In particular, smaller number of pore are of interest
to determine whether detrimental effects such as roughness-induced transition mechanisms are present.
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B. Linear stability at minimum of acoustic absorption

cases | flat plate UAC Ar = 0.06 UAC Ar =0.12 UAC Ar =0.3
Ty 1.4 14
M, 6 6
6/H n.a. 2
Reg 24000 24000
Re n.a. 50 100 250
1) n.a. 0.2 048 0.8 0.2 048 0.8 0.2 048 0.8
A/Jo 2.5 2.4 25 2475 24 2.5 2475 2.25 2.5  2.4375
Npore n.a. 16 40 66 8 20 33 3 8 13

Table 1. Parameters for the numerical simulations of a temporally-evolving boundary layer over a flat plate
and over nine different coatings in the reinforcement regime. (n.a.: not applicable).

For the first configuration, the nonlinear simulations are advanced in time until the boundary layer
thickness satisfies §/H = 2. The parameters for the different numerical simulations are summarized in table
(1). Under these conditions, all the linear stability calculations in this section are performed at Reynolds
number Res = p.Ucd/pe = 24000, which is related to the acoustic Reynolds number Re = py,aq,0/ 1t by

ResAr H
Re= 02" 2 2
T QT D 2)

The flow field for the boundary layer over a coating of porosity ¢ = 0.2, cavity aspect ratio Ar = 0.3 is
shown in figure 3(a), and (b), for the normal velocity v and temperature T, respectively. This flow field was
used as mean flow for the linear simulation (LDNS) of that geometry. Unlike the boundary layer profile over
the flat plate, which is only function of the normal direction, the flow field with UAC is two-dimensional,
in particular the velocity field near the cavity mouths. The negative and positive normal velocities at
the downstream and upstream cavity edges, respectively, indicate weak recirculation inside the pores. In
contrast, the temperature is essentially uniform inside the pores, equal to the wall temperature T' = T,,.

3} 3k
2F 2k
>-1,_ > 1k
° o el ol oF
B B
X X

Figure 3. Flow field from DNS for the hypersonic boundary layer at M. = 6 over a coating of porosity ¢ = 0.2,
cavity aspect ratio Ar =0.3: (a) v; (b) T. The boundary layer thickness is §/H = 2.

The linear stability theory® (LST) is applied to the two-dimensional second-mode waves at Res = 24000.
These linear calculations are conducted with temperature-independent viscosity for the different mean
boundary layer profiles extracted from the DNS of the flat plate and the nine UAC configurations. The
growth /decay rate and frequency of the least damped (or most unstable) mode are computed as a function
of the streamwise wavelength A/d.
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Figure 4. Second-mode instability for a hypersonic boundary layer over a flat plate at M. = 6, Res = 24000
( LST, x LDNS), and Res = 31200 (—-— LST): (a) growth rate; (b) frequency.

The linear results for the hypersonic boundary layer over a flat plate at Res = 24000 are presented in
figure 4. The second-mode had a positive growth rate for streamwise wavelength 1.6 < A/§ < 2.75, and
the most unstable mode is at A\/§ = 2.35, leading to the choice of A/§ = 2.5 for the streamwise extent of
the computational domain. The LDNS results match the linear calculation very well, with less than 0.2%
error. The typical second-mode structures are shown in figure 5(a), and (b), for the normal velocity v' and
temperature T”, respectively. Similarly to the results in Ref. 12, the maximum perturbation is near the wall
for the temperature, and near y = 0.3 for the normal velocity.
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Figure 5. Structures of the second-mode instability for the hypersonic boundary layer over a flat plate at
M. = 6, Res = 24000 (from LDNS): (a) v'; (b) T”

The acoustic properties of the different UAC, for the flow conditions and configurations in table (1),
are presented in figure 6. The range of unstable frequencies and the most unstable second-mode for the
hypersonic boundary layer over the flat plate Res = 24000 are also shown in the figure. Here, the frequency
of the dominant second-mode is w = w*¢/U, = 2.325, which can be expressed as a function of the acoustic
frequency f = f*H/a, using

fm et g
7Ty 0
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Figure 6. Reflection coefficient amplitude at normal incidence (6 = 0) from theory, for coatings of porosity
¢=08(——), =048 (-~ ), and ¢ = 0.2 ( ———— ) in table (1). The grey shaded area corresponds
to the frequencies of the unstable modes from figure 4(b), and the black vertical line is the frequency of the
most unstable mode. (a) Cavity aspect ratio Ar = 0.06 at acoustic Reynolds number Re = 50; (b) Ar = 0.12 at
Re =100; (¢) Ar = 0.3 at Re = 250.

As shown in figure 6, the second-mode frequency is approximately at a maximum of the reflection coef-
ficient for all the configurations. These conditions were chosen to quantify the different UAC performance
in the reinforcement regime (i.e., the “worst-case scenario”). Since the operating conditions of a uniform
UAC are expected to depend on the streamwise position and alternate between local minima and maxima

of the coating acoustic absorption, it is important to make sure the stabilizing effect is obtained even for
unfavorable conditions.

S T N P B
0Ly o 0.1 A 01f S
0.2 0.2l 0.2
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Figure 7. Linear growth rate o of the second-mode instability for a hypersonic boundary layer at M. =6 and
Res = 24000 over a flat plate ( LST, x LDNS) and over coatings of porosity ¢ = 0.2 (————- LST; e
LDNS), ¢ =048 (-------- LST; = LDNS), and ¢ =0.8 (—-— LST; A LDNS ). (a) Cavity aspect ratio Ar = 0.06;
(b) Ar =0.125 (¢) Ar =0.3.

The results for the linear growth rate are compared to the LDNS estimates in figure 7(a),(b) and (¢), for
the UAC of aspect ratios Ar = 0.06, Ar = 0.12 and Ar = 0.3, respectively. There are again a very good
agreement between the LST and the LDNS, with less than 5% error on the growth rate. Similar agreement
is obtained for the mode frequency. Even in this configuration corresponding to a minimum of the coating
acoustic absorption, almost all the UAC have negative growth rate and stabilize the second-mode instability,
demonstrating again the robustness of the method. The exception is the case of a coating of large pores and
low porosity (Ar = 0.3, ¢ = 0.2 in figure 7(¢)) which still exhibits a small positive growth rate, both in the
LST and LDNS. As expected, the very low number of pores per wavelength of instability (Nperes = 3) and
the poor acoustic scattering performance (|R| > 0.9 at the second mode frequency) of this particular design
lead to a less efficient coating. The second-mode structures for the boundary layer over this geometry is
presented in figure 8, similar to the results for the flat plate in figure 4.

The numerical simulations also identify the coating of aspect ratio Ar = 0.3, and porosity ¢ = 0.8 as a
special case. Here, an unstable mode is observed in the long-time linear response of the perturbed flow over
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Figure 8. Structure of the second-mode instability for the hypersonic boundary layer over a coating of porosity
¢ = 0.2 and cavity aspect ratio Ar = 0.3, at M. =6, Res = 24000 (from LDNS): (a) v’; (b) T’

the UAC (red triangle in figure 7(c)). The preliminary results on this mode are discussed in section IIID.
Further analysis is underway to identify the origin of the instability.

C. Linear stability at maximum of acoustic absorption

For the second configuration, the nonlinear simulations are continued until the boundary layer thickness
satisfies §/H = 2.6, and the linear stability calculations are now performed at Reynolds number Res = 31200.
The LST results for the hypersonic boundary layer over the flat plate is compared to the previous case in
figure 4. As expected, the growth rate of the second-mode has increased, leading to a wider range of
unstable streamwise wavelength. The change in frequency is not significant. The most unstable mode has
now a frequency w = 2.361, and a wavelength /0 = 2.41.

1 :
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Figure 9. Improvement of the performance of coatings of aspect ratio Ar = 0.12 and porosity ¢ =02 (-———- ),
¢ =048 (- ), and ¢ = 0.8 (— -—): (a) second mode frequency (—-— ) matching the frequency of minimum

reflection coefficient amplitude. The frequencies of the unstable modes (grey shaded area) are also presented;
(b) corresponding linear growth rate from LST at Res = 31200 for the UAC and the flat plate ( ).

In contrast, the acoustic Reynolds number and the acoustic scattering properties of the coating are
unchanged. Using equation (3), the frequency of the most unstable second-mode now approximately corre-
sponds to a local minimum of the reflection coefficient, as shown in figure 9(a). These conditions correspond
to a cancellation regime (i.e., “best-case scenario”), where the UAC operates at a local maximum of acoustic
absorption. The corresponding the linear growth rates are presented in figure 9(b). As anticipated, a signif-
icant stabilizing effect is obtained for this configuration, over a large range of wavelength, compared to the
results in figure 7(b) . Numerical simulations are underway to confirm these results.
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D. Nonlinear simulations

Nonlinear numerical simulations including the outer flow are performed for the UAC configurations in the
“reinforcement” regime, to confirm the linear results and investigate potential detrimental effects of the
coating. For each of the cases considered in table (1), the nonlinear simulations agreed fully with the
results of linear analysis. That is, except for the particular case of ¢ = 0.8 and Ar = 0.3 discussed below,
the nonlinear simulations all resulted in damped second mode response and the boundary layer remained
laminar.

As mentioned in section IIIB, an unstable mode is observed in the linear response of the perturbed
boundary layer over a coating of aspect ratio Ar = 0.3, and porosity ¢ = 0.8. The same instability
growth is present in the nonlinear simulations. The current DNS are being extended to longer times to
investigate whether the mode eventually reaches an asymptotic state, limit cycle or continues to evolve into
more complicated fluctuations. The frequency and growth rate for this unstable mode can be estimated at
w = 0.74 and o = 0.0382, which means that this configuration exhibits a dominant instability of growth rate
larger than that of the most unstable second mode. Also the instability wavelength is half of the streamwise
extent of the domain (i.e., approximately half of the most unstable wavelength of the second mode). These
values do not correspond to the second mode, nor the acoustic resonant mode discussed in the section ITA.
Additional work is underway for this geometry to identify the nature of this instability and investigate its
destabilizing effect of the porous coating.

Also, as discussed in section ITA, a resonant acoustic mode of frequency f..s = ¢/Ar was observed in
the DNS (without outer flow) during the investigation of the coating acoustic properties. Here, the term
“resonant” is used to qualify the mode frequencies in a broad sense, even though the oscillations are actually
lightly damped and decay in time. Except for coating of low porosity, these frequencies are higher than
the ultrasonic frequency band relevant for UAC, and are not expected to impact the coating absorptive
performance. To confirm this assumption, additional spectral analysis of the flow field for the different
coatings of porosity ¢ = 0.2 is performed for the nonlinear runs. In most cases, small peak in the spectrum
around the frequency of the acoustic mode are observed. However, these resonant acoustic modes were all
stable and eventually died out without tripping the boundary layer. Therefore, the results of the nonlinear
simulations with the outer flow indicate that the coupling of these small-scale scattered waves generated by
neighboring pores do not destabilize the second-mode.

Finally, it should be mentioned that the present study of roughness-induced transition mechanisms has
several limiting assumptions. First, only strictly two-dimensional, planar cavities are considered. Second,
the periodic domain was fixed to approximately one wavelength of the dominant second mode. Thus, any
first mode instability would not be captured, even if they were unstable, since their wavelength is longer
than what is permitted in the computational domain. Third, the present simulations were performed with
constant (temperature-independent) properties. While this assumption is not expected to significantly alter
our current results, the temperature effects need to be included in future work. With these limitations in
mind, the nonlinear results did not show differences with the linearized simulations. The DNS did not show
evidence of roughness-induced transition mechanisms, even for small numbers of pores per wavelength of
instability (as low as 3 pores).

IV. Conclusions

The stabilizing effect of ultrasonic absorptive coatings on hypersonic boundary layer instabilities is in-
vestigated using direct numerical simulations of the linear and nonlinear two-dimensional Navier-Stokes
equations. Following our previous studies, temporally (rather than spatially) evolving boundary layers are
considered, as this approximation was shown to be appropriate to slowly-growing second-mode instabilities.

The coatings consist of a uniform array of rectangular pores (slots) of aspect ratios Ar = 0.06, 0.12, 0.3,
and porosity ¢ = 0.2, 0.48, 0.8. The conservative way to design coatings is to have the UAC operated in an
attenuative regime where the pores are relatively deep and acoustic waves (and second mode instabilities) are
attenuated by viscous effects inside the pores. Here, alternate designs are investigated, where the pores are
relatively shallow and the coating operates in an alternating cancellation/reinforcement regime, depending
on the frequency of the acoustic waves.

The second-mode properties for a hypersonic boundary layer at Mach number M, = 6 and Reynolds
number Res = 24000 over a flat plate and over the different UAC are computed using linear stability theory
and linearized direct numerical simulations. These configurations correspond to the reinforcement regime
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where the second-mode frequency matches a frequency of minimum absorptive properties of the coating (i.e.,
“worst case scenario”). It is important to consider these cases to ensure that the UAC stabilizing effect is
obtained even in unfavorable conditions. For all but one of the cases considered, the linear DNS confirm the
results of linear instability theory that employs an approximate porous-wall boundary condition. For these
cases, damping rates and wavelengths agree precisely with linear theory.

The particular case of a coating ¢ = 0.8 and Ar = 0.3 showed the existence of a shorter wavelength
instability that is not predicted by theory. For that geometry, the instability is present in both linear and
nonlinear simulations, with a growth rate larger than that of the most unstable second mode. The origin
and effects of this instability will be investigated in future work.

Finally, nonlinear simulations of the same cases were performed and led to the same conclusions than
the linear analysis. The porous coatings damp second mode instability and the boundary layer remains
laminar. Additionally, the nonlinear results did not exhibit any ”tripping” of the boundary layer by small
scale disturbances associated with individual pores. Overall, the presence of the porous coating did not
seem to have any significant detrimental effect (aside from the new instability at Ar = 0.3, ¢ = 0.8 under
investigation). In future work, the temperature-dependent properties will be implemented. To continue
the study of roughness-induced transition mechanisms, the computational domain will be extended in the
streamwise direction to allow for the (potential) development of the first mode instability.
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Appendix

This appendix presents the analysis to optimize UAC design based on the acoustic scattering properties
of the porous coating without external boundary-layer flow, and on the characteristics of the second mode
without the coating. Since the theoretical model described in Refs. (14,15) was validated by the numerical
simulations over the range of parameters relevant to UAC in hypersonic flight, it will be the main tool for
the optimization of the coating properties

First, the model is used to find the optimum value(s) of porosity, cavity aspect ratio and acoustic
Reynolds number that lead to a global minimum (or local minima) of the reflection coefficient amplitude.
Then, within this set of parameters, the appropriate values of the UAC parameters (i.e., mainly the cavity
depth) are identified, such that the frequency of minimum reflection matches the frequency of the most
amplified second-mode for an hypersonic boundary layer over a flat plate.

For the particular UAC designs considered here, the range of frequency for the second-mode instability
was estimated from several experiments at 0.1 < f < 0.35. Consequently, all the following analysis is
performed using the theoretical reflection coefficient R = R(¢, Ar, Re, f) computed as a function of porosity
(0.2 < ¢ <0.8), cavity aspect ratio (0.05 < Ar < 0.3), and Reynolds number (50 < Re < 1000), for incident
acoustic wave of frequency 0.15 < f < 0.35 at normal incidence (6 = 0°).

Details on critical Reynolds number

The critical Reynolds number Re,,;; for the presence of a local minimum of the reflection coefficient around
f =~ 0.25, is characterized as a function of porosity and aspect ratio within the range mentioned in the
previous section. As expected, Re..;; is related to viscous and thermal absorption inside the pores and is
only a function of Ar. From the theoretical modeling, the dependence of the critical Reynolds number on
the aspect ratio is Re..;; &~ 2/Ar. Similar estimates were obtained using the theory of the propagation of
acoustic waves in narrow and wide tubes??

Now, this critical Reynolds numbers is compared to the range of acoustics Reynolds numbers relevant
for practical UAC in high-altitude hypersonic flight. Recall that the Mach number and temperature ratio
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are defined as

. T
a, = e, T =

ae 7= () g

From the ideal gas law and the power law for viscosity (u/p, = (T*/T)™, where the subscript r denotes
the reference quantity, here the boundary-layer edge property), the ratio of the kinematic viscosities satisfies

v T\ " !
r - _ Tn-l—l. 5
Ve (T;> 5)

Also, an expression for the nondimensionalized stagnation temperature T can be derived from the com-
pressible boundary layer energy equation:

-1
Ty =1+ —M2. (6)
Using equations (4), (5), and (6), the unit acoustic Reynolds number at the wall Re}, can be expressed
as
_ n+1/2
1+ M2
Re;, = Reg (TQG (7)

Here, the unit ambient acoustic Reynolds number Rej = ag/vp is computed as a function of altitude (see
figure 10(a)), using the properties of the 1976 standard atmosphere, and the power law for viscosity, with
the reference quantity corresponding to the ambient properties at sea level and n = 0.7.

250 50

UAC design | .

0 1‘0 2‘0 3“0 4‘0 f;O G;O 7‘0 80 5 é ‘7 é é 10
altitude (km) M.
(a) (b)

Figure 10. (a) Unit ambient acoustic Reynolds number as a function of altitude; (b) unit acoustic Reynolds
number at the wall as a function of Mach number, for flight at 30 km altitude; Wall temperature ratio 7, = 5
(==== )y and Ty =Tyq (-~ )-

The parameter Re}, is shown in figure 10(d) as a function of Mach number, for a given design altitude
(30 km) and different wall temperature ratio. Therefore, the acoustic Reynolds number is Re = bRe,, and
for pores of dimension b > 10 pm, is larger than its critical value, Re > Re.;, for most flight conditions and
cavity aspect ratio. Since the range of cavity half-width considered for UAC is typically 10 um < b < 100 pm,
we anticipate the presence of reflection from the cavity bottom, and therefore, local minimum of the reflection
coeflicient in most cases, making possible the optimization process described in this appendix.

Optimization of the coating acoustic absorption

First, from the theoretical formulation of the reflection coefficient in Ref 14, we notice that the dependence
on Reynolds number and aspect ratio can be described by the lumped parameter ArRe, so that R =
R(¢, ArRe, f). Then, for a given porosity and lumped parameter, the reflection coefficient amplitude is
minimized with respect to frequency (see figure 11). Finally, the parametric dependence of this minimum
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R R

Figure 11. Reflection coefficient amplitude as a function of frequency, for constant porosity ¢ = 0.2 in (a), and

constant ArRe = 50 in (b). The computed minima R = ming|R| ( + ) and corresponding frequency f (x) are
also shown.

7A2(¢, ArRe) = ming|R| and of the corresponding frequency f (¢, ArRe) are tabulated, as shown in figure 12
(a) and (b), respectively.

From these ﬁgures it is clear that, for a given porosity, there is an optimum value of the lumped parameter
ArReqp: such that R(qb, ArRe,p) = 0. These values are computed by minimizing R with respect to ArRe,
and the resulting reflection coefficient amplitude min AerR and corresponding frequency mina,ge f are
shown in figure 13 (a) as a function of porosity. Likewise, for a given ArRe, there is an optimum porosity
®opt, but in that case, the minimum reflection coefficient amplitude min(ﬂé is not uniformly zero for the
range of parameter considered here (see figure 13 (b)). That is, for large Reynolds number or large aspect
ratio, such that ArRe > 30, the optimum coating cannot cancel the incoming acoustic wave completely.
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=
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10'F 01 ! 5 10" 0.22
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0.2 03 04 05 06 07 08 02 03 04 05 06 07 08

(a) (b)

Figure 12. Contours of the minimum of reflection coefficient amplitude R in (a) and corresponding frequency
f in (b), as a function of the porosity ¢ and lumped parameter ArRe (log scale).

From these figures, it is clear that, for a given porosity, there is an optimum value of the lumped parameter
ArReqp: such that ﬁ(qb, ArRe,p) =~ 0. These values are computed by minimizing R with respect to ArRe,
and the resulting reflection coefficient amplitude min ATRJAZ and corresponding frequency mina,ge f are
shown in figure 13 (a) as a function of porosity. Likewise, for a given ArRe, there is an optimum porosity
@opt, but in that case, the minimum reflection coefficient amplitude min(ﬂé is not uniformly zero for the
range of parameter considered here (see figure 13 (b)). That is, for large Reynolds number or large aspect
ratio, such that ArRe > 30, the optimum coating cannot cancel the incoming acoustic wave completely.
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Using a least-squares fitting method on the data from the top and bottom figures in 13 (a), we obtained
the following approximated relationship between the porosity and the lumped parameter for zero reflection
coefficient, and the corresponding frequency:

ArRe = Ap~" ~ 3.05¢~ 14!, (8)
facs = Minarge f ~ 0.13¢> — 0.10¢ + 0.24. (9)

Here, we notice that the frequency of minimum reflection is only a weak function of the porosity. To
further show that the method is robust, that is, a coating with parameters satisfying equation (8) would still
be effective for acoustic waves of frequency slightly different than f,.s, the reflection coefficient amplitude
at frequency fues 210 % error is computed as a function of porosity and lumper parameter. Even with 10 %
error on the frequency, the reflection coefficient amplitude of the optimum coating remains less than 0.3. As
a result, we will assume that the frequency of minimum reflection is independent of the porosity and lumped
parameter, and approximate f,.s to its mean and its standard deviation, i.e., fq.s &~ 0.225 £ 0.005.

Therefore, for incoming acoustic waves of frequency fu.s (normal incidence), the reflection coefficient is
zero for a coating such that the porosity ¢, cavity aspect ratio Ar, and acoustic Reynolds number Re satisfy
equation (8). That is, we can design different porous coatings that would completely absorbed acoustic
waves of frequency fqcs-

Optimization of the second mode damping

The previous results is now formulated in terms of the properties of the second mode (or Mack mode) of

instability for an hypersonic boundary layer over a flat plate. The goal here is to relate the frequency of

minimum acoustic reflection f,.s to the second-mode angular frequency wo,4, which is typically expressed
23

as:

0
wana = 2mf* 2+ = F/Res, (10)

(&

where 05, = \/vew /U, is the Blasius length scale, F = 27 f*v, /U2 is the nondimensionalized frequency, and
Re, = U,z /v, is the Reynolds number based on the streamwise coordinates « and edge velocity Ue.

Here, we assume that the frequency ws,gq of the local most unstable second mode is approximately
constant, independent of the streamwise location. Starting with the nondimensionalized frequency f from
the acoustic scattering analysis, we have
f*H_f*VeUkai —FRez H
Qo U2 Ve Gcay xz 27 \/7 z
where the subscripts e and w denotes the boundary-layer edge and wall conditions, respectively.

Matching the frequency of minimum reflection wy.s = 27 f,cs from the acoustic scattering analysis, with
the second-mode frequency wong = F'v/Re,, and assuming these frequencies to be approximately constant,
we obtain that the cavity depth satisfies

f= (11)

7\/7 wacs \/Ti (12)

Wand M

While coatings currently used in application are typically uniform, this analysis shows that the optimum
pore depth increases in the streamwise direction like y/z. The dependence arises from the fact that the
second-mode properties depend on the streamwise location, that is, at each x-station, we are dealing with
several unstable waves of slightly different frequencies.® By enforcing this streamwise-dependent depth, the
coating always operates at the maximum absorption of the frequency of the local most unstable second mode.

The equation (12) can be written to express the cavity depth directly as H = H(z). Introducing the
ambient stagnation properties (subscript 0), we have

U, H U, ae ag vy
— z —_— 1
Re f’/ TS (13)

Using (5) and the unit ambient acoustic Reynolds number Rej = ag/vp (see figure 10 (a)), equation (13)

becomes
H H 1
—VRey = —= | Me—=Res Ty 14
T ¢ \/5\/ VT €0 (14)
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Figure 13. Minimization of the reflection coefficient amplitude from figure 12 with respect to ArRe (a), and

with respect to ¢ (b); from top to bottom: optimum parameter, minimum of reflection coefficient amplitude,
and corresponding frequency. ( ———- ) fitted curve from equations (8) and (9).
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Combining equations (12), (14), and (6), the optimum pore depth is given by

o= Wacs \/E 1 \/E (15)

= o Meg/g (1 i %Mf)n/2+l/4 /Reg

5 6 7 8 9 10

Figure 14. Optimum pore depth at = 1 m for flight at 30 km altitude with second-mode frequency wsy,q = 0.1;
Wall temperature ratio T, =1 ( ), Tw=5(-———=),and Ty =Toq (" ).

The optimum pore depth at x = 1 m is shown in figure 14 at a given design altitude, for different wall
temperature ratio. Here, we used a typical value of the second mode frequency wo,q = 0.1, fues = 0.225
from the previous analysis, and n = 0.7. The choice of T, = 1 corresponds to cold-wall conditions relevant
to experiments in shock tunnel. For practical applications, the wall temperature ranges from T, ~ 5 for
moderate cooling, to Ty, = Tyuq, where Toq = T, /T ~ 1+ /Pr(y — 1)M2/2 is the adiabatic temperature
ratio.

Example of optimum design with constant porosity

Here, our analysis shows that the optimum pore depth is smaller than the typical value used for uniform
coating (e.g., H = 500 um) and would lead to thinner coating easier to fabricate. For a given vehicle design
speed and wall temperature, equations (8), (15) and figure 10(a) can therefore be used to design several
different configurations of “optimum” ultrasonic absorptive coating. For instance, an optimum UAC with
constant low porosity could be design in the following fashion:

1. Choose the vehicle design speed (e.g., M. = 7), wall temperature (e.g., T, = Tpq) and altitude (e.g.,
30 km). Determine the unit acoustic Reynold number at the wall using figure 10 (a) and equation (7).

2. Compute the optimum pore depth H (z) using equation (15).

3. Choose the porosity. Here, we fix ¢ = 0.2

4. Use equations (8) and (7) to find the optimum cavity half-width b(x)
5. Finally, the optimum spacing is given by s(x) = 2b(z)/¢

The coating parameters H, b and s are shown in figure 15 as a function of the streamwise location  on
the vehicle. This design correspond to a coating with low porosity and large cavity aspect ratio, that is, a
thinner coating with less pores, therefore simpler to manufacture.
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