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Abstract

We study the inflation of a weakly magnetizable isotropic incompressible circular membrane in
the presence of magnetic field generated by a magnetic dipole. Following the approach in recent
papers by (Reddy and Saxena 2018, Int. J. Sol. Struct. 136, 203-219; Reddy and Saxena 2017,
Int. J. Non-Lin. Mech. 95, 248-263) we start with a variational formulation, solving the resulting
governing equations to determine the equilibria and checking the second variation condition for
stability. Conjecture of possibility of multiple equilibria under a single coupled load, and attaining
elastic and magnetic limit points made in the above two papers is confirmed in the present work
for a circular membrane. Another main focus of this work is on the determination of wrinkling
instability in the membrane due to magnetoelastic stresses. Wrinkles along one or both in-plane
directions of membrane appear in a majority of loading scenarios due to compressive Maxwell
stresses. Our computations demonstrate that wrinkles arise in the central region when dipole and
inflation are in the same direction and in the annular region close to the edges when the dipole
and inflation are in opposite directions.
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1 Introduction

Magnetoelastic polymers are smart materials that demonstrate a change of mechanical properties under
the influence of an external magnetic field. A common manufacturing technique involves dispersion of
micron-sized ferromagnetic particles in a polymer matrix and then curing the mixture (Jolly et al.,
1996). Magnetization of these particles manifests itself as a change in macroscopic properties such
as stiffness or dimensions of the composite (Böse and Röder, 2009). This phenomenon is utilized in
several engineering applications including flexible robotics (Hu et al., 2018), active vibration and stiffness
control (Ginder et al., 2001, 2002; Mayer et al., 2013), waveguides (Saxena, 2017), and actuators (Böse
et al., 2012).

Early theoretical studies on magnetoactive materials have been around for more than half a cen-
tury. Some prominent works include those by Truesdell and Toupin (1960); Tiersten (1964); Brown
(1966) and then later by Maugin and Eringen (1972); Pao (1978). Using the direct approach (based
on balance laws for continua) or a variational formulation based approach, similar governing equations
are arrived at. Interest in computational and mathematical modelling of magnetoelasticity has been
revived in recent years due to the engineering developments mentioned in the previous paragraph.
Based on these classical texts, Dorfmann and Ogden (2003), Kankanala and Triantafyllidis (2004),
and Steigmann (2004) developed theories of coupled nonlinear magnetoelasticity to model interactions
between magnetic field and finitely deformed solids. The total free energy density is expressed as a
function of the deformation gradient and one variable among the magnetic flux density, field inten-
sity, or magnetization vector. Several advanced techniques have been proposed to model additional
features of the particle-filled magnetoelastic smart elastomers. For example, Castañeda and Galipeau
(2011); Castaneda and Siboni (2012) and Chatzigeorgiou et al. (2014) formulated the field equations
by coupling magneto-mechanical phenomena at the microscopic level and the use of homogenization;
Saxena et al. (2013); Ethiraj and Miehe (2016) and Haldar et al. (2016) modelled the energy dissipation
due to coupled polymer magneto-viscoelasticity; Bustamante (2010); Danas et al. (2012) and Saxena
et al. (2014, 2015) modelled the inherent anisotropy and resulting changes in the magneto-mechanical
response of these polymers. Several of the above-mentioned models have been useful in computational
analysis of instabilities in magnetoelastic bulk media reported by Otténio et al. (2008); Kankanala and
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Triantafyllidis (2008); Rudykh and Bertoldi (2013); Danas and Triantafyllidis (2014); Saxena (2017),
and Goshkoderia and Rudykh (2017).

Nonlinear elastic membranes find applications in areas such as inflatable space-systems (Grossman,
1991a,b), blow moulding (Khayat and Derdouri, 1994a,b), and bio-medical equipments (Leone, 1994) to
name a few. In the regime of large deformations, limit point (snap-through) instability is an important
bifurcation phenomenon occurring in elastic membranes. Internal pressure required to stretch the
membrane rises with the deformation until the limit point and then drops causing a sudden increase
in the membrane dimensions (snap) that is often associated with failure of the structure. Hence the
knowledge of this critical pressure is crucial to maintain the deformation of membranes within acceptable
limits. In the context of membranes under coupled loading, Rudykh et al. (2012) studied the snap-
through actuation of spherical dielectric membranes while Liang and Cai (2017) studied the same
in circular dielectric membranes. Wrinkling is another form of common bifurcation phenomenon in
membranes that is associated with development of compressive stresses. As membranes have very small
thickness in one dimension with almost zero bending stiffness, any compressive stress in the in-plane
direction results in development of out of plane deformations. Tension field theory based on a relaxed
energy density approach developed by Pipkin (1986) and Steigmann (1990) has been very successful in
analytical modelling of wrinkles – although a counterpart of this theory to magnetoelasticity is not yet
available. Recently Reddy and Saxena (2018) have shown the emergence of wrinkles due to magnetic
field in the deformation of cylindrical magnetoelastic membranes.

Very few experimental studies have been conducted on magnetoelastic membranes. Raikher et al.
(2008) deformed circular magnetoelastic membranes under a uniform magnetic field created by large
electromagnets but without a pressure. They report that the neo-Hookean material model used by them
is unable to match the experimentally observed nonlinear regime during finite deformation. A parallel
problem of deformation of electroelastic membranes has been experimentally studied by Keplinger et al.
(2012); Li et al. (2013) and Liang and Cai (2017). They have shown that limit point can be modified
upon the application of an external electric field.

Theoretical framework for bulk magnetoelasticity was extended to magnetoelastic membranes by
Steigmann (2004) using a formulation based on magnetic field intensity. This was further simplified by
Barham et al. (2007, 2008, 2010) to study the deformation of a weakly magnetized circular membrane
in the presence of a stationary dipole. They reported the existence of a magnetic limit point where the
stable and unstable equilibria merge. Using their formulation, Reddy and Saxena (2017, 2018) studied
the deformation of pressurized toroidal and cylindrical magnetoelastic membranes in the presence of
external magnetic field generated by current carrying conductors. Their computations showed the
existence of an additional limit point before the traditional elastic limit point and the magnetic limit
point reported by Barham et al. They also reported the existence of multiple stable and unstable
equilibria for a given set of coupled loading conditions.

In this work, we extend the formulation developed in (Reddy and Saxena, 2017, 2018) to study
the magnetoelastic deformation of a pressurized circular membrane. We derive the relevant equations
of kinematics in Section 2 and express the configuration of axisymmetrically deformed membrane in
terms of two deformation parameters. In Section 3, we derive the governing differential equations and
associated boundary conditions of the system by minimizing an appropriate potential functional. We
use the three-term Ogden energy density function (Ogden, 1972) to model the elastic deformation and
derive the necessary and sufficient conditions to analyse stability of the solution. A criteria based on the
total magnetoelastic stress is used to model the onset of wrinkling. Results arising from the numerical
solution of these equations are presented in Section 4 and we report our conclusions in Section 5.

2 Kinematics of deformation

2.1 Problem description

Figure 1 shows the incompressible isotropic nonlinear magnetoelastic circular membrane in its reference
and deformed configurations. It has a radius R0 in the reference configuration. The circumference of the
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membrane is attached to a fixed rim and it is inflated by supplying hydrostatic pressure from below.
The external magnetic field is supplied by a fixed dipole placed on the Y 3 axis as shown in Figure
2a. The deformation is assumed to be symmetric with respect to central Y 3 axis, hence studying the
deformation of one curve connecting the centre to the circumference is sufficient to understand the
deformation behaviour of the whole membrane.

The derivations below follows a procedure similar to that in (Reddy and Saxena, 2017, 2018).

Figure 1: Circular membrane (a) before and (b) after deformation. Radius of the undeformed membrane
clamped at its edge is R0.

2.2 Reference Configuration

The position vector of a point in the flesh of the undeformed circular membrane X is

X = R cos ΘE1 +R sin ΘE2 + ΞE3, (1)

where Ei are the orthonormal basis vectors, R is the radial distance of the point and Ξ is the distance
of the point from the mid-surface (given by Ξ = 0) of the membrane along E3.

Upon writing bases in the curvilinear system (R,Θ,Ξ) at the point X as follows

Gi =
∂X

∂X i
, where (X1, X2, X3) = (R,Θ,Ξ), (2)

we get the nine components Gij = Gi ·Gj, i, j ∈ {1, 2, 3} of the covariant metric tensor as

Gij =

1 0 0
0 R2 0
0 0 1

 . (3)

2.3 Deformed Configuration

Let p denote the position of a point in the flesh of the membrane, x the position of its projection on the
mid-surface (along E3), n be the unit outward normal, with g̃ij denoting the covariant metric tensor.
The variables %̃ and η̃ denote the horizontal and vertical distances, respectively, of the point which was
originally at (R,Θ,Ξ). The relation among these quantities can be written as

p = x+ Ξλ3n, (4a)

with x1 = %̃(R) cos Θ, x2 = %̃(R) sin Θ, x3 = η̃(R). (4b)
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(a) (b)

Figure 2: (a) A deformed configuration of the membrane under the influence of a stationary magnetic

dipole. Negative value of h̃ means the dipole is below the membrane. (b) The local t1, t2,n coordinate
system at any point in the membrane is such that t1 × t2 = n.

where the thickness stretch at the point

λ3 =
t

T
, (5)

with t and T representing membrane thickness at that point in deformed and reference configurations,
respectively. Note that the deformation parameters %̃ and η̃ are functions of the radial distance R alone
since the azimuthal coordinate of a point doesn’t change after deformation and the thickness coordinate
Ξ = 0 on the mid-surface.

Tangent vectors at the points x and p respectively are

gi =
∂x

∂X i
and g̃i =

∂p

∂X i
, (6)

and the components of the outward normal are

n =
g1 × g2

|g1 × g2|
=

1
√
g
εijkx

j
,1x

k
,2, (7)

where εijk is the permutation symbol and
√
g = %̃

√
%̃2
,R + η̃2

,R with (·),R = d(·)/dR everywhere. Ex-

panding the above expression, we get

n1 =
1
√
g

(−%̃η̃,R cos Θ), n2 =
1
√
g

(−%̃η̃,R sin Θ), n3 =
1
√
g

(%̃%̃,R). (8a)

Using eqns. (4) and (7), the components g̃ij = g̃i · g̃j, i, j ∈ {1, 2, 3} of the covariant metric tensor in
the deformed state are given as

g̃ij =

%̃2
,R + η̃2

,R 0 0
0 %̃2 0
0 0 λ2

3

 , (9)

where we assume that any length-scale along the thickness coordinate is much smaller than the length-
scales in the plane of membrane. However, the derivatives with respect to the thickness coordinate Ξ
are not neglected. Now the corresponding deformation gradient F and the right Cauchy-Green tensor
C = FTF can be written as follows.

F = g̃i ⊗Gi, C = g̃ijG
i ⊗Gj (10)
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Using eqns. (3) and (6), in the Cartesian coordinate system {E1,E2,E3}, right Cauchy-Green tensor
C can be represented as

C =

%̃
2
,R + η̃2

,R 0 0

0
%̃2

R2
0

0 0 λ2
3

 . (11)

Hence the in-plane principal stretches, square roots of two of the eigenvalues of C, λ1 and λ2 at a point
become

λ1 =
√
%̃2
,R + η̃2

,R, λ2 =
%̃

R
, (12)

while the third eigenvalue is the square of the thickness stretch, λ3. Introducing the non-dimensional
parameters

r = R/R0, % = %̃/R0, η = η̃/R0, (13)

the principal stretches become

λ1 =
√
%′2 + η′2, λ2 =

%

r
, (14)

where (·)′ = d(·)/dr everywhere.

3 Equations of equilibrium

3.1 Total potential energy and its variation

We take the variational formulation as presented in, for example, (Kankanala and Triantafyllidis, 2004)
to study the present case of weakly magnetized isotropic circular membrane. As mentioned earlier, the
total free energy is based on the deformation gradient (or equivalently, the principal stretches λ1, λ2, λ3)
and magnetization per unit mass. We refer the reader to the papers by Reddy and Saxena (2017, 2018)
and Barham et al. (2007, 2008) for detailed derivations.

The total potential energy (E) of the membrane under consideration can be written as follows.

E = T

∫
Ω

ρψ dA− Tµ0

∫
Ω

m · ha dA−
∫ V0+∆V

V0

P̃ dV, (15)

where ρ is the mass density, ψ(F,µ) the free energy per unit mass defined in the formulation based
on magnetization, T the thickness of the undeformed membrane, µ the material magnetization per
unit mass, m = ρµ the magnetization per unit current volume, µ0 the permeability of free space, ha
the applied external magnetic field, and P̃ is the pressure. Ω denotes the surface of the undeformed
membrane, V0 the enclosed initial volume and ∆V the change in this enclosed volume.

Using the following relations for a weakly magnetized membrane (self-generated magnetic field is
negligible) (Barham et al., 2007),

∂ψ

∂µ
= µ0ha, ρψ(F,µ) ≈ W̄ +

1

2
C|µ|2, C =

µ0ρ
2

χ
, m = χha, (16)

the total energy may be rewritten as

E[%, η] =

∫ 2π

0

∫ R0

0

W̄ TR dR dΘ− χ

2

∫ 2π

0

∫ R0

0

µ0|ha|2TR dR dΘ−
∫ V0+∆V

V0

P̃ dV, (17)

where W̄ is the strain energy per unit undeformed volume and χ is the magnetic susceptibility of the
material per unit undeformed volume.

Let the first term, elastic strain energy be denoted by Ee, the second term, magnetic field energy
by Em, and the third term, pressure work by Ep. Note that the strain and magnetic field energies
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are calculated over the reference configuration while the pressure work is computed over the current
configuration.

Let the strain energy density function be expressed in terms of the principal stretches as follows

W̄ (λ1, λ2, λ3) = W̃

(
%̃,

d%̃

dR
, η̃,

dη̃

dR

)
= W (%, %′, η, η′) . (18)

Then using the boundary conditions, due to the geometry and the rotational symmetry about the
axis Y 3,

% = 1, η = 0, at r = 1, % = 0, η′ = 0, at r = 0, (19)

we can take the first variation of Ee to arrive at

δEe =

∫ 2π

0

∫ 1

0

[ [
− d

dr

(
r
∂W

∂%′

)
+ r

∂W

∂%

]
δ%+

[
− d

dr

(
r
∂W

∂η′

)
+ r

∂W

∂η

]
δη

]
TR2

0 dr dΘ. (20)

A variation in the potential energy of the inflating gas with net internal pressure P̃ can be written
as (Steigmann, 1990, Tielking, 1975)

δEp = −
∫ 2π

0

∫ R0

0

[
P̃n da

]
· δx, (21)

where da =
√
g dR dΘ is the area of a differential element on the deformed mid-surface (ξ = 0) with

unit normal n. Using the eqns. (4b) and (7), we get

δEp =

∫ 2π

0

∫ 1

0

P̃R3
0 [%η′δ%− %%′δη] dr dΘ. (22)

3.1.1 Energy due to magnetic field of dipole

A non-uniform magnetic field is generated in the space by placing a magnetic dipole above or below
the circular membrane as shown in Figure 2a. A negative numerical value of the height of the dipole,
h̃ means the dipole is below the membrane.

Magnetic field intensity due to the dipole DE3 of strength D at a point x is

ha(x) = D

[
3[s ·E3]s

s5
− E3

s3

]
, (23)

where s is the position vector of the point relative to the dipole and s, its magnitude. Based on the
configuration described in Figure 2b, the position vector s can be written in the local coordinate system
as

s =
[
%̃ cos θ − [h̃− η̃] sin θ

]
n−

[
%̃ sin θ + [h̃− η̃] cos θ

]
t1. (24)

The magnetic field intensity can be written in terms of the local coordinate system as

ha =
3D[η̃ − h̃]

s5
s− D

s3
[n sin θ + t1 cos θ] ,

=
D

s3

[ [
3

s2
[η̃ − h̃]

[
%̃ cos θ − [h̃− η̃] sin θ

]
− sin θ

]
n

−
[

3

s2
[η̃ − h̃]

[
%̃ sin θ + [h̃− η̃] cos θ

]
+ cos θ

]
t1

]
. (25)
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Since s2 = %̃2 + [h̃− η̃]2, square of the magnitude of the magnetic field intensity can be written as

|ha|2 = D2 %̃2 + 4[η̃ − h̃]2[
%̃2 + [η̃ − h̃]2

]4 , (26)

or using the non-dimensional parameters defined in eqn. (13) and defining h =
h̃

R0

,

|ha|2 =
D2

R6
0

[
%2 + 4[η − h]2

[%2 + [η − h]2]4

]
. (27)

Hence the magnetic energy associated with the magnetic field due to the dipole is given as

Em = −χ
2

∫ 2π

0

∫ 1

0

HTR2
0r drdΘ, (28)

where H is defined as

H =
µ0D

2

R6
0

[
%2 + 4[η − h]2

[%2 + [η − h]2]4

]
. (29)

A variation in the magnetic energy can therefore be written as

δEm = −χ
2

∫ 2π

0

∫ 1

0

[
∂H
∂%

δ%+
∂H
∂η

δη

]
TR2

0r drdΘ, (30)

where
∂H
∂%

=
−6µ0D

2

R6
0

%
[
%2 + 5 [η − h]2

][
%2 + [η − h]2

]5 ,
∂H
∂η

=
−24µ0D

2

R6
0

[η − h]3[
%2 + [η − h]2

]5 . (31)

3.1.2 Constitutive model for the elastic strain energy

We study the deformation of the circular membrane using the three-term Ogden model for the elastic
strain energy density W̄ in eqn. (16)2 and further assume the material to be incompressible (λ1λ2λ3 = 1).
Thus we have

Ŵ (λ1, λ2) = W̄

(
λ1, λ2,

1

λ1λ2

)
. (32)

The strain energy density proposed by Ogden (1972) to model nonlinear elastic solids is given by

Ŵ =
K∑
k=1

µk
αk

[
λαk

1 + λαk
2 +

[
1

λ1λ2

]αk

− 3

]
, (33)

with the conditions
∑
k

µkαk = 2µ and µkαk > 0. Choosing K = 3, we define the following non-

dimensional parameters
µ∗1 = µ1/µ, µ∗2 = µ2/µ, µ∗3 = µ3/µ, (34)

maintaining
∑

k µkαk = 2µ.

3.2 Governing equations

The system attains equilibrium when the total potential energy is at a local extremum, that is

δE = δEe + δEm + δEp = 0. (35)
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Upon separating the coefficients of δ% and δη from equations (20), (22) and (30), we arrive at the
following governing equations

d

dr

(
r
∂W

∂%′

)
− r∂W

∂%
+
χ

2

∂H
∂%

r − R0

T
P̃%η′ = 0, (36a)

d

dr

(
r
∂W

∂η′

)
− r∂W

∂η
+
χ

2

∂H
∂η

r +
R0

T
P̃%%′ = 0. (36b)

Defining a non-dimensional magnetic energy parameter in terms of the shear modulus µ as

M =
µ0D

2

R6
0µ

, (37)

and a non-dimensional pressure as

P =
P̃R0

µT
, (38)

using the relations (31), the governing equations (36) attain the following form.

1

µ

d

dr

(
%′r

λ1

∂Ŵ

∂λ1

)
− 1

µ

∂Ŵ

∂λ2

− 3χMr
%
[
%2 + 5 [η − h]2

][
%2 + [η − h]2

]5 − P%η′ = 0, (39a)

1

µ

d

dr

(
η′r

λ1

∂Ŵ

∂λ1

)
− 12χMr

[η − h]3[
%2 + [η − h]2

]5 + P%%′ = 0. (39b)

3.3 Stability of equilibrium

A necessary condition for the equilibrium state obtained from solution of the governing equations (39)
to be a minimizer of the energy functional (17) is that the second variation be positive definite that
results in the necessary condition that the matrix

P =
1

2

[
F%′%′ F%′η′
Fη′%′ Fη′η′

]
, (40)

with

F = Ŵ TR2
0r −

χ

2
µ0|ha|2TR2

0r +
1

3
P̃R3

0

[
%2η′ − %%′η

]
, (41)

being the integrand in equation (17) be positive definite for all r ∈ [0, 1]. A sufficient condition for
minimization (Gelfand and Fomin, 2000, Ch. 5) is that a non-zero solution to the following differential
equation exists and is invertible for all r ∈ [0, 1]

− d

dr
(PU′) + QU = 0, U(0) =

[
0 0
0 0

]
, U′(0) =

[
1 0
0 1

]
, (42)

where

Q =
1

2

[
F%% F%η
Fη% Fηη

]
− 1

2

d

dr

([
F%%′ F%η′
Fη%′ Fηη′

])
. (43)

Upon defining

P =
1

2

[
P1 P2

P3 P4

]
, Q =

1

2

[
Q1 Q2

Q3 Q4

]
, U =

[
U1 U2

U3 U4

]
, (44a)

{U1, U
′
1, U2, U

′
2, U3, U

′
3, U4, U

′
4} = {u1, u2, u3, u4, u5, u6, u7, u8} , (44b)
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the differential equation (42) can be written as

1 0 0 0 0 0 0 0
0 −P1 0 0 0 −P2 0 0
0 0 1 0 0 0 0 0
0 0 0 −P1 0 0 0 −P2

0 0 0 0 1 0 0 0
0 −P3 0 0 0 −P4 0 0
0 0 0 0 0 0 1 0
0 0 0 −P3 0 0 0 −P4





u′1
u′2
u′3
u′4
u′5
u′6
u′7
u′8


=



u2

P ′1u2 + P ′2u6 −Q1u1 −Q2u5

u4

P ′1u4 + P ′2u8 −Q1u3 −Q2u7

u6

P ′3u2 + P ′4u6 −Q3u1 −Q4u5

u8

P ′3u4 + P ′4u8 −Q3u3 −Q4u7


,



u1

u2

u3

u4

u5

u6

u7

u8


r=0

=



0
1
0
0
0
0
0
1


. (45)

Explicit calculations of the entries of matrices P and Q for the present case of Ogden energy density
function are presented in Appendix A.

3.4 Magnetoelastic stresses and wrinkling

The expression for total magnetoelastic (Cauchy) stress tensor is given by (Steigmann, 2004)

σ = ρψ,FFT + µ0

[
h⊗ h− 1

2
[h · h]i

]
+ µ0h⊗m− qi, (46)

where q is a Lagrange multiplier due to the constraint of incompressibility. The Maxwell stress due to
magnetic field is given as

σm = µ0

[
h⊗ h− 1

2
[h · h]i

]
. (47)

We consider the local coordinate system with two axes in the plane of membrane and the third axis
as the outward normal n from equation (7) as shown in Figure 2b. Writing the balance of traction on
the inner surface while using equation (16) gives

[σ − σm]n = −P̃n, ⇒ W̄,FFTn+ µ0χ [h · n] h− qn = −P̃n. (48)

Taking an inner product of the above equation with the unit vector n, we can evaluate the Lagrange
multiplier q as

q = P̃ + µ0χ [h · n]2 +
[
W̄,FFTn

]
· n, (49)

which gives the total stress within the membrane as

σ = W̄,FFT + µ0

[
h⊗ h− 1

2
[h · h]i

]
+ µ0h⊗m−

[
P̃ + µ0χ [h · n]2 +

[
W̄,FFTn

]
· n
]
i. (50)

Within the plane of the membrane (spanned by t1 and t2), the components of total stress are given
by

s11 = [σt1] · t1, s12 = [σt2] · t1, s21 = [σt1] · t2, s22 = [σt2] · t2. (51)

Using equation (50), we can write these components explicitly as

s11 =
[
W̄,FFT t1

]
· t1 + µ0[1 + χ]h2

t −
µ0 [h2

t + h2
n]

2
−
[
P̃ + µ0χh

2
n +

[
W̄,FFTn

]
· n
]
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= −P̃ + λ1w1 − λ3w3 + µ0

[
χ+

1

2

] [
h2
t − h2

n

]
, (52)

s12 = s21 = 0, (53)

s22 = −P̃ + λ2w2 − λ3w3 −
µ0 [h2

t + h2
n]

2
− µ0χh

2
n. (54)

where we have used the notation h = hnn+htt1 as a shorter version of equation (25), wi = ∂W̄/∂λi and
the diagonal terms s12 = s21 = 0 because F is represented by a diagonal matrix in the local (n, t1, t2)
coordinate system.

In order for the membrane to remain taut, both the in-plane principal stress components s11 and
s22 should be positive. Either of them becoming negative gives the indication of wrikling instability in
that region.

For the Ogden material described in equation (33) used in this work, the above expressions for
principal stresses reduce to

s11 = −P̃ + µ0

[
χ+

1

2

] [
h2
t − h2

n

]
+

3∑
k=1

µk

[
λαk

1 −
1

λαk
1 λαk

2

]
, (55)

s22 = −P̃ − µ0 [h2
t + h2

n]

2
− µ0χh

2
n +

3∑
k=1

µk

[
λαk

2 −
1

λαk
1 λαk

2

]
. (56)

We also note that the criteria mentioned here is different from that used by Reddy and Saxena (2018)
who only considered the mechanical component of stress to determine the onset of wrinkling. It has been
demonstrated (Dorfmann and Ogden, 2014) that the total magnetoelastic stress gives a more accurate
description of internal forces due to coupled loading and therefore we use it for our computations in
this paper.

3.5 Numerical solution procedure

The governing equations (39) need to be solved for the non-dimensional quantities %, %′, η, and η′ for
the magnetic and pressure loading parameters M and P , respectively using the boundary conditions
(19). Circumferential stretch λ2 = %/r becomes indeterminate at the pole (r = 0). To avoid this, we
choose the following set of parameters as proposed in (Patil and Dasgupta, 2013)

u = rλ2, v = rλ′2, w = η′ (57)

such that
% = u, %′ = λ2 + v, (58)

and start the integration at a very small value of the radius r.

Since the pressure-stretch curve for a membrane in general is not monotonic, to trace it past the
limit-point, we treat pressure P as an unknown and initiate the numerical solution procedure with a
value of λ1|r=0 = λ2|r=0 = %′(0) = λ0, radial stretch at the center of the membrane as an input. Now the
coupled second order ordinary differential equations (39) can be converted in to the following system
of equations.

AX′ = E, (59)

where

X = (u, v, η, w)T , X′ = (u′, v′, η′, w′)T , (·)T representing transpose, (60a)

A =


1 0 0 0
0 A 0 B
0 0 1 0
0 C 0 D

 , E =


λ2 + v
E
w
F

 , (60b)
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A =
r

λ2
1

[
λ1 −

1

λ1

[λ2 + v]2
]

1

µ

∂Ŵ

∂λ1

+
λ2 + v

λ1

W11, (60c)

B = −rw
λ3

1

[λ2 + v]
1

µ

∂Ŵ

∂λ1

+
λ2 + v

λ1

W12, (60d)

C = −rw
λ3

1

[λ2 + v]
1

µ

∂Ŵ

∂λ1

+
w

λ1

W11, D =
r

λ2
1

[
λ1 −

w2

λ1

]
1

µ

∂Ŵ

∂λ1

+
w

λ1

W12, (60e)

E = −E1 +
1

µ

∂Ŵ

∂λ2

+ 3χMr
%
[
%2 + 5 [η − h]2

][
%2 + [η − h]2

]5 + Puw, (60f)

F = −F1 + 12χMr
[η − h]3[

%2 + [η − h]2
]5 − Pu [λ2 + v] , (60g)

E1 =
λ2 + v

λ1

[
1

µ

∂Ŵ

∂λ1

+W13

]
+

1

µ

∂Ŵ

∂λ1

v

λ2
1

[
λ1 −

1

λ1

[λ2 + v]2
]
, (60h)

F1 =
w

λ1

[
1

µ

∂Ŵ

∂λ1

+W13

]
− 1

µ

∂Ŵ

∂λ1

w

λ3
1

[λ2 + v] v, (60i)

W11 =
3∑

k=1

dk (λ2 + v) r, W12 =
3∑

k=1

ek, (60j)

W13 =
3∑

k=1

[
dk [λ2 + v] v +

[
bk
λ1λ2

2

+ ck

]
v

]
, (60k)

dk =
ak
λ1

+
bk
λ2λ3

1

, ek = ak
rw

λ1

+ bk
rw

λ2λ3
1

, (60l)

ak = µ∗k [αk − 1]λαk−2
1 , bk =

µ∗kαk
λ2

λαk−1
3 , ck = µ∗k

λαk
3

λ2
2

, (60m)

1

µ

∂Ŵ

∂λi
=

3∑
k=1

µ∗k

[
λαk−1
i −

[
1

λ1λ2

]αk 1

λi

]
(60n)

with the boundary conditions

u(r0) = r0λ0, , u(1) = 1, v(r0) = 0, w(r0) = 0, (61)

where r0 = 1× 10−5.

The above boundary value problem is converted into an initial value problem using shooting method
and the resultant is solved using a fourth-order Runge-Kutta method (via ode45 in MATLAB®). For
a given value of the position of centre η(0), we start with a guess pair (%′(0), P ), and apply the shooting
method to obtain the pair (%(1), η(1)) which should ideally be (1, 0). Note that the value %′(0) > 0
since it represents a stretch and %′(0) > 1 when the membrane is in extension at its center. The correct

pair (%′(0), P ) that makes the quantity
√

[%(1)− 1]2 + η(1)2 sufficiently close to 0 (within O(10−13)) is
obtained using Nelder-Meads optimization technique (via fminsearch in MATLAB®). For this correct
pair, the Runge-Kutta method gives the values of (%, rλ′2, η, η

′) over the domain r ∈ [r0, 1].

4 Numerical results

4.1 Validating the formulation

We start with comparing the numerical results obtained through our formulation for purely elastic case
(M = 0) with those obtained for the same problem by Verron and Marckmann (2003). As seen in
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Table 1: The dimensionless parameters used in the computations are listed below. Material parameters
for the energy density functions are taken from (Ogden, 1972).

R0/T µ∗1 µ∗2 µ∗3 α1 α2 α3 χ
1000 1.4910 0.0029 −0.0236 1.3 5.0 −2.0 2.5

–

0 1 2 3 4 5
0

0.5

1

1.5

2

η(0)

P

µ∗
1 = 1, µ∗

2 = 0, µ∗
3 = 0, α1 = 2

Present

Reference

(a) Normalised pressure vs deformation of mid-
point.

0 0.5 1 1.5 2
0

1

2

3

P = 1.84

P = 1.585

P = 1.1975

%

η

µ∗
1 = 1, µ∗

2 = 0, µ∗
3 = 0, α1 = 2

Present

Reference

(b) Membrane profiles

Figure 3: Comparison of our numerical solutions with Verron and Marckmann (2003) for purely me-
chanical deformation using neo-Hookean energy model. Figure (b) includes membrane profiles from
post elastic limit-point behaviour.

Figures 3a and 3b, the pressure-stretch plot for the centre and the membrane profiles match perfectly
with those presented in this reference for a neo-Hookean material (upon substituting µ2 = µ3 = 0 in
Equation (33)) in the post-limit point regime.

4.2 Inflation under the field of a dipole

We now solve the complete set of equations (39) using the scheme described in Section 3.5. It is observed
in our numerical calculations that the solution converges for all values of R0/T > 100, thus we choose
a conservative value of R0/T = 1000 in all the computations. Values of the material parameters µ∗i , αi
and χ listed in Table 1 are the same as those used by Ogden (1972), Barham et al. (2008), and Reddy
and Saxena (2018).

4.2.1 Pressure-volume characteristics and limit points

The variation of pressure required to inflate the membrane with the volume of gas pumped in the
presence of a magnetic dipole is shown in Figures 4 and 5. The purely mechanical case (M = 0)
represented by dashed curves in Figure 4 shows monotonic increase of pressure until a maxima (referred
to as limit point in the literature) is reached. Beyond this limit point, pumping more gas in the
membrane (increase in volume V ) results in a decrease of required pressure until a minima is reached
and the pressure rises again with volume for large values of volume.

When the dipole is placed on top of the membrane (h > 0), variation of pressure is pretty similar to
the purely mechanical case for small volume. Upon reaching large values of volume when the top of the
membrane reaches close to the dipole, a sudden drop of pressure is observed resulting in a new limit
point. The equilibria obtained beyond this second limit point are most likely unstable as the membrane
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h = −3.5
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h = +6.5
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1
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h = −3.25

h = −3.5

h = +6 h = +6.5

V

P

(a)

(b)

Figure 4: Pressure vs volume curves for two different strengths of dipole above and below the membrane
at equal distance (a) M = 200, (b) M = 600. Dashed curves in both the figures correspond to the
purely mechanical case with no dipole.
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Figure 5: Pressure vs volume curves for small deformations when a strong dipole M = 600 is placed
below the membrane. Negative values of volume correspond to the cases in which membrane is pulled
downwards. Arrows represent the direction of increasing η(0) value.

will be dynamically pulled towards the dipole resulting in tremendous increase in magnetic part Em of
the total energy as presented in equation (28). Instability of this equilibria is discussed at the end of
this section.

The pressure-volume characteristics change significantly when the dipole is placed below the mem-
brane. Curves for small values of inflation in the presence of a strong dipoleM = 600 are presented in
Figure 5. Since membrane can be pulled below towards the dipole (η(0) < 0), we encounter negative
values of volume in these graphs. As the centre of membrane moves up (increase in η(0)), the volume
first decreases and then increases while the pressure continues to fall. This additional limit point at
the very early stage of inflation is similar to that observed in a similar problem but different geometry
(Reddy and Saxena, 2018, Fig. 5c). Continuation of these curves is presented in Figure 4b. For stronger
dipole (M = 600) closer to the membrane (h = −3.25) one observes a continuous fall in pressure upon
increase in volume until a minima is reached for very large values of inflation. This behaviour usually
occurs in the presence of large magnetic fields and has been referred to as magnetic limit point earlier
(Barham et al., 2007; Reddy and Saxena, 2017, 2018). As the strength of dipole is reduced (M = 200)
or its distance from membrane is increased (M = 600, h = −3.5), the pressure-volume characteristics
converge towards the purely mechanical case.

In each of the equilibria shown in Figures 4 and 5, we also compute the stability of the solution
based on the criteria described in Section 3.3. It is observed that in all the cases the matrix P remains
positive definite thus satisfying the necessary condition of stability. However, several equilibria do
not satisfy the sufficient condition and these are denoted as dots in Figures 4 and 5. We are unable
to comment on the stability of these configurations based on our criteria. We plot a few membrane
profiles corresponding to dipoles of strength M = 200, 400, 600 placed at a location h = 6.5 in Figure
6. Typically the ‘rounder’ profiles with low η(0) values tend to be stable and also have higher pressure
values. Profiles with large η(0) value and corresponding to small volumes and also low pressure are
most likely unstable and fall in the regime of post-second limit point observed in the P − V curves of
Figure 4.

4.2.2 Wrinkling behaviour

Wrinkling of the membrane is associated with occurrence of compressive stresses in the plane of mem-
brane as described in Section 3.4. A few membrane profiles for the cases M = 100, 200 and h = 4
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Figure 6: Membrane profiles for different pressure values and the location of magnet at h = 6.5.
(a) M = 200, {P = 1.27, 1.71, 1.91, 1.99, 2.01, 2.00, 1.98, 1.94} for decreasing η(0) value, (b) M =
400, {P = 1.09, 1.33, 1.61, 1.73, 1.79, 1.81, 1.80, 1.79} for decreasing η(0) value, (c) M = 600, {P =
1.04, 1.18, 1.42, 1.57, 1.65, 1.679, 1.688, 1.683} for decreasing η(0) value.
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Figure 7: Membrane profiles when a dipole is placed above the membrane. Double wrinkling and
wrinkling are both observed in the central region of the membrane.
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s11 > 0
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Figure 8: Membrane profiles when a dipole is placed below the membrane (low inflation). (a) M =
400, h = −3.25, stability of all the six profiles is unclear. {P = 2.23, 2.49, 2.79, 3.16, 3.51, 3.72} for
decreasing η(0) value. (b) M = 400, h = −3.75, Stability of top and bottom profiles is not clear while
the other six profiles are stable. {P = 0.95, 1.04, 1.14, 1.23, 1.288, 1.29, 1.287, 1.44} for decreasing η(0)
value.

are plotted in Figure 7. Triangles denote the region with s22 < 0 representing wrinkles oriented along
the radial direction while circles denote the region with s11 < 0, s22 < 0 representing double wrinkling.
Wrinkling is prevalent in the central region of the membrane; since the loading is more uniform at
the centre (both principal stretches being equal) there is a likelihood of the stresses s11 and s22 to be
close to each other – resulting in double wrinkling. As we move further away from the centre, the
non-uniformity in the stress values becomes more prominent and it is observed that the circumferential
stress stays compressive leading to wrinkles spread in that direction. Increasing the volume leads to
higher stretching and therefore a positive increase in the stress values, thereby resulting in a smaller
wrinkled region. An increase in the dipole strength leads to an increase in the wrinkled region since
the Maxwell stress tends to be compressive in the plane of membrane.

Note that all the cases shown in Figure 7 correspond to both the principal stretches λ1 > 1 and
λ2 > 1. Wrinkles appear even though the membrane appears to be “stretched” because the total
magnetoelastic Cauchy stresses are compressive. This observation is in agreement with results obtained
by Otténio et al. (2008); Saxena and Ogden (2011) for surface instabilities in bulk magnetoelastic solids
where instabilities arise in the presence of magnetic field even in the case of principal stretches being
greater than one.

Profiles for the cases when the dipole is placed below the membrane are plotted in Figures 8 (low
values of inflation) and 9 (large values of inflation). In the initial phase of low inflation, the membrane is
pulled below towards the dipole and in the two cases seen (h = −3.25,−3.75) entirety of the membrane
has either single or double wrinkling. Profiles with small absolute value of η(0) tend to have very large
area with double wrinkling since in these cases elastic stresses are very small. As |η(0)| increases, the
area of double wrinkling is reduced and that of single wrinkling increases. Single wrinkles always occur
when s22 < 0 thereby causing wrinkles oriented along the radial direction.

For large inflation values cases presented in Figure 9, we observe that major part of the membrane
is taut and wrinkles are created only near the outer edge. This is a marked reversal of behaviour in
comparison to the cases in which dipole is placed above the membrane causing wrinkling primarily in

17



0 1 2 3 4

0

2

4

M = 600
h = −3.25

%

η

s11 < 0
s22 < 0
s11 > 0
s22 < 0

0 1 2 3 4

0

2

4

M = 600
h = −3.25

%

η

s11 < 0
s22 < 0
s11 > 0
s22 < 0

Figure 9: Membrane profiles when a dipole is placed below the membrane (M = 600, h = −3.25) for
large values of inflation. Wrinkling is observed near the ends (r = 1) where membrane is clamped. This
is shown in the zoomed-in version. Stability of lower-most profile is uncertain; all other profiles are
stable. {P = 1.7, 1.5, 1.6, 1.8, 2.1, 2.3, 2.4, 2.5, 3.0} for decreasing η(0) value.

the central region.
Furthermore, an exhaustive analysis of wrinkling has also been carried out for all the cases studied

in Figures 4 and 5. Every point on each of those curves represents a distinct profile of the membrane
and the wrinkling status is described using symbols. It can be observed that membranes always have
some wrinkled regions for all cases with h < 0. Typically transition from double to single wrinkling
occurs upon an increase of volume. For the cases with h > 0, wrinkling happens for either very small
or very large values of inflation – there is a significant region of loading conditions where the membrane
inflates without any wrinkling.

The wrinkled profiles presented above are only approximate since they actually have regions with
negative values of s11 and s22 and membranes can’t sustain compressive stresses. An efficient way of
tackling this issue in hyperelastic membranes is by introduction of a ‘relaxed energy density function’
using the tension field theory (Pipkin, 1986; Steigmann, 1990). Whenever the stretch value in a principal
direction falls below the ‘natural width in simple tension’, the strain energy density function is replaced
by a modified counterpart called the relaxed energy density. Calculations performed after incorporating
this modification result in accurate membrane profiles. However, at present there is no extension of the
tension field theory for magnetoelastic membranes. Results presented in this paper are a motivation
to perform further research in this area for a more accurate prediction of membrane profiles and stress
values.

4.2.3 Multiple equilibria

For a given set of pressure and magnetic loading conditions, we observe multiple stable solutions as
demonstrated in Figure 10. For the case h = −3.5, all the profiles obtained are stable while for the case
h = 6.5, stability of three profiles is confirmed while stability of the fourth is not clear. These results
corroborate the findings in recent papers (Reddy and Saxena, 2017, 2018) for toroidal and cylindri-
cal membranes that multiple stable equilibrium configurations are attainable for thin magnetoelastic
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Figure 10: Membrane profiles for multiple equilibria obtained for a given set of pressure and magnetic
loading conditions. (a) P = 1.85,M = 600, h = −3.5. All profiles are stable and wrinkling is observed.
(b) P = 1.8,M = 200, h = 6.5. Stability of profile with largest η(0) is uncertain; the other three
profiles are stable.

structures under coupled loading conditions. This implies that by keeping loading conditions (P,M
and h) constant, one simply needs to perturb the membrane to oscillate among the various stable
configurations.

5 Conclusions

Inflation of an isotropic incompressible circular magnetoelastic membrane in the presence of a magnetic
dipole has been studied in this paper. The variational formulation is similar to that originally used by
Barham et al. (2007, 2008) for a similar problem and then later by Reddy and Saxena (2017, 2018)
to study various forms of instabilities in magnetoelastic membranes. Computations show instances of
limit point and magnetic limit point for this problem similar to that obtained by Barham et al. We
also demonstrate multiple stable and unstable equilibria under a given set of loading conditions for
this problem – a result similar to that obtained for toroidal and cylindrical membranes by Reddy and
Saxena in the papers mentioned above.

A key focus of this paper is on the determination of wrinkling instabilities due to magnetoelastic
loading. We observe wrinkles due to development of compressive stresses in the central region of
membrane when the dipole is placed in the direction of inflation and along the fixed sides when the
dipole is placed opposite to the direction of inflation. Stronger magnetic field generated by either
increasing the strength of dipole or by reducing the distance from the membrane results in a greater
area being doubly wrinkled.

We also acknowledge the shortcomings of the present theory in the prediction of accurate profiles
of membrane under magnetoelastic wrinkling due to a lack of extension of tension field theory to
magnetoelasticity. Results in this paper provide a motivation for developments in this area and enquiry
in this direction will be the focus of an upcoming research work.
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A Calculation of matrices P and Q

In this appendix, we list the several calculations required to calculate the entries in matrices P and Q
used to assess stability in Section 3.3.

Using equation (14), we derive the following relations

λ1,% = 0, λ1,%′ =
%′

λ1

, λ1,η = 0, λ1,η′ =
η′

λ1

,

λ2,% =
1

r
, λ2,%′ = 0, λ2,η = 0, λ2,η′ = 0,

λ1,%′%′ =
1

λ1

− %′2

λ3
1

, λ1,%′η′ = −%
′η′

λ3
1

, λ1,η′η′ =
1

λ1

− η′2

λ3
1

,

λ′1 =
%′%′′ + η′η′′

λ1

, λ′2 =
%′

r
− %

r2
. (62)

Upon using the relations (62) and applying chain rule of differentiation, we note

Ŵ% = Ŵλ2λ2,%, Ŵ%′ = Ŵλ1λ1,%′ , Ŵη = 0, Ŵη′ = Ŵλ1λ1,η′ ,

Ŵ%% = Ŵλ2λ2 [λ2,%]
2, Ŵ%′%′ = Ŵλ1λ1,%′%′ + Ŵλ1λ1 [λ1,%′ ]

2,

Ŵ%′η′ = Ŵλ1λ1,%′η′ + Ŵλ1λ1λ1,%′λ1,η′ , Ŵη′η′ = Ŵλ1λ1,η′η′ + Ŵλ1λ1 [λ1,η′ ]
2,

Ŵ%%′ = Ŵλ1λ2λ1,%′λ2,%, Ŵ%η′ = Ŵλ1λ2λ1,η′λ2,%. (63)

For the Ogden strain energy density given in equation (33), we note the following derivatives

Ŵλ1 =
K∑
k=1

µk

[
λαk−1

1 − 1

λαk+1
1 λαk

2

]
, Ŵλ2 =

K∑
k=1

µk

[
λαk−1

2 − 1

λαk+1
2 λαk

1

]
,

Ŵλ1λ1 =
K∑
k=1

µk

[
[αk − 1]λαk−2

1 +
αk + 1

λαk+2
1 λαk

2

]
, Ŵλ1λ2 =

K∑
k=1

αkµk

[λ1λ2]αk+1 ,

Ŵλ2λ2 =
K∑
k=1

µk

[
[αk − 1]λαk−2

2 +
αk + 1

λαk
1 λαk+2

2

]
. (64)

Given the integrand F from equation (41) the components of matrix P as shown in equation (44a)
are given by

P1 = TR2
0rŴ%′%′ , P2 = P3 = TR2

0rŴ%′η′ , P4 = TR2
0rŴη′η′ , (65)

where the derivatives of energy Ŵ are calculated above.
Let L = R6

0|ha|2/D2, then upon using the non-dimensional entities M and P defined in equations
(37) and (38), we can rewrite the integrand F from equation (41) as

F = µR2
0Tr

[
Ŵ

µ
− 1

2
χML+

P

3r

[
%2η′ − %%′η

]]
. (66)

Non-zero second derivatives of the quantity L are calculated as

L%% =
6 [7%4 + 42%2[η − h]2 − 5[η − h]4]

[%2 + [η − h]2]6
, L%η =

240%[η − h]3

[%2 + [η − h]2]6
,
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Lηη =
−24[η − h]2 [3%2 − 7[η − h]2]

[%2 + [η − h]2]6
. (67)

Let the matrix Q be denoted as

Q =
1

2

[
R− d

dr
S

]
, (68)

where R and S are matrices of derivatives of F from equation (43). Derivatives of F can be taken to
populate the matrix R as follows

R =

[
F%% F%η
F%η Fηη

]
= µR2

0Tr

 1

µ
Ŵ%% −

1

2
χML%% +

2η′P

3r
−χML%η

2
− %′P

3r

−χML%η
2

− %′P

3r
−χMLηη

2

 , (69)

while the matrix S is given as

S =

[
F%%′ F%η′
F%′η Fηη′

]
= µR2

0Tr

 1

µ
Ŵ%%′ −

ηP

3r

1

µ
Ŵ%η′ +

2%P

3r

−%P
3r

0

 . (70)

Diffrentiating S gives

dS

dr
= R2

0T

%
′′

λ1

Ŵλ1λ2 + %′γ − µη′P

3

η′′

λ1

Ŵλ1λ2 + η′γ +
2µ%′P

3

−µ%
′P

3
0

 , (71)

where for the case of Ogden energy density γ is given as

γ =
d

dr

(
Ŵλ1λ2

λ1

)
= −%

′%′′ + η′η′′

λ1

K∑
k=1

µkαk[αk + 2]

λαk+3
1 λαk+1

2

− %′r − %
r2

K∑
k=1

µkαk[αk + 1]

[λ1λ2]αk+2
. (72)

Thus, we have the following components of Q as per the entries in equation (44a)

Q1 = µR2
0Tr

[
1

µ
Ŵ%% −

1

2
χML%% +

2η′P

3r

]
−R2

0T

[
%′′

λ1

Ŵλ1λ2 + %′γ − µη′P

3

]
, (73)

Q2 = −µR2
0Tr

[
χML%η

2
+
%′P

3r

]
−R2

0T

[
η′′

λ1

Ŵλ1λ2 + η′γ +
2µ%′P

3

]
, (74)

Q3 = −µR2
0Tr

[
χML%η

2
+
%′P

3r

]
+R2

0T
µ%′P

3
, (75)

Q4 = −µR2
0Tr

χMLηη
2

. (76)
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Castañeda P.P. and Galipeau E. “Homogenization-based constitutive models for magnetorheological
elastomers at finite strain”. Journal of the Mechanics and Physics of Solids, 59(2):194–215 (2011)

Castaneda P.P. and Siboni M. “A finite-strain constitutive theory for electro-active polymer composites
via homogenization”. International Journal of Non-Linear Mechanics, 47(2):293–306 (2012)

Chatzigeorgiou G., Javili A., and Steinmann P. “Unified magnetomechanical homogenization framework
with application to magnetorheological elastomers”. Mathematics and Mechanics of Solids, 19(2):193–
211 (2014)

Danas K., Kankanala S.V., and Triantafyllidis N. “Experiments and modeling of iron-particle-filled
magnetorheological elastomers”. Journal of the Mechanics and Physics of Solids, 60:120–138 (2012)

Danas K. and Triantafyllidis N. “Instability of a magnetoelastic layer resting on a non-magnetic
substrate”. Journal of the Mechanics and Physics of Solids, 69(1):67–83 (2014)

Dorfmann A. and Ogden R.W. “Magnetoelastic modelling of elastomers”. European Journal of
Mechanics- A/Solids, 22(4):497–507 (2003)

Dorfmann L. and Ogden R.W. Nonlinear theory of electroelastic and magnetoelastic interactions.
Springer, New York (2014)

Ethiraj G. and Miehe C. “Multiplicative magneto-elasticity of magnetosensitive polymers incorporating
micromechanically-based network kernels”. International Journal of Engineering Science, 102:93 –
119 (2016)

Gelfand I.M. and Fomin S.V. Calculus of Variations,(Translated and edited by Silverman, RA). Dover
Edition (2000)

Ginder J.M., Clark S.M., Schlotter W.F., and Nichols M.E. “Magnetostrictive phenomena in magne-
torheological elastomers”. International Journal of Modern Physics B, 16(17n18):2412–2418 (2002)

Ginder J.M., Schlotter W.F., and Nichols M.E. “Magnetorheological elastomers in tunable vibration
absorbers”. In “SPIE’s 8th Annual International Symposium on Smart Structures and Materials”,
pages 103–110. International Society for Optics and Photonics (2001)

Goshkoderia A. and Rudykh S. “Stability of magnetoactive composites with periodic microstructures
undergoing finite strains in the presence of a magnetic field”. Composites Part B: Engineering, 128:19
– 29 (2017)

Grossman G. “Analysis of rim supports for off-axis inflatable reflectors. i: Loads”. Journal of Aerospace
Engineering, 4(1):47–66 (1991a)

Grossman G. “Analysis of rim supports for off-axis inflatable reflectors. ii: Deformations”. Journal of
Aerospace Engineering, 4(1):67–77 (1991b)

22



Haldar K., Kiefer B., and Menzel A. “Finite element simulation of rate-dependent magneto-active
polymer response”. Smart Materials and Structures, 25(10):104003 (2016)

Hu W., Lum G.Z., Mastrangeli M., and Sitti M. “Small-scale soft-bodied robot with multimodal
locomotion”. Nature, 554:81–85 (2018)

Jolly M.R., Carlson J.D., and Munoz B.C. “A model of the behaviour of magnetorheological materials”.
Smart Materials and Structures, 5(5):607 (1996)

Kankanala S.V. and Triantafyllidis N. “On finitely strained magnetorheological elastomers”. Journal
of the Mechanics and Physics of Solids, 52(12):2869–2908 (2004)

Kankanala S.V. and Triantafyllidis N. “Magnetoelastic buckling of a rectangular block in plane strain”.
Journal of the Mechanics and Physics of Solids, 56(4):1147–1169 (2008)

Keplinger C., Li T., Baumgartner R., Suo Z., and Bauer S. “Harnessing snap-through instability in
soft dielectrics to achieve giant voltage-triggered deformation”. Soft Matter, 8(2):285–288 (2012)

Khayat R.E. and Derdouri A. “Inflation of hyperelastic cylindrical membranes as applied to blow
moulding. part i. axisymmetric case”. International Journal for Numerical Methods in Engineering,
37(22):3773–3791 (1994a)

Khayat R.E. and Derdouri A. “Inflation of hyperelastic cylindrical membranes as applied to blow mould-
ing. part ii. non-axisymmetric case”. International Journal for Numerical Methods in Engineering,
37(22):3793–3808 (1994b)

Leone J.E. “Infusion balloon catheter” (1994). US Patent 5,318,531

Li T., Keplinger C., Baumgartner R., Bauer S., Yang W., and Suo Z. “Giant voltage-induced deforma-
tion in dielectric elastomers near the verge of snap-through instability”. Journal of the Mechanics
and Physics of Solids, 61(2):611–628 (2013)

Liang X. and Cai S. “New electromechanical instability modes in dielectric elastomer balloons”. Inter-
national Journal of Solids and Structures, pages 1–9 (2017)

Maugin G.A. and Eringen A.C. “Deformable magnetically saturated media. i. field equations”. Journal
of Mathematical Physics, 13(2):143–155 (1972)

Mayer M., Rabindranath R., Börner J., Hörner E., Bentz A., Salgado J., Han H., Böse H., Probst J.,
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