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Abstract: Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used
for the numerical simulation of time-dependent partial differential equations. These methods keep
the total number of mesh points fixed during the simulation but redistribute them over time to
follow the areas where a higher mesh point density is required. There are a very limited number
of moving mesh methods designed for solving field-theoretic partial differential equations, and the
numerical analysis of the resulting schemes is challenging. In this paper, we present two ways to
construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian
field theories. The first method uses a variational discretization of the physical equations, and the
mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second
method treats the mesh points as pseudo-particles and incorporates their dynamics directly into
the variational principle. A user-specified adaptation strategy is then enforced through Lagrange
multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss
the advantages and limitations of our methods. Numerical results for the Sine–Gordon equation are
also presented.

Keywords: geometric numerical integration; variational integrators; multisymplectic integrators;
field theory; moving mesh methods; moving mesh partial differential equations; solitons;
Sine–Gordon equation

1. Introduction

The purpose of this work is to design, analyze, and implement variational and multisymplectic
integrators for Lagrangian partial differential equations with space-adaptive meshes. In this paper, we
combine geometric numerical integration and r-adaptive methods for the numerical solution of Partial
Differential Equations (PDEs). We show that these two fields are compatible, mostly due to the fact
that, in r-adaptation, the number of mesh points remains constant and we can treat them as additional
pseudo-particles of which the dynamics are coupled to the dynamics of the physical field of interest.

Geometric (or structure-preserving) integrators are numerical methods that preserve geometric
properties of the flow of a differential equation (see Reference [1]). This encompasses symplectic
integrators for Hamiltonian systems, variational integrators for Lagrangian systems, and numerical
methods on manifolds, including Lie group methods and integrators for constrained mechanical
systems. Geometric integrators proved to be extremely useful for numerical computations in
astronomy, molecular dynamics, mechanics, and theoretical physics. The main motivation for
developing structure-preserving algorithms lies in the fact that they show excellent numerical behavior,
especially for long-time integration of equations possessing geometric properties.

An important class of structure-preserving integrators are variational integrators for Lagrangian
systems [1,2]. This type of integrator is based on discrete variational principles. The variational
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approach provides a unified framework for the analysis of many symplectic algorithms and is
characterized by a natural treatment of the discrete Noether theorem, as well as forced, dissipative, and
constrained systems. Variational integrators were first introduced in the context of finite-dimensional
mechanical systems, but later, Marsden, Patrick, and Shkoller [3] generalized this idea to field theories.
Variational integrators have since been successfully applied in many computations, for example in
elasticity [4], electrodynamics [5], or fluid dynamics [6]. Existing variational integrators so far have
been developed on static, mostly uniform spatial meshes. The main goal of this paper is to design and
analyze variational integrators that allow for the use of space-adaptive meshes.

Adaptive meshes used for the numerical solution of partial differential equations fall into three
main categories: h-adaptive, p-adaptive, and r-adaptive. R-adaptive methods, which are also known
as moving mesh methods [7,8], keep the total number of mesh points fixed during the simulation
but relocate them over time. These methods are designed to minimize the error of the computations by
optimally distributing the mesh points, contrasting with h-adaptive methods for which the accuracy of
the computations is obtained via insertion and deletion of mesh points. Moving mesh methods are a
large and interesting research field of applied mathematics, and their role in modern computational
modeling is growing. Despite the increasing interest in these methods in recent years, they are still in a
relatively early stage of their development compared to the more matured h-adaptive methods.

1.1. Overview

There are three logical steps to r-adaptation:

• Discretization of the physical PDE
• Mesh adaptation strategy
• Coupling the mesh equations to the physical equations

The key ideas of this paper regard the first and the last step. Following the general spirit
of variational integrators, we discretize the underlying action functional rather than the PDE
itself and then derive the discrete equations of motion. We base our adaptation strategies on the
equidistribution principle and the resulting moving mesh partial differential equations (MMPDEs).
We interpret MMPDEs as constraints, which allows us to consider novel ways of coupling them to the
physical equations. Note that we will restrict our explanations to one time and one space dimension
for the sake of simplicity.

Let us consider a (1+1)-dimensional scalar field theory with the action functional

S[φ] =
∫ Tmax

0

∫ Xmax

0
L(φ, φX , φt) dX dt, (1)

where φ : [0, Xmax]× [0, Tmax] −→ R is the field and L : R× R× R −→ R its Lagrangian density.
For simplicity, we assume the following fixed boundary conditions

φ(0, t) = φL,

φ(Xmax, t) = φR. (2)

In order to further consider moving meshes let us perform a change of variables X = X(x, t)
such that for all t the map X(., t) : [0, Xmax] −→ [0, Xmax] is a “diffeomorphism”—more precisely,
we only require that X(., t) is a homeomorphism such that both X(., t) and X(., t)−1 are piecewise
C1. In the context of mesh adaptation, the map X(x, t) represents the spatial position at time t of
the mesh point labeled by x. Define ϕ(x, t) = φ(X(x, t), t). Then, the partial derivatives of φ are
φX(X(x, t), t) = ϕx/Xx and φt(X(x, t), t) = ϕt − ϕxXt/Xx. Plugging these equations in Equation (1),
we get

S[φ] =
∫ Tmax

0

∫ Xmax

0
L
(

ϕ,
ϕx

Xx
, ϕt −

ϕxXt

Xx

)
Xx dx dt =: S̃[ϕ], S̃[ϕ, X] (3)
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where the last equality defines two modified, or “reparametrized”, action functionals. For the first one,
S̃ is considered as a functional of ϕ only, whereas in the second one we also treat it as a functional of X.
This leads to two different approaches to mesh adaptation, which we dub the control-theoretic strategy
and the Lagrange multiplier strategy, respectively. The “reparametrized” field theories defined by S̃[ϕ]
and S̃[ϕ, X] are both intrinsically covariant; however, it is convenient for computational purposes to
work with a space-time split and to formulate the field dynamics as an initial value problem.

1.2. Outline

This paper is organized as follows. In Sections 2 and 3 we take the view of infinite dimensional
manifolds of fields as configuration spaces and develop the control-theoretic and Lagrange multiplier
strategies in that setting. It allows us to discretize our system in space first and consider time
discretization later on. It is clear from our exposition that the resulting integrators are variational.
In Section 4, we show how similar integrators can be constructed using the covariant formalism of
multisymplectic field theory. We also show how the integrators from the previous sections can be
interpreted as multisymplectic. In Section 5, we apply our integrators to the Sine–Gordon equation and
we present our numerical results. We summarize our work in Section 6 and discuss several directions
in which it can be extended.

2. Control-Theoretic Approach to r-Adaptation

At first glance, it appears that the simplest and most straightforward way to construct an
r-adaptive variational integrator would be to discretize the physical system in a similar manner
to the general approach to variational integration, i.e., discretize the underlying variational principle,
then derive the mesh equations, and couple them to the physical equations in a way typical of the
existing r-adaptive algorithms. We explore this idea in this section and show that it indeed leads to
space adaptive integrators that are variational in nature. However, we also show that those integrators
do not exhibit the behavior expected of geometric integrators, such as good energy conservation.
We will refer to this strategy as control-theoretic, since, in this description, the field ϕ represents the
physical state of the system, while X can be interpreted as a control variable and the mesh equations
can be interpreted as feedback (see, e.g., Reference [9]).

2.1. Reparametrized Lagrangian

For the moment, let us assume that X(x, t) is a known function. We denote by ξ(X, t) the function
such that ξ(., t) = X(., t)−1, that is ξ(X(x, t), t) = x (We allow a little abuse of notation here: X denotes
both the argument of ξ and the change of variables X(x, t). If we wanted to be more precise, we would
write X = h(x, t).). We thus have S̃[ϕ] = S[ϕ(ξ(X, t), t)].

Proposition 1. Extremizing S[φ] with respect to φ is equivalent to extremizing S̃[ϕ] with respect to ϕ.

Proof. The variational derivatives of S and S̃ are related by the formula

δS̃[ϕ] · δϕ(x, t) = δS[ϕ(ξ(X, t), t)] · δϕ(ξ(X, t), t). (4)

Suppose φ(X, t) extremizes S[φ], i.e., δS[φ] · δφ = 0 for all variations δφ. Given the function
X(x, t), define ϕ(x, t) = φ(X(x, t), t). Then, by the formula above, we have δS̃[ϕ] = 0, so ϕ extremizes
S̃. Conversely, suppose ϕ(x, t) extremizes S̃, that is δS̃[ϕ] · δϕ = 0 for all variations δϕ. Since we assume
X(., t) is a homeomorphism, we can define φ(X, t) = ϕ(ξ(X, t), t). Note that an arbitrary variation
δφ(X, t) induces the variation δϕ(x, t) = δφ(X(x, t), t). Then, we have δS[φ] · δφ = δS̃[ϕ] · δϕ = 0 for
all variations δφ, so φ(X, t) extremizes S[φ].
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The corresponding instantaneous Lagrangian L̃ : Q×W ×R −→ R is

L̃[ϕ, ϕt, t] =
∫ Xmax

0
L̃(ϕ, ϕx, ϕt, t) dx (5)

with the Lagrangian density

L̃(ϕ, ϕx, ϕt, x, t) = L
(

ϕ,
ϕx

Xx
, ϕt −

ϕxXt

Xx

)
Xx. (6)

The function spaces Q and W must be chosen appropriately for the problem at hand so that the
Lagrangian in Equation (5) makes sense. For instance, for a free field, we will have Q = H1([0, Xmax])

and W = L2([0, Xmax]). Since X(x, t) is a function of t, we are looking at a time-dependent system.
Even though the energy associated with the Lagrangian in Equation (5) is not conserved, the energy of
the original theory associated with the action functional in Equation (1)

E =
∫ Xmax

0

(
φt

∂L
∂φt

(φ, φX , φt)−L(φ, φX , φt)
)

dX (7)

=
∫ Xmax

0

[(
ϕt −

ϕxXt

Xx

) ∂L
∂φt

(
ϕ,

ϕx

Xx
, ϕt −

ϕxXt

Xx

)
−L

(
ϕ,

ϕx

Xx
, ϕt −

ϕxXt

Xx

)]
Xx dx (8)

is conserved. To see this, note that if φ(X, t) extremizes S[φ], then dE/dt = 0 (computed from
Equation (7)). Trivially, this means that dE/dt = 0 when Equation (8) is invoked as well. Moreover,
as we have noted earlier, φ(X, t) extremizes S[φ] iff ϕ(x, t) extremizes S̃[ϕ]. This means that the energy
(Equation (8)) is constant on solutions of the reparametrized theory.

2.2. Spatial Finite Element Discretization

We begin with a discretization of the spatial dimension only, thus turning the original
infinite-dimensional problem into a time-continuous finite-dimensional Lagrangian system.
Let ∆x = Xmax/(N + 1), and define the reference uniform mesh xi = i · ∆x for i = 0, 1, ..., N + 1
and the corresponding piecewise linear finite elements

ηi(x) =


x−xi−1

∆x , if xi−1 ≤ x ≤ xi,
− x−xi+1

∆x , if xi ≤ x ≤ xi+1,
0, otherwise.

(9)

We now restrict X(x, t) to be of the form

X(x, t) =
N+1

∑
i=0

Xi(t)ηi(x) (10)

with X0(t) = 0, XN+1(t) = Xmax, and arbitrary Xi(t), i = 1, 2, ..., N as long as X(., t) is a
homeomorphism for all t. In our context of numerical computations, the functions Xi(t) represent the
current position of the ith mesh point. Define the finite element spaces

QN = WN = span(η0, ..., ηN+1) (11)

and assume that QN ⊂ Q, WN ⊂W. Let us denote a generic element of QN by ϕ and a generic element
of WN by ϕ̇. We have the decompositions

ϕ(x) =
N+1

∑
i=0

yiηi(x), ϕ̇(x) =
N+1

∑
i=0

ẏiηi(x). (12)



Mathematics 2019, 7, 642 5 of 52

The numbers (yi, ẏi) thus form natural (global) coordinates on QN × WN . We can now
approximate the dynamics of the system described by Equation (5) in the finite-dimensional space
QN ×WN . Let us consider the restriction L̃N = L̃|QN×WN×R of the Lagrangian of Equation (5) to
QN ×WN ×R. In the chosen coordinates, we have

L̃N(y0, ..., yN+1, ẏ0, ..., ẏN+1, t) = L̃
[ N+1

∑
i=0

yiηi(x),
N+1

∑
i=0

ẏiηi(x), t
]
. (13)

Note that, given the boundary conditions (Equation (2)), y0, yN+1, ẏ0, and ẏN+1 are fixed. We will
thus no longer write them as arguments of L̃N .

The advantage of using a finite element discretization lies in the fact that the symplectic structure
induced on QN ×WN by L̃N is strictly a restriction (i.e., a pull-back) of the (pre-)symplectic structure
(In most cases, the symplectic structure of (Q×W, L̃) is only weakly nondegenerate; see Reference [10])
on Q×W. This establishes a direct link between symplectic integration of the finite-dimensional
mechanical system (QN ×WN , L̃N) and the infinite-dimensional field theory (Q×W, L̃).

2.3. Differential-Algebraic Formulation and Time Integration

We now consider time integration of the Lagrangian system (QN ×WN , L̃N). If the functions
Xi(t) are known, then one can perform variational integration in the standard way, that is, define the
discrete Lagrangian L̃d : R×QN ×R×QN → R and solve the corresponding discrete Euler–Lagrange
equations (see References [1,2]). Let tn = n · ∆t for n = 0, 1, 2, . . . be an increasing sequence of times
and {y0, y1, . . .} be the corresponding discrete path of the system in QN . The discrete Lagrangian Ld is
an approximation to the exact discrete Lagrangian LE

d , such that

L̃d(tn, yn, tn+1, yn+1) ≈ L̃E
d (tn, yn, tn+1, yn+1) ≡

∫ tn+1

tn
L̃N(y(t), ẏ(t), t) dt, (14)

where yn = (yn
1 , ..., yn

N), yn+1 = (yn+1
1 , ..., yn+1

N ), and y(t) are the solutions of the Euler–Lagrange
equations corresponding to L̃N with boundary values y(tn) = yn and y(tn+1) = yn+1. Depending
on the quadrature we use to approximate the integral in Equation (14), we obtain different types
of variational integrators. As will be discussed below, in r-adaptation, one has to deal with stiff
differential equations or differential-algebraic equations; therefore, higher order implicit integration
in time is advisable (see References [11,12]). We will employ variational partitioned Runge–Kutta
methods. An s-stage Runge–Kutta method is constructed by choosing

L̃d(tn, yn, tn+1, yn+1) = (tn+1 − tn)
s

∑
i=1

bi L̃N(Yi, Ẏi, ti), (15)

where ti = tn + ci(tn+1 − tn); the right-hand side is extremized under the constraint
yn+1 = yn + (tn+1 − tn)∑s

i=1 biẎi; and the internal stage variables Yi and Ẏi are related by
Yi = yn + (tn+1 − tn)∑s

j=1 aijẎj. It can be shown that the variational integrator with the discrete
Lagrangian defined by Equation (15) is equivalent to an appropriately chosen symplectic partitioned
Runge–Kutta method applied to the Hamiltonian system corresponding to L̃N (see Reference [1,2]).
With this in mind, we turn our semi-discrete Lagrangian system (QN ×WN , L̃N) into the Hamiltonian
system (QN ×W∗N , H̃N) via the standard Legendre transform

H̃N(y1, ..., yN , p1, ..., pN ; X1, ..., XN , Ẋ1, ..., ẊN) =
N

∑
i=1

pi ẏi − L̃N(y1, ..., yN , ẏ1, ..., ẏN , t), (16)

where pi = ∂L̃N/∂ẏi and we explicitly stated the dependence on the positions Xi and velocities Ẋi of
the mesh points. The Hamiltonian equations take the form (It is computationally more convenient
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to directly integrate the implicit Hamiltonian system pi = ∂L̃N/∂ẏi, ṗi = ∂L̃N/∂yi, but as long as the
system described by Equation (1) is at least weakly nondegenerate, there is no theoretical issue with
passing to the Hamiltonian formulation, which we do for the clarity of our exposition.)

ẏi =
∂H̃N
∂pi

(
y, p; X(t), Ẋ(t)

)
,

ṗi = −
∂H̃N
∂yi

(
y, p; X(t), Ẋ(t)

)
.

(17)

Suppose that the function Xi(t) is C1 and that HN is smooth as a function of the yi’s, pi’s, Xi’s,
and Ẋi’s (note that these assumptions are used for simplicity and can be easily relaxed, if necessary,
depending on the regularity of the considered Lagrangian system). Then, the assumptions of Picard’s
theorem are satisfied and there exists a unique C1 flow Ft0,t = (Fy

t0,t, Fp
t0,t) : QN ×W∗N → QN ×W∗N for

Equation (17). This flow is symplectic.
However, in practice, we do not know the Xi’s and we in fact would like to be able to adjust them

“on the fly”, based on the current behavior of the system. We will do that by introducing additional
constraint functions gi(y1, ..., yN , X1, ..., XN) and demanding that the conditions gi = 0 be satisfied at
all times (In the context of Control Theory, the constraints gi = 0 are called strict static state feedback.
See Reference [9].). The choice of these functions will be discussed in Section 2.4. This leads to the
following system of differential-algebraic equations (DAEs) of index 1 (see References [11–13])

ẏi =
∂H̃N
∂pi

(
y, p; X, Ẋ

)
,

ṗi = −
∂H̃N
∂yi

(
y, p; X, Ẋ

)
,

0 = gi(y, X),

yi(t0) = y(0)i ,

pi(t0) = p(0)i

(18)

for i = 1, ..., N. Note that an initial condition for X is fixed by the constraints. This system is of index 1
because one has to differentiate the algebraic equations with respect to time once in order to reduce it
to an implicit system of ordinary differential equations (ODEs). In fact, the implicit system will take
the form

ẏ =
∂H̃N
∂p

(
y, p; X, Ẋ

)
,

ṗ = −∂H̃N
∂y

(
y, p; X, Ẋ

)
,

0 =
∂g
∂y

(y, X)ẏ +
∂g
∂X

(y, X)Ẋ,

y(t0) = y(0),

p(t0) = p(0),

X(t0) = X(0),

(19)

where X(0) is a vector of arbitrary initial condition for the Xi’s. Suppose again that HN is a smooth
function of y, p, X, and Ẋ. Futhermore, suppose that g is a C1 function of y and X and that ∂g

∂X −
∂g
∂y

∂2 HN
∂Ẋ∂p is invertible with its inverse bounded in a neighborhood of the exact solution. (Again, these

assumptions can be relaxed if necessary.) Then, by the Implicit Function Theorem, Equation (19) can
be solved explicitly for ẏ, ṗ, and Ẋ and the resulting explicit ODE system will satisfy the assumptions
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of Picard’s theorem. Let (y(t), p(t), X(t)) be the unique C1 solution to this ODE system (and hence to
Equation (19)). We have the trivial result

Proposition 2. If g(y(0), X(0)) = 0, then (y(t), p(t), X(t)) is a solution to Equation (18). (Note that
there might be other solutions, as for any given y(0), there might be more than one X(0) that solves the
constraint equations.)

In practice, we would like to integrate Equation (18). A question arises in what sense is the system
defined by this equation symplectic and in what sense a numerical integration scheme for this system
can be regarded as variational. Let us address these issues.

Proposition 3. Let (y(t), p(t), X(t)) be a solution to Equation (18) and use this X(t) to form the Hamiltonian
system (17). Then, we have

y(t) = Fy
t0,t(y

(0), p(0)), p(t) = Fp
t0,t(y

(0), p(0))

and
g
(

Fy
t0,t(y

(0), p(0)), X(t)
)
= 0,

where Ft0,t(ŷ, p̂) is the symplectic flow for Equation (17).

Proof. Note that the first two equations of Equation (18) are the same as Equation (17); therefore
(y(t), p(t)) trivially satisfies Equation (17) with the initial conditions y(t0) = y(0) and p(t0) = p(0).
Since the flow map Ft0,t is unique, we must have y(t) = Fy

t0,t(y
(0), p(0)) and p(t) = Fp

t0,t(y
(0), p(0)).

Then, we also must have g
(

Fy
t0,t(y

(0), p(0)), X(t)
)
= 0, that is, the constraints are satisfied along one

particular integral curve of Equation (17) that passes through (y(0), p(0)) at t0.

Suppose we now would like to find a numerical approximation of the solution to Equation (17)
using an s-stage partitioned Runge–Kutta method with coefficients aij, bi, āij, b̄i, and ci [1,14].
The numerical scheme will take the form

Ẏi =
∂H̃N
∂p

(
Yi, Pi; X(tn + ci∆t), Ẋ(tn + ci∆t)

)
,

Ṗi = −∂H̃N
∂y

(
Yi, Pi; X(tn + ci∆t), Ẋ(tn + ci∆t)

)
,

Yi = yn + ∆t
s

∑
j=1

aijẎ j,

Pi = pn + ∆t
s

∑
j=1

āij Ṗj,

yn+1 = yn + ∆t
s

∑
i=1

biẎi,

pn+1 = pn + ∆t
s

∑
i=1

b̄i Ṗi,

(20)

where Yi, Ẏi, Pi, and Ṗi are the internal stages and ∆t is the integration timestep. Let us apply the same
partitioned Runge–Kutta method to Equation (18). In order to compute the internal stages Qi, Q̇i of
the X variable, we use the state–space form approach, that is, we demand that the constraints and their
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time derivatives be satisfied (see Reference [12]). The new step value Xn+1 is computed by solving the
constraints as well. The resulting numerical scheme is thus

Ẏi =
∂H̃N
∂p

(
Yi, Pi; Qi, Q̇i

)
,

Ṗi = −∂H̃N
∂y

(
Yi, Pi; Qi, Q̇i

)
,

Yi = yn + ∆t
s

∑
j=1

aijẎ j,

Pi = pn + ∆t
s

∑
j=1

āij Ṗj,

0 = g(Yi, Qi),

0 =
∂g
∂y

(Yi, Qi) Ẏi +
∂g
∂X

(Yi, Qi) Q̇i,

yn+1 = yn + ∆t
s

∑
i=1

biẎi,

pn+1 = pn + ∆t
s

∑
i=1

b̄i Ṗi,

0 = g(yn+1, Xn+1).

(21)

We have the following trivial observation.

Proposition 4. If X(t) is defined to be a C1 interpolation of the internal stages Qi, Q̇i at times tn + ci∆t
(that is, if the values X(tn + ci∆t) and Ẋ(tn + ci∆t) coincide with Qi and Q̇i), then the schemes defined by
Equations (20) and (21) give the same numerical approximations yn and pn to the exact solution y(t) and p(t).

Intuitively, Proposition 4 states that we can apply a symplectic partitioned Runge–Kutta method
to the DAE system in Equation (18), which solves both for X(t) and (y(t), p(t)), and the result will be
the same as if we performed a symplectic integration of the Hamiltonian system in Equation (17) for
(y(t), p(t)) with a known X(t).

2.4. Moving Mesh Partial Differential Equations

The concept of equidistribution is the most popular paradigm of r-adaptation (see References [7,8]).
Given a continuous mesh density function ρ(X), the equidistribution principle seeks to find a mesh
0 = X0 < X1 < ... < XN+1 = Xmax such that the following holds

∫ X1

0
ρ(X) dX =

∫ X2

X1

ρ(X) dX = ... =
∫ Xmax

XN

ρ(X) dX, (22)

that is, the quantity represented by the density function is equidistributed among all cells. In the
continuous setting, we will say that the reparametrization X = X(x) equidistributes ρ(X) if

∫ X(x)

0
ρ(X) dX =

x
Xmax

σ, (23)

where σ =
∫ Xmax

0 ρ(X) dX is the total amount of the equidistributed quantity. Differentiate this equation
with respect to x to obtain

ρ(X(x))
∂X
∂x

=
1

Xmax
σ. (24)
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It is still a global condition in the sense that σ has to be known. For computational purposes, it is
convenient to differentiate this relation again and to consider the following partial differential equation

∂

∂x

(
ρ(X(x))

∂X
∂x

)
= 0 (25)

with the boundary conditions X(0) = 0, X(Xmax) = Xmax. The choice of the mesh density function
ρ(X) is typically problem-dependent and the subject of much research. A popular example is the
generalized solution arclength given by

ρ =

√
1 + α2

( ∂φ

∂X

)2
=

√
1 + α2

( ϕx

Xx

)2
. (26)

It is often used to construct meshes that can follow moving fronts with locally high gradients [7,8].
With this choice, Equation (25) is equivalent to

α2 ϕx ϕxx + XxXxx = 0, (27)

assuming Xx > 0, which we demand anyway. A finite difference discretization on the mesh xi = i · ∆x
gives us the set of constraints

gi(y1, ..., yN ,X1, ..., XN) =

α2(yi+1 − yi)
2 + (Xi+1 − Xi)

2 − α2(yi − yi−1)
2 − (Xi − Xi−1)

2 = 0,
(28)

with the previously defined yi’s and Xi’s. This set of constraints can be used in Equation (18).

2.5. Example

To illustrate these ideas, let us consider the Lagrangian density

L(φ, φX , φt) =
1
2

φ2
t −W(φX). (29)

The reparametrized Lagrangian in Equation (5) takes the form

L̃[ϕ, ϕt, t] =
∫ Xmax

0

[
1
2

Xx

(
ϕt −

ϕx

Xx
Xt

)2
−W

( ϕx

Xx

)
Xx

]
dx. (30)

Let N = 1 and φL = φR = 0. Then

ϕ(x, t) = y1(t)η1(x), X(x, t) = X1(t)η1(x) + Xmax η2(x). (31)

The semi-discrete Lagrangian is

L̃N(y1, ẏ1, t) =
X1(t)

6

(
ẏ1 −

y1

X1(t)
Ẋ1(t)

)2

+
Xmax − X1(t)

6

(
ẏ1 +

y1

Xmax − X1(t)
Ẋ1(t)

)2

−W
(

y1

X1(t)

)
X1(t)−W

(
− y1

Xmax − X1(t)

)(
Xmax − X1(t)

)
.

(32)
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The Legendre transform gives p1 = ∂L̃N/∂ẏ1 = Xmax ẏ1/3; hence, the semi-discrete
Hamiltonian is

H̃N(y1, p1; X1, Ẋ1) =
3

2Xmax
p2

1 −
1
6

XmaxẊ2
1

X1(Xmax − X1)
y2

1

+ W
( y1

X1

)
X1 + W

(
− y1

Xmax − X1

)
(Xmax − X1).

(33)

The corresponding DAE system is

ẏ1 =
3

Xmax
p1,

ṗ1 =
1
3

XmaxẊ2
1

X1(Xmax − X1)
y1 −W ′

( y1

X1

)
+ W ′

(
− y1

Xmax − X1

)
,

0 = g1(y1, X1).

(34)

This system is to be solved for the unknown functions y1(t), p1(t), and X1(t). It is of index 1
because we have three unknown functions and only two differential equations—the algebraic equation
has to be differentiated once in order to obtain a missing ODE.

2.6. Backward Error Analysis

The true power of symplectic integration of Hamiltonian equations is revealed through backward
error analysis: It can be shown that a symplectic integrator for a Hamiltonian system with the
Hamiltonian H(q, p) defines the exact flow for a nearby Hamiltonian system, of which the Hamiltonian
can be expressed as the asymptotic series

H (q, p) = H(q, p) + ∆tH2(q, p) + ∆t2H3(q, p) + . . . (35)

Owing to this fact, under some additional assumptions, symplectic numerical schemes nearly
conserve the original Hamiltonian H(q, p) over exponentially long time intervals. See Reference [1]
for details.

Let us briefly review the results of backward error analysis for the integrator defined by
Equation (21). Suppose g(y, X) satisfies the assumptions of the Implicit Function Theorem. Then,
at least locally, we can solve the constraint X = h(y). The Hamiltonian DAE system in Equation (18)
can be then written as the following (implicit) ODE system for y and p

ẏ =
∂H̃N
∂p

(
y, p; h(y), h′(y)ẏ

)
, (36)

ṗ = −∂H̃N
∂y

(
y, p; h(y), h′(y)ẏ

)
.

Since we used the state–space formulation, the numerical scheme of Equation (21) is equivalent to
applying the same partitioned Runge–Kutta method to Equations (36), that is, we have Qi = h(Yi) and
Q̇i = h′(Yi)Ẏi. We computed the corresponding modified equation for several symplectic methods,
namely Gauss and Lobatto IIIA–IIIB quadratures. Unfortunately, none of the quadratures resulted in
a form akin to Equation (36) for some modified Hamiltonian function H̃N related to H̃N by a series
similar to Equation (35). This hints at the fact that we should not expect this integrator to show
excellent energy conservation over long integration times. One could also consider the implicit ODE
system of Equation (19), which has an obvious triple partitioned structure and could apply a different
Runge–Kutta method to each variable y, p, and X. Although we did not pursue this idea further,
it seems unlikely it would bring a desirable result.
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We therefore conclude that the control-theoretic strategy, while yielding a perfectly legitimate
numerical method, does not take the full advantage of the underlying geometric structures. Let us point
out that, while we used a variational discretization of the governing physical PDE, the mesh equations
were coupled in a manner that is typical of the existing r-adaptive methods (see References [7,8]).
We now turn our attention to a second approach, which offers a novel way of coupling the mesh
equations to the physical equations.

3. Lagrange Multiplier Approach to r-Adaptation

As we saw in Section 2, discretization of the variational principle alone is not sufficient if we
would like to accurately capture the geometric properties of the physical system described by the action
functional in Equation (1). In this section, we propose a new technique of coupling the mesh equations
to the physical equations. Our idea is based on the observation that, in r-adaptation, the number of
mesh points is constant; therefore, we can treat them as pseudo-particles and we can incorporate their
dynamics into the variational principle. We show that this strategy results in integrators that much
better preserve the energy of the considered system.

3.1. Reparametrized Lagrangian

In this approach, we treat X(x, t) as an independent field, that is, another degree of freedom,
and we will treat the “modified” action defined by Equation (3) as a functional of both ϕ and X:
S̃ = S̃[ϕ, X]. For the purpose of the derivations below, we assume that ϕ(., t) and X(., t) are continuous
and piecewise C1. One could consider the closure of this space in the topology of either the Hilbert or
Banach spaces of sufficiently integrable functions and interpret differentiation in a sufficiently weak
sense, but this functional-analytic aspect is of little importance for the developments in this section.
We refer the interested reader to References [15,16]. As in Section 2.1, let ξ(X, t) be the function such
that ξ(., t) = X(., t)−1, that is ξ(X(x, t), t) = x. Then, S̃[ϕ, X] = S[ϕ(ξ(X, t), t)]. We begin with two
propositions and one corollary which will be important for the rest of our exposition.

Proposition 5. Extremizing S[φ] with respect to φ is equivalent to extremizing S̃[ϕ, X] with respect to both ϕ

and X.

Proof. The variational derivatives of S and S̃ are related by the formula

δ1S̃[ϕ, X] · δϕ(x, t) = δS[ϕ(ξ(X, t), t)] · δϕ(ξ(X, t), t),

δ2S̃[ϕ, X] · δX(x, t) = δS[ϕ(ξ(X, t), t)] ·
(
− ϕx(ξ(X, t), t)

Xx(ξ(X, t), t)
δX(ξ(X, t), t)

)
,

(37)

where δ1 and δ2 denote differentiation with respect to the first and second arguments, respectively.
Suppose φ(X, t) extremizes S[φ], i.e., δS[φ] · δφ = 0 for all variations δφ. Choose an arbitrary
X(x, t) such that X(., t) is a (sufficiently smooth) homeomorphism, and define ϕ(x, t) = φ(X(x, t), t).
Then, by the formula above, we have δ1S̃[ϕ, X] = 0 and δ2S̃[ϕ, X] = 0, so the pair (ϕ, X)

extremizes S̃. Conversely, suppose the pair (ϕ, X) extremizes S̃, that is δ1S̃[ϕ, X] · δϕ = 0 and
δ2S̃[ϕ, X] · δX = 0 for all variations δϕ and δX. Since we assume X(., t) is a homeomorphism,
we can define φ(X, t) = ϕ(ξ(X, t), t). Note that an arbitrary variation δφ(X, t) induces the variation
δϕ(x, t) = δφ(X(x, t), t). Then, we have δS[φ] · δφ = δ1S̃[ϕ, X] · δϕ = 0 for all variations δφ, so φ(X, t)
extremizes S[φ].

Proposition 6. The equation δ2S̃[ϕ, X] = 0 is implied by the equation δ1S̃[ϕ, X] = 0.

Proof. As we saw in the proof of Proposition 5, the condition δ1S̃[ϕ, X] · δϕ = 0 implies δS = 0.
By Equation (37), this in turn implies δ2S̃[ϕ, X] · δX = 0 for all δX. Note that this argument cannot be
reversed: δ2S̃[ϕ, X] · δX = 0 does not imply δS = 0 when ϕx = 0.
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Corollary 1. The field theory described by S̃[ϕ, X] is degenerate, and the solutions to the Euler–Lagrange
equations are not unique.

3.2. Spatial Finite Element Discretization

The Lagrangian of the “reparametrized” theory L̃ : Q× G×W × Z −→ R,

L̃[ϕ, X, ϕt, Xt] =
∫ Xmax

0
L
(

ϕ,
ϕx

Xx
, ϕt −

ϕxXt

Xx

)
Xx dx, (38)

has the same form as in Equation (5) (we only treat it as a functional of X and Xt as well), where Q,
G, W, and Z are spaces of continuous and piecewise C1 functions, as mentioned before. We again let
∆x = Xmax/(N + 1) and define the uniform mesh xi = i · ∆x for i = 0, 1, ..., N + 1. Define the finite
element spaces

QN = GN = WN = ZN = span(η0, ..., ηN+1), (39)

where we used the finite elements introduced in Equation (9). We have QN ⊂ Q, GN ⊂ G, WN ⊂W,
and ZN ⊂ Z. In addition to Equation (12), we also consider

X(x) =
N+1

∑
i=0

Xiηi(x), Ẋ(x) =
N+1

∑
i=0

Ẋiηi(x). (40)

The numbers (yi, Xi, ẏi, Ẋi) thus form natural (global) coordinates on QN×GN×WN×ZN .
We again consider the restricted Lagrangian L̃N = L̃|QN×GN×WN×ZN . In the chosen coordinates

L̃N(y1, ..., yN , X1, ..., XN , ẏ1, ..., ẏN , Ẋ1, ..., ẊN) = L̃
[

ϕ(x), X(x), ϕ̇(x), Ẋ(x)
]
, (41)

where ϕ(x), X(x), ϕ̇(x), Ẋ(x) are defined by Equations (12) and (40). Once again, we refrain from
writing y0, yN+1, ẏ0, ẏN+1, X0, XN+1, Ẋ0, and ẊN+1 as arguments of L̃N in the remainder of this
section, as those are not actual degrees of freedom.

3.3. Invertibility of the Legendre Transform

For simplicity, let us restrict our considerations to Lagrangian densities of the form

L(φ, φX , φt) =
1
2

φ2
t − R(φX , φ). (42)

We chose a kinetic term that is most common in applications. The corresponding “reparametrized”
Lagrangian is

L̃[ϕ, X, ϕt, Xt] =
∫ Xmax

0

1
2

Xx

(
ϕt −

ϕx

Xx
Xt

)2
dx− . . . , (43)

where we kept only the terms that involve the velocities ϕt and Xt. The semi-discrete
Lagrangian becomes

L̃N =
N

∑
i=0

Xi+1 − Xi
6

[(
ẏi −

yi+1 − yi
Xi+1 − Xi

Ẋi

)2
+
(

ẏi −
yi+1 − yi
Xi+1 − Xi

Ẋi

)(
ẏi+1 −

yi+1 − yi
Xi+1 − Xi

Ẋi+1

)
+
(

ẏi+1 −
yi+1 − yi
Xi+1 − Xi

Ẋi+1

)2]
− . . .

(44)

Let us define the conjugate momenta via the Legendre Transform

pi =
∂L̃N
∂ẏi

, Si =
∂L̃N

∂Ẋi
, i = 1, 2, ..., N. (45)
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This can be written as 
p1

S1
...

pN
SN

 = M̃N(y, X) ·


ẏ1

Ẋ1
...

ẏN
ẊN

 , (46)

where the 2N × 2N mass matrix M̃N(y, X) has the following block tridiagonal structure

M̃N(y, X) =



A1 B1

B1 A2 B2

B2 A3 B3
. . . . . . . . .

. . . . . . BN−1

BN−1 AN


, (47)

with the 2× 2 blocks

Ai =

(
1
3 δi−1 +

1
3 δi − 1

3 δi−1γi−1 − 1
3 δiγi

− 1
3 δi−1γi−1 − 1

3 δiγi
1
3 δi−1γ2

i−1 +
1
3 δiγ

2
i

)
, Bi =

(
1
6 δi − 1

6 δiγi
− 1

6 δiγi
1
6 δiγ

2
i

)
, (48)

where
δi = Xi+1 − Xi, γi =

yi+1 − yi
Xi+1 − Xi

. (49)

From now on, we will always assume δi > 0, as we demand that X(x) = ∑N+1
i=0 Xiηi(x) be a

homeomorphism. We also have

det Ai =
1
9

δi−1δi(γi−1 − γi)
2. (50)

Proposition 7. The mass matrix M̃N(y, X) is non-singular almost everywhere (as a function of the yi’s and
Xi’s) and singular iff γi−1 = γi for some i.

Proof. We will compute the determinant of M̃N(y, X) by transforming it into a block upper triangular
form by zeroing the blocks Bi below the diagonal. Let us start with the block B1. We use linear
combinations of the first two rows of the mass matrix to zero the elements of the block B1 below the
diagonal. Suppose γ0 = γ1. Then, it is easy to see that the first two rows of the mass matrix are
not linearly independent, so the determinant of the mass matrix is zero. Assume γ0 6= γ1. Then by
Equation (50), the block A1 is invertible. We multiply the first two rows of the mass matrix by B1 A−1

1
and subtract the result from the third and fourth rows. This zeroes the block B1 below the diagonal
and replaces the block A2 by

C2 = A2 − B1 A−1
1 B1. (51)

We now zero the block B2 below the diagonal in a similar fashion. After n − 1 steps of this
procedure, the mass matrix is transformed into
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C1 B1

C2 B2
. . . . . .

Cn Bn

Bn An+1
. . .

. . . . . . BN−1

BN−1 AN


. (52)

In a moment we will see that Cn is singular iff γn−1 = γn, and in that case, the two rows of the
matrix above that contain Cn and Bn are linearly dependent, thus making the mass matrix singular.
Suppose γn−1 6= γn, so that Cn is invertible. In the next step of our procedure the block An+1 is
replaced by

Cn+1 = An+1 − BnC−1
n Bn. (53)

Together with the condition C1 = A1, this gives us a recurrence. By induction on n, we find that

Cn =

(
1
4 δn−1 +

1
3 δn − 1

4 δn−1γn−1 − 1
3 δnγn

− 1
4 δn−1γn−1 − 1

3 δnγn
1
4 δn−1γ2

n−1 +
1
3 δnγ2

n

)
(54)

and
det Ci =

1
12

δi−1δi(γi−1 − γi)
2, (55)

which justifies our assumptions on the invertibility of the blocks Ci. We can now express the
determinant of the mass matrix as det C1 · ... · det CN . The final formula is

det M̃N(y, X) =
δ0δ2

1 ...δ2
N−1δN

9× 12N−1 (γ0 − γ1)
2...(γN−1 − γN)

2. (56)

We see that the mass matrix becomes singular iff γi−1 = γi for some i, and this condition defines
a measure zero subset of R2N .

Remark 1. This result shows that the finite-dimensional system described by the semi-discrete Lagrangian
of Equation (44) is non-degenerate almost everywhere. This means that, unlike in the continuous case,
the Euler–Lagrange equations corresponding to the variations of the yi’s and Xi’s are independent of each
other (almost everywhere) and the equations corresponding to the Xi’s are in fact necessary for the correct
description of the dynamics. This can also be seen in a more general way. Owing to the fact we are considering a
finite element approximation, the semi-discrete action functional S̃N is simply a restriction of S̃, and therefore,
Equation (37) still holds. The corresponding Euler–Lagrange equations take the form

δ1S̃[ϕ, X] · δϕ(x, t) = 0,

δ2S̃[ϕ, X] · δX(x, t) = 0,
(57)

which must hold for all variations δϕ(x, t)=∑N
i=1 δyi(t)ηi(x) and δX(x, t)=∑N

i=1 δXi(t)ηi(x). Since we are
working in a finite dimensional subspace, the second equation now does not follow from the first equation. To see
this, consider a particular variation δX(x, t) = δXk(t)ηk(x) for some k, where δXk 6≡ 0. Then, we have

− ϕx

Xx
δXk(t) =


−γk−1 δXk(t) ηk(x), if xk−1 ≤ x ≤ xk,
−γk δXk(t) ηk(x), if xk ≤ x ≤ xk+1,

0, otherwise,
(58)
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which is discontinuous at x = xk and cannot be expressed as ∑N
i=1 δyi(t)ηi(x) for any δyi(t) unless γk−1 = γk.

Therefore, we cannot invoke the first equation to show that δ2S̃[ϕ, X] · δX(x, t) = 0. The second equation
becomes independent.

Remark 2. It is also instructive to realize what exactly happens when γk−1 = γk. This means that, locally
in the interval [Xk−1, Xk+1], the field φ(X, t) is a straight line with the slope γk. It also means that there are
infinitely many values (Xk, yk) that reproduce the same local shape of φ(X, t). This reflects the arbitrariness
of X(x, t) in the infinite-dimensional setting. In the finite element setting, however, this holds only when the
points (Xk−1, yk−1), (Xk, yk), and (Xk+1, yk+1) line up. Otherwise any change to the middle point changes the
shape of φ(X, t). See Figure 1.

X

φ

X

φ

(X
k−1

,y
k−1
)

(X
k
,y
k
)

(X’
k
,y’
k
)

(X
k+1

,y
k+1
)

(X’
k
,y’
k
)

(X
k
,y
k
)

(X
k−1

,y
k−1
)

(X
k+1

,y
k+1
)

Figure 1. (Left) If γk−1 6= γk, then any change to the middle point changes the local shape of φ(X, t).
(Right) If γk−1 = γk, then there are infinitely many possible positions for (Xk, yk) that reproduce the
local linear shape of φ(X, t).

3.4. Existence and Uniqueness of Solutions

Since the Legendre Transform in Equation (46) becomes singular at some points, this raises a
question about the existence and uniqueness of the solutions to the Euler–Lagrange Equation (57).
In this section, we provide a partial answer to this problem. We will begin by computing the Lagrangian
symplectic form

Ω̃N =
N

∑
i=1

dyi ∧ dpi + dXi ∧ dSi, (59)

where pi and Si are given by Equation (45). For notational convenience, we will collectively
denote q = (y1, X1, ..., yN , XN)

T and q̇ = (ẏ1, Ẋ1, ..., ẏN , ẊN)
T . Then, in the ordered basis

( ∂
∂q1

, ..., ∂
∂q2N

, ∂
∂q̇1

, ..., ∂
∂q̇2N

), the symplectic form can be represented by the matrix

Ω̃N(q, q̇) =

(
∆̃N(q, q̇) M̃N(q)
−M̃N(q) 0

)
, (60)

where the 2N × 2N block ∆̃N(q, q̇) has the further block tridiagonal structure
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∆̃N(q, q̇) =



Γ1 Λ1

−ΛT
1 Γ2 Λ2

−ΛT
2 Γ3 Λ3

. . . . . . . . .
. . . . . . ΛN−1

−ΛT
N−1 ΓN


(61)

with the 2× 2 blocks

Γi =

(
0 − ẏi+1−ẏi−1

3 − Ẋi−1+2Ẋi
3 γi−1 +

2Ẋi+Ẋi+1
3 γi

ẏi+1−ẏi−1
3 +

Ẋi−1+2Ẋi
3 γi−1 −

2Ẋi+Ẋi+1
3 γi 0

)
,

Λi =

(
− Ẋi+Ẋi+1

2 − ẏi+1−ẏi
6 +

Ẋi+2Ẋi+1
3 γi

ẏi+1−ẏi
6 +

2Ẋi+Ẋi+1
3 γi − Ẋi+Ẋi+1

2 γ2
i

)
.

(62)

In this form, it is easy to see that

det Ω̃N(q, q̇) =
(

det M̃N(q)
)2

, (63)

so the symplectic form is singular whenever the mass matrix is.
The energy corresponding to the Lagrangian in Equation (44) can be written as

ẼN(q, q̇) =
1
2

q̇T M̃N(q) q̇ +
N

∑
k=0

∫ xk+1

xk

R
(

γk, ykηk(x) + yk+1ηk+1(x)
)Xk+1 − Xk

∆x
dx. (64)

In the chosen coordinates, dẼN can be represented by the row vector dẼN = (∂ẼN/∂q1, ..., ∂ẼN/∂q̇2N).
It turns out that

dẼT
N(q, q̇) =

(
ξ

M̃N(q)q̇

)
, (65)

where the vector ξ has the following block structure

ξ =

 ξ1
...

ξN

 . (66)

Each of these blocks has the form ξk = (ξk,1, ξk,2)
T . Through basic algebraic manipulations and

integration by parts, one finds that

ξk,1 =
ẏk+1(2Ẋk+1 + Ẋk) + ẏk(Ẋk+1 − Ẋk−1)− ẏk−1(Ẋk + 2Ẋk−1)

6

+
Ẋ2

k + ẊkẊk−1 + Ẋ2
k−1

3
γk−1 −

Ẋ2
k+1 + Ẋk+1Ẋk + Ẋ2

k
3

γk

+
1

∆x

∫ xk

xk−1

∂R
∂φX

(
γk−1, yk−1ηk−1(x) + ykηk(x)

)
dx

− 1
∆x

∫ xk+1

xk

∂R
∂φX

(
γk, ykηk(x) + yk+1ηk+1(x)

)
dx

+
1

γk−1

[
R(γk−1, yk)−

1
∆x

∫ xk

xk−1

R
(

γk−1, yk−1ηk−1(x) + ykηk(x)
)

dx
]

− 1
γk

[
R(γk, yk)−

1
∆x

∫ xk+1

xk

R
(

γk, ykηk(x) + yk+1ηk+1(x)
)

dx
]
,

(67)
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and

ξk,2 =
ẏ2

k−1 + ẏk−1ẏk − ẏk ẏk+1 − ẏ2
k+1

6

−
Ẋ2

k + ẊkẊk−1 + Ẋ2
k−1

6
γ2

k−1 +
Ẋ2

k+1 + Ẋk+1Ẋk + Ẋ2
k

6
γ2

k

− γk−1
∆x

∫ xk

xk−1

∂R
∂φX

(
γk−1, yk−1ηk−1(x) + ykηk(x)

)
dx

+
γk
∆x

∫ xk+1

xk

∂R
∂φX

(
γk, ykηk(x) + yk+1ηk+1(x)

)
dx

+
1

∆x

∫ xk

xk−1

R
(

γk−1, yk−1ηk−1(x) + ykηk(x)
)

dx

− 1
∆x

∫ xk+1

xk

R
(

γk, ykηk(x) + yk+1ηk+1(x)
)

dx.

(68)

We are now ready to consider the generalized Hamiltonian equation

iZΩ̃N = dẼN , (69)

which we solve for the vector field Z = ∑2N
i=1 αi ∂/∂qi + βi ∂/∂q̇i. In the matrix representation, this

equation takes the form

Ω̃T
N(q, q̇) ·

(
α

β

)
= dẼT

N(q, q̇). (70)

Equations of this form are called (quasilinear) implicit ODEs (see References [17,18]). If the
symplectic form is non-singular in a neighborhood of (q(0), q̇(0)), then the equation can be solved
directly via

Z = [Ω̃T
N(q, q̇)]−1dẼT

N(q, q̇)

to obtain the standard explicit ODE form, and standard existence/uniqueness theorems (Picard’s,
Peano’s, etc.) of ODE theory can be invoked to show local existence and uniqueness of the flow of Z in
a neighborhood of (q(0), q̇(0)). If, however, the symplectic form is singular at (q(0), q̇(0)), then there are
two possibilities. The first case is

dẼT
N(q

(0), q̇(0)) 6∈ Range Ω̃T
N(q

(0), q̇(0)) (71)

and it means there is no solution for Z at (q(0), q̇(0)). This type of singularity is called an algebraic one,
and it leads to so-called impasse points (see References [17–19]).

The other case is
dẼT

N(q
(0), q̇(0)) ∈ Range Ω̃T

N(q
(0), q̇(0)) (72)

and it means that there exists a nonunique solution Z at (q(0), q̇(0)). This type of singularity is
called a geometric one. If (q(0), q̇(0)) is a limit of regular points of Equation (70) (i.e., points where
the symplectic form is nonsingular), then there might exist an integral curve of Z passing through
(q(0), q̇(0)). See References [17–23] for more details.

Proposition 8. The singularities of the symplectic form Ω̃N(q, q̇) are geometric.

Proof. Suppose that the mass matrix (and thus the symplectic form) is singular at (q(0), q̇(0)). Using the
block structures described by Equations (60) and (65), we can write Equation (70) as the system

−∆̃N(q(0), q̇(0)) α− M̃N(q(0)) β = ξ,

M̃N(q(0)) α = M̃N(q(0)) q̇(0).
(73)
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The second equation implies that there exists a solution α = q̇(0). In fact, this is the only solution
we are interested in, since it satisfies the second order condition: The Euler–Lagrange equations
underlying the variationl principle are second order, so we are only interested in solutions of the form
Z = ∑2N

i=1 q̇i ∂/∂qi + βi ∂/∂q̇i. The first equation can be rewritten as

M̃N(q(0)) β = −ξ − ∆̃N(q(0), q̇(0)) q̇(0). (74)

Since the mass matrix is singular, we must have γk−1 = γk for some k. As we saw in Section 3.3,
this means that the two rows of the kth “block row” of the mass matrix (i.e., the rows containing the
blocks Bk−1, Ak, and Bk) are not linearly independent. In fact, we have

(Bk−1)2∗ = −γk(Bk−1)1∗, (Ak)2∗ = −γk(Ak)1∗, (Bk)2∗ = −γk(Bk)1∗, (75)

where am∗ denotes the mth row of the matrix a. Equation (74) will have a solution for
β iff the right-hand side satisfies a similar scaling condition in the the kth “block element”.
Using Equations (62), (67) and (68), we show that −ξ − ∆̃N q̇(0) indeed has this property. Hence,
dẼT

N(q
(0), q̇(0)) ∈ Range Ω̃T

N(q
(0), q̇(0)), and (q(0), q̇(0)) is a geometric singularity. Moreover, since

γk−1 = γk defines a hypersurface in R2N ×R2N , (q(0), q̇(0)) is a limit of regular points.

Remark 3. Numerical time integration of the semi-discrete equations of motion (Equation (70)) has to deal with
the singularity points of the symplectic form. While there are some numerical algorithms allowing one to get
past singular hypersurfaces (see Reference [17]), it might not be very practical from the application point of view.
Note that, unlike in the continuous case, the time evolution of the meshpoints Xi’s is governed by the equations
of motion, so the user does not have any influence on how the mesh is adapted. More importantly, there is no
built-in mechanism that would prevent mesh tangling. Some preliminary numerical experiments show that the
mesh points eventually collapse when started with nonzero initial velocities.

Remark 4. The singularities of the mass matrix of Equation (47) bear some similarities to the singularities of the
mass matrices encountered in the Moving Finite Element method. In References [24,25], the authors proposed
introducing a small “internodal” viscosity which penalizes the method for relative motion between the nodes
and thus regularizes the mass matrix. A similar idea could be applied in our case: One could add some small ε

kinetic terms to the Lagrangian in Equation (44) in order to regularize the Legendre Transform. In light of the
remark made above, we did not follow this idea further and decided to take a different route instead, as described
in the following sections. However, investigating further similarities between our variational approach and the
Moving Finite Element method might be worthwhile. There also might be some connection to the r-adaptive
method presented in Reference [26]: The evolution of the mesh in that method is also set by the equations of
motion, although the authors considered a different variational principle and different theoretical reasoning to
justify the validity of their approach.

3.5. Constraints and Adaptation Strategy

As we saw in Section 3.4, upon discretization, we lose the arbitrariness of X(x, t) and the evolution
of Xi(t) is governed by the equations of motion, while we still want to be able to select a desired
mesh adaptation strategy, like Equation (28). This could be done by augmenting the Lagrangian
in Equation (44) with Lagrange multipliers corresponding to each constraint gi. However, it is not
obvious that the dynamics of the constrained system as defined would reflect in any way the behavior
of the approximated system with the Lagrangian density given in Equation (42). We will show that the
constraints can be added via Lagrange multipliers already at the continuous level (Equation (42)) and
the continuous system as defined can be then discretized to arrive at the Lagrangian of Equation (44)
with the desired adaptation constraints.
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3.5.1. Global Constraint

As mentioned before, eventually we would like to impose the constraints

gi(y1, ..., yN , X1, ..., XN) = 0 i = 1, ..., N (76)

on the semi-discrete system defined by the Lagrangian in Equation (44). Let us assume that g :
R2N −→ RN , g = (g1, ..., gN)

T is C1 and 0 is a regular value of g, so that Equation (76) defines a
submanifold. To see how these constraints can be introduced at the continuous level, let us select
uniformly distributed points xi = i · ∆x, i = 0, ..., N + 1, and ∆x = Xmax/(N + 1) and demand that
the constraints

gi

(
ϕ(x1, t), ..., ϕ(xN , t), X(x1, t), ..., X(xN , t)

)
= 0, i = 1, ..., N (77)

be satisfied by ϕ(x, t) and X(x, t). One way of imposing these constraints is solving the system

δ1S̃[ϕ, X] · δϕ(x, t) = 0 for all δϕ(x, t),

gi

(
ϕ(x1, t), ..., ϕ(xN , t), X(x1, t), ..., X(xN , t)

)
= 0, i = 1, ..., N.

(78)

This system consists of one Euler–Lagrange equation that corresponds to extremizing S̃ with
respect to ϕ (we saw in Section 3.1 that the other Euler–Lagrange equation is not independent) and a
set of constraints enforced at some preselected point xi. Note, that upon finite element discretization
on a mesh coinciding with the preselected points, this system reduces to the approach presented in
Section 2: We minimize the discrete action with respect to the yi’s only and supplement the resulting
equations with the constraints of Equation (76).

Another way that we want to explore consists in using Lagrange multipliers. Define the auxiliary
action functional as

S̃C[ϕ, X, λk] = S̃[ϕ, X]−
N

∑
i=1

∫ Tmax

0
λi(t) · gi

(
ϕ(x1, t), ..., ϕ(xN , t), X(x1, t), ..., X(xN , t)

)
dt. (79)

We will assume that the Lagrange multipliers λi(t) are at least continuous in time. According to
the method of Lagrange multipliers, we seek the stationary points of S̃C. This leads to the following
system of equations:

δ1S̃[ϕ, X] · δϕ(x, t)−
N

∑
i=1

N

∑
j=1

∫ Tmax

0
λi(t)

∂gi
∂yj

δϕ(xj, t) dt = 0 for all δϕ(x, t),

δ2S̃[ϕ, X] · δX(x, t)−
N

∑
i=1

N

∑
j=1

∫ Tmax

0
λi(t)

∂gi
∂Xj

δX(xj, t) dt = 0 for all δX(x, t),

gi

(
ϕ(x1, t), ..., ϕ(xN , t), X(x1, t), ..., X(xN , t)

)
= 0, i = 1, ..., N,

(80)

where, for clarity, we suppressed writing the arguments of ∂gi
∂yj

and ∂gi
∂Xj

.

Equation (78) is more intuitive because we directly use the arbitrariness of X(x, t) and simply
restrict it further by imposing constraints. It is not immediately obvious how the solutions of
Equations (78) and (80) relate to each other. We would like both systems to be “equivalent” in some
sense or at least their solution sets to overlap. Let us investigate this issue in more detail.

Suppose (ϕ, X) satisfies Equation (78). Then, it is quite trivial to see that (ϕ, X, λ1, ..., λN) such
that λk ≡ 0 satisfies Equation (80): The second equation is implied by the first one and the other
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equations coincide with those of Equation (78). At this point, it should be obvious that Equation (80)
may have more solutions for ϕ and X than Equation (78).

Proposition 9. The only solutions (ϕ, X, λ1, ..., λN) to Equation (80) that satisfy Equation (78) as well are
those with λk ≡ 0 for all k.

Proof. Suppose (ϕ, X, λ1, ..., λN) satisfy both Equations (78) and (80). Equation (78) implies that
δ1S̃ · δϕ = 0 and δ2S̃ · δX = 0. Using this in Equation (80) gives

N

∑
j=1

∫ Tmax

0
dt δϕ(xj, t)

N

∑
i=1

λi(t)
∂gi
∂yj

= 0 for all δϕ(x, t),

N

∑
j=1

∫ Tmax

0
dt δX(xj, t)

N

∑
i=1

λi(t)
∂gi
∂Xj

= 0 for all δX(x, t).

(81)

In particular, this has to hold for variations δϕ and δX such that δϕ(xj, t) = δX(xj, t) = ν(t) · δkj,
where ν(t) is an arbitrary continuous function of time. If we further assume that for all x ∈ [0, Xmax]

the functions ϕ(x, .) and X(x, .) are continuous, both ∑N
i=1 λi(t)

∂gi
∂yk

and ∑N
i=1 λi(t)

∂gi
∂Xk

are continuous
and we get

Dg
(

ϕ(x1, t), ..., ϕ(xN , t), X(x1, t), ..., X(xN , t)
)T
· λ(t) = 0 (82)

for all t, where λ = (λ1, ..., λN)
T and the N × 2N matrix Dg =

[
∂gi
∂yk

∂gi
∂Xk

]
i,k=1,...,N

is the derivative of

g. Since we assumed that 0 is a regular value of g and the constraint g = 0 is satisfied by ϕ and X,
we have that for all t the matrix Dg has full rank—that is, there exists a non-singular N × N submatrix
Ξ. Then, the equation ΞTλ(t) = 0 implies λ ≡ 0.

We see that considering Lagrange multipliers in Equation (79) makes sense at the continuous
level. We can now perform a finite element discretization. The auxiliary Lagrangian L̃C : Q×G×W ×
Z×RN −→ R corresponding to Equation (79) can be written as

L̃C[ϕ, X, ϕt, Xt, λk] = L̃[ϕ, X, ϕt, Xt]−
N

∑
i=1

λi · gi

(
ϕ(x1), ..., ϕ(xN), X(x1), ..., X(xN)

)
, (83)

where L̃ is the Lagrangian of the unconstrained theory and has been defined by Equation (38). Let us
choose a uniform mesh coinciding with the preselected points xi. As in Section 3.2, we consider the
restriction L̃CN = L̃C|QN×GN×WN×ZN×RN and we get

L̃CN(yi, Xj, ẏk, Ẋl , λm) = L̃N(yi, Xj, ẏk, Ẋl)−
N

∑
i=1

λi · gi(y1, ..., yN , X1, ..., XN). (84)

We see that the semi-discrete Lagrangian L̃CN is obtained from the semi-discrete Lagrangian L̃N
by adding the constraints gi directly at the semi-discrete level, which is exactly what we set out to do
at the beginning of this section. However, in the semi-discrete setting, we cannot expect the Lagrange
multipliers to vanish for solutions of interest. This is because there is no semi-discrete counterpart of
Proposition 9. On one hand, the semi-discrete version of Equation (78) (that is, the approach presented
in Section 2) does not imply that δ2S̃ · δX = 0, so the above proof will not work. On the other hand,
if we supplement Equation (78) with the equation corresponding to variations of X, then the finite
element discretization will not have solutions, unless the constraint functions are integrals of motion of
the system described by L̃N(yi, Xj, ẏk, Ẋl), which generally is not the case. Nonetheless, it is reasonable
to expect that if the continuous system given by Equation (78) has a solution, then the Lagrange
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multipliers of the semi-discrete system defined by the Lagrangian in Equation (84) should remain
small.

Defining constraints by Equation (77) allowed us to use the same finite element discretization
for both L̃ and the constraints and to prove some correspondence between the solutions of
Equations (78) and (80). However, the constraints of Equation (77) are global in the sense that they
depend on the values of the fields ϕ and X at different points in space. Moreover, these constraints
do not determine unique solutions to Equations (78) and (80), which is a little cumbersome when
discussing multisymplecticity (see Section 4).

3.5.2. Local Constraint

In Section 2.4, we discussed how some adaptation constraints of interest can be derived from
certain partial differential equations based on the equidistribution principle, for instance Equation (27).
We can view these PDEs as local constraints that only depend on pointwise values of the fields ϕ, X
and their spatial derivatives. Let G = G(ϕ, X, ϕx, Xx, ϕxx, Xxx, ...) represent such a local constraint.
Then, similarly to Equation (78), we can write our control-theoretic strategy from Section 2 as

δ1S̃[ϕ, X] · δϕ(x, t) = 0 for all δϕ(x, t),

G(ϕ, X, ϕx, Xx, ϕxx, Xxx, ...) = 0.
(85)

Note that higher-order derivatives of the fields may require the use of higher degree basis
functions than the ones in Equation (9) or of finite differences instead.

The Lagrange multiplier approach consists in defining the auxiliary Lagrangian:

L̃C[ϕ, X, ϕt, Xt, λ] = L̃[ϕ, X, ϕt, Xt]−
∫ Xmax

0
λ(x) · G(ϕ, X, ϕx, Xx, ϕxx, Xxx, ...) dx. (86)

Suppose that the pair (ϕ, X) satisfies Equation (85). Then, much like in Section 3.5.1, one can easily
check that the triple (ϕ, X, λ ≡ 0) satisfies the Euler–Lagrange equations associated with Equation (86).
However, an analog of Proposition 9 does not seem to be very interesting in this case; therefore, we are
not proving it here.

Introducing the constraints this way is convenient because the Lagrangian given in Equation (86)
then represents a constrained multisymplectic field theory with a local constraint, which makes
the analysis of multisymplecticity easier (see Section 4). The disadvantage is that discretization of
the Lagrangian in Equation (86) requires mixed methods. We will use the linear finite elements
of Equation (9) to discretize L̃[ϕ, X, ϕt, Xt], but the constraint term will be approximated via finite
differences. This way, we again obtain the semi-discrete Lagrangian of Equation (84), where gi
represents the discretization of G at the point x = xi.

In summary, the methods presented in Sections 3.5.1 and 3.5.2 both lead to the same semi-discrete
Lagrangian but have different theoretical advantages.

3.6. DAE Formulation of the Equations of Motion

The Lagrangian (84) can be written as

L̃CN(q, q̇, λ) =
1
2

q̇T M̃N(q) q̇− RN(q)− λT g(q), (87)

where

RN(q) =
N

∑
k=0

∫ xk+1

xk

R
(

γk, ykηk(x) + yk+1ηk+1(x)
)Xk+1 − Xk

∆x
dx. (88)
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The Euler–Lagrange equations thus take the form

q̇ = u,

M̃N(q) u̇ = f (q, u)− Dg(q)T λ,

g(q) = 0,

(89)

where

fk(q, u) = −∂RN
∂qk

+
2N

∑
i,j=1

(1
2

∂(M̃N)ij

∂qk
− ∂(M̃N)ki

∂qj

)
uiuj. (90)

Equation (89) is to be solved for the unknown functions q(t), u(t) and λ(t). This is a DAE system
of index 3, since we are lacking a differential equation for λ(t) and the constraint equation has to
be differentiated three times in order to express λ̇ as a function of q, u, and λ, provided that certain
regularity conditions are satisfied. Let us determine these conditions. Differentiate the constraint
equation with respect to time twice to obtain the acceleration level constraint.

Dg(q) u̇ = h(q, u), (91)

where

hk(q, u) = −
2N

∑
i,j=1

∂2gk
∂qi∂qj

uiuj. (92)

We can then write Equation (91) and the second equation of Equation (89) together as(
M̃N(q) Dg(q)T

Dg(q) 0

)(
u̇
λ

)
=

(
f (q, u)
h(q, u)

)
. (93)

If we could solve this equation for u̇ and λ in terms of q and u, then we could simply differentiate
the expression for λ one more time to obtain the missing differential equation, thus showing
Equation (89) is of index 3. Equation (93) is solvable if its matrix is invertible. Hence, for Equation (89)
to be of index 3, the following condition

det

(
M̃N(q) Dg(q)T

Dg(q) 0

)
6= 0 (94)

has to be satisfied for all q or at least in a neighborhood of the points satisfying g(q) = 0. Note that,
with suitably chosen constraints, this condition allows the mass matrix to be singular.

We would like to perform time integration of this mechanical system using the symplectic
(variational) Lobatto IIIA-IIIB quadratures for constrained systems (see References [1,2,12,27–31]).
However, due to the singularity of the Runge–Kutta coefficient matrices (aij) and (āij) for the Lobatto
IIIA and IIIB schemes, the assumption stated in Equation (94) does not guarantee that these quadratures
define a unique numerical solution: The mass matrix would need to be invertible. To circumvent this
numerical obstacle, we resort to a trick described in Reference [28]. We embed our mechanical system
in a higher dimensional configuration space by adding slack degrees of freedom r and ṙ and form the
augmented Lagrangian L̃A

N by modifying the kinetic term of L̃N to read

L̃A
N(q, r, q̇, ṙ) =

1
2

(
q̇T ṙT

)
·
(

M̃N(q) Dg(q)T

Dg(q) 0

)
·
(

q̇
ṙ

)
− RN(q). (95)
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Assuming Equation (94) holds, the augmented system has a non-singular mass matrix. If we
multiply out the terms we obtain simply

L̃A
N(q, r, q̇, ṙ) = L̃N(q, q̇) + ṙT Dg(q) q̇. (96)

This formula in fact holds for general Lagrangians, not only for Equation (44). In addition to
g(q) = 0, we further impose the constraint r = 0. Then, the augmented constrained Lagrangian takes
the form

L̃A
CN(q, r, q̇, ṙ, λ, µ) = L̃N(q, q̇) + ṙT Dg(q) q̇− λT g(q)− µTr. (97)

The corresponding Euler–Lagrange equations are

q̇ = u,

ṙ = w,

M̃N(q) u̇ + Dg(q)T ẇ = f (q, u)− Dg(q)T λ,

Dg(q) u̇ = h(q, u)− µ,

g(q) = 0,

r = 0.

(98)

It is straightforward to verify that r(t) = 0, w(t) = 0, and µ(t) = 0 are the exact solution
and that the remaining equations reduce to Equation (89), that is, the evolution of the augmented
system coincides with the evolution of the original system by construction. The advantage is that
the augmented system is now regular and we can readily apply the Lobatto IIIA–IIIB method for
constrained systems to compute a numerical solution. It should be intuitively clear that this numerical
solution will approximate the solution of Equation (89) as well. What is not immediately obvious
is whether a variational integrator based on the Lagrangian in Equation (96) can be interpreted as a
variational integrator based on L̃N . This can be elegantly justified with the help of exact constrained
discrete Lagrangians. LetN ⊂ QN ×GN be the constraint submanifold defined by g(q) = 0. The exact
constrained discrete Lagrangian L̃C,E

N : N ×N −→ R is defined by

L̃C,E
N
(
q(1), q(2)

)
=
∫ ∆t

0
L̃N
(
q(t), q̇(t)

)
dt, (99)

where q(t) is the solution to the constrained Euler–Lagrange Equation (89) such that it satisfies the
boundary conditions q(0) = q(1) and q(∆t) = q(2). Note that N × {0} ⊂ (QN × GN)× RN is the
constraint submanifold defined by g(q) = 0 and r = 0. Since necessarily r(1) = r(2) = 0, we can define
the exact augmented constrained discrete Lagrangian L̃A,C,E

N : N ×N −→ R by

L̃A,C,E
N

(
q(1), q(2)

)
=
∫ ∆t

0
L̃A

N
(
q(t), r(t), q̇(t), ṙ(t)

)
dt, (100)

where q(t) and r(t) are the solutions to the augmented constrained Euler–Lagrange Equation (98) such
that the boundary conditions q(0) = q(1), q(∆t) = q(2), and r(0) = r(∆t) = 0 are satisfied.

Proposition 10. The exact discrete Lagrangians L̃A,C,E
N and L̃C,E

N are equal.

Proof. Let q(t) and r(t) be the solutions to Equation (98) such that the boundary conditions q(0) = q(1),
q(∆t) = q(2), and r(0) = r(∆t) = 0 are satisfied. As argued before, we in fact have r(t) = 0 and q(t)
satisfies Equation (89) as well. By Equation (96), we have

L̃A
N
(
q(t), r(t), q̇(t), ṙ(t)

)
= L̃N

(
q(t), q̇(t)

)
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for all t ∈ [0, ∆t], and consequently, L̃A,C,E
N = L̃C,E

N .

This means that any discrete Lagrangian L̃d : (QN × GN) × RN × (QN × GN) × RN −→ R
that approximates L̃A,C,E

N to order s also approximates L̃C,E
N to the same order, that is, a variational

integrator for Equation (98), in particular our Lobatto IIIA–IIIB scheme, is also a variational integrator
for Equation (89).

3.7. Backward error analysis

The advantage of the Lagrange multiplier approach is the fact that upon spatial discretization
we deal with a constrained mechanical system. Backward error analysis of symplectic/variational
numerical schemes for such systems shows that the modified equations also describe a constrained
mechanical system for a nearby Hamiltonian (see Theorem 5.6 in Section IX.5.2 of Reference [1]).
Therefore, we expect the Lagrange multiplier strategy to demonstrate better performance in terms
of energy conservation than the control-theoretic strategy. The Lagrange multiplier approach makes
better use of the geometry underlying the field theory we consider, the key idea being to treat
the reparametrization field X(x, t) as an additional dynamical degree of freedom on equal footing
with ϕ(x, t).

4. Multisymplectic Field Theory Formalism

In Sections 2 and 3, we took the view of infinite dimensional manifolds of fields as configuration
spaces and presented a way to construct space-adaptive variational integrators in that formalism.
We essentially applied symplectic integrators to semi-discretized Lagrangian field theories. In this
section, we show how r-adaptive integrators can be described in the more general framework of
multisymplectic geometry. In particular, we show that some of the integrators obtained in the previous
sections can be interpreted as multisymplectic variational integrators. Multisymplectic geometry
provides a covariant formalism for the study of field theories in which time and space are treated on
equal footing, as a conseqence of which multisymplectic variational integrators allow for more general
discretizations of spacetime, such that, for instance, each element of space may be integrated with
a different timestep (see Reference [4]). For the convenience of the reader, below, we briefly review
some background material and provide relevant references for further details. We then proceed to
reformulate our adaptation strategies in the language of multisymplectic field theory.

4.1. Background Material

4.1.1. Lagrangian Mechanics and Veselov-Type Discretizations

Let Q be the configuration manifold of a certain mechanical system and TQ be its tangent
bundle. Denote the coordinates on Q by qi and on TQ by (qi, q̇i), where i = 1, 2, ..., n. The system
is described by defining the Lagrangian L : TQ −→ R and the corresponding action functional
S[q(t)] =

∫ b
a L
(
qi(t), q̇i(t)

)
dt. The dynamics are obtained through Hamilton’s principle, which seeks

the curves q(t) for which the functional S[q(t)] is stationary under variations of q(t) with fixed
endpoints, i.e., we seek q(t) such that

dS[q(t)] · δq(t) =
d
dε

∣∣∣∣
ε=0

S[qε(t)] = 0 (101)

for all δq(t) with δq(a) = δq(b) = 0, where qε(t) is a smooth family of curves satisfying q0 = q and
d
dε

∣∣
ε=0qε = δq. By using integration by parts, the Euler–Lagrange equations follow as

∂L
∂qi −

d
dt

∂L
∂q̇i = 0. (102)
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The canonical symplectic form Ω on T∗Q, the 2n-dimensional cotangent bundle of Q, is given
by Ω = dqi ∧ dpi, where summation over i is implied and (qi, pi) is the canonical coordinates on
T∗Q. The Lagrangian defines the Legendre transformation FL : TQ −→ T∗Q, which in coordinates is
given by (qi, pi) = (qi, ∂L

∂q̇i ). We then define the Lagrange 2-form on TQ by pulling back the canonical
symplectic form, i.e., ΩL = FL∗Ω. If the Legendre transformation is a local diffeomorphism, then ΩL
is a symplectic form. The Lagrange vector field is a vector field XE on TQ that satisfies XEyΩL = dE,
where the energy E is defined by E(vq) = FL(vq) · vq − L(vq) and y denotes the interior product,
i.e., the contraction of a differential form with a vector field. It can be shown that the flow Ft of this
vector field preserves the symplectic form, that is, F∗t ΩL = ΩL. The flow Ft is obtained by solving the
Euler–Lagrange Equation (102).

For a Veselov-type discretization, we essentially replace TQ with Q × Q, which serves as a
discrete approximation of the tangent bundle. We define a discrete Lagrangian Ld as a smooth map
Ld : Q × Q −→ R and the corresponding discrete action S = ∑N−1

k=0 Ld(qk, qk+1). The variational
principle now seeks a sequence q0, q1, ..., qN that extremizes S for variations holding the endpoints q0

and qN fixed. The discrete Euler–Lagrange equations follow

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0. (103)

This implicitly defines a discrete flow F : Q× Q −→ Q× Q such that F(qk−1, qk) = (qk, qk+1).

One can define the discrete Lagrange 2-form on Q×Q by ωL = ∂2Ld

∂qi
0∂qj

1

dqi
0 ∧ dqj

1, where (qi
0, qj

1) denotes

the coordinates on Q×Q. It then follows that the discrete flow F is symplectic, i.e., F∗ωL = ωL.
Given a continuous Lagrangian system with L : TQ −→ R. one chooses a corresponding discrete

Lagrangian as an approximation Ld(qk, qk+1) ≈
∫ tk+1

tk
L
(
q(t), q̇(t)

)
dt, where q(t) is the solution of the

Euler–Lagrange equations corresponding to L with the boundary values q(tk) = qk and q(tk+1) = qk+1.
For more details regarding Lagrangian mechanics, variational principles, and symplectic geometry,

see Reference [32]. Discrete Mechanics and variational integrators are discussed in Reference [2].

4.1.2. Multisymplectic Geometry and Lagrangian Field Theory

Let X be an oriented manifold representing the (n + 1)-dimensional spacetime with local
coordinates (x0, x1, . . . , xn) ≡ (t, x), where x0 ≡ t is time and (x1, . . . , xn) ≡ x are space coordinates.
Physical fields are sections of a configuration fiber bundle πXY : Y −→ X , that is, continuous
maps φ : X −→ Y such that πXY ◦ φ = idX . This means that for every (t, x) ∈ X , φ(t, x) is
in the fiber over (t, x), which is Y(t,x) = π−1

XY((t, x)). The evolution of the field takes place on
the first jet bundle J1Y, which is the analog of TQ for mechanical systems. J1Y is defined as the
affine bundle over Y such that, for y ∈ Y(t,x), the fiber J1

yY consists of linear maps ϑ : T(t,x)X →
TyY satisfying the condition TπXY ◦ ϑ = idT(t,x)X . The local coordinates (xµ, ya) on Y induce

the coordinates (xµ, ya, va
µ) on J1Y. Intuitively, the first jet bundle consists of the configuration

bundle Y and of the first partial derivatives of the field variables with respect to the independent
variables. Let φ(x0, . . . , xn) = (x0, . . . , xn, y1, . . . , ym) in coordinates and let va

µ = ya
,µ = ∂ya/∂xµ

denote the partial derivatives. We can think of J1Y as a fiber bundle over X . Given a section
φ : X −→ Y, we can define its first jet prolongation j1φ : X −→ J1Y, in coordinates given by
j1φ(x0, x1, . . . , xn) = (x0, x1, . . . , xn, y1, . . . , ym, y1

,0, . . . , ym
,n), which is a section of the fiber bundle J1Y

over X . For higher-order field theories, we consider higher order jet bundles, defined iteratively by
J2Y = J1(J1Y) and so on. The local coordinates on J2Y are denoted (xµ, ya, va

µ, wa
µ, κa

µν). The second
jet prolongation j2φ : X −→ J2Y is given in coordinates by j2φ(xµ) = (xµ, ya, ya

,µ, ya
,µ, ya

,µ,ν).
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Lagrangian density for first-order field theories is defined as a map L : J1Y −→ R.
The corresponding action functional is S[φ] =

∫
U L(j1φ) dn+1x, where U ⊂ X . Hamilton’s principle

seeks fields φ(t, x) that extremize S, that is

d
dλ

∣∣∣∣
λ=0

S[ηλ
Y ◦ φ] = 0 (104)

for all ηλ
Y that keep the boundary conditions on ∂U fixed, where ηλ

Y : Y −→ Y is the flow of a vertical
vector field V on Y. This leads to the Euler–Lagrange equations

∂L
∂ya (j1φ)− ∂

∂xµ

(
∂L

∂va
µ
(j1φ)

)
= 0. (105)

Given the Lagrangian density L, one can define the Cartan (n + 1)-form ΘL on J1Y in
local coordinates given by ΘL = ∂L

∂va
µ

dya ∧ dnxµ + (L − ∂L
∂va

µ
va

µ)dn+1x, where dnxµ = ∂µ y dn+1x.

The multisymplectic (n + 2)-form is then defined by ΩL = −dΘL. Let P be the set of solutions of the
Euler–Lagrange equations, that is, the set of sections φ satisfying Equation (104) or Equation (105). For
a given φ ∈ P , let F be the set of first variations, that is, the set of vector fields V on J1Y such that
(t, x) → ηε

Y ◦ φ(t, x) is also a solution, where ηε
Y is the flow of V. The multisymplectic form formula

states that if φ ∈ P then for all V and W in F ,∫
∂U
(j1φ)∗

(
j1V y j1W yΩL

)
= 0, (106)

where j1V is the jet prolongation of V, that is, the vector field on J1Y in local coordinates given by
j1V = (Vµ, Va, ∂Va

∂xµ + ∂Va

∂yb vb
µ − va

ν
∂Vν

∂xµ ), where V = (Vµ, Va) in local coordinates. The multisymplectic
form formula is the multisymplectic counterpart of the fact that, in finite-dimensional mechanics,
the flow of a mechanical system consists of symplectic maps.

For a kth-order Lagrangian field theory with the Lagrangian density L : JkY −→ R, analogous
geometric structures are defined on J2k−1Y. In particular, for a second-order field theory the
multisymplectic (n + 2)-form ΩL is defined on J3Y and a similar multisymplectic form formula
can be proven. If the Lagrangian density does not depend on the second-order time derivatives of the
field, it is convenient to define the subbundle J2

0Y ⊂ J2Y such that J2
0Y = {ϑ ∈ J2Y | κa

00 = 0}.
For more information about the geometry of jet bundles, see Reference [33]. The multisymplectic

formalism in field theory is discussed in Reference [34]. The multisymplectic form formula for
first-order field theories is derived in Reference [3] and generalized for second-order field theories in
Reference [35]. Higher-order field theory is considered in Reference [36].

4.1.3. Multisymplectic Variational Integrators

Veselov-type discretization can be generalized to multisymplectic field theory. We take
X = Z×Z = {(j, i)}, where for simplicity we consider dimX = 2, i.e., n = 1. The configuration fiber
bundle is Y = X ×F for some smooth manifold F . The fiber over (j, i) ∈ X is denoted Yji and its
elements are yji. A rectangle � of X is an ordered 4-tuple of the form � =

(
(j, i), (j, i + 1), (j + 1, i +

1), (j + 1, i)
)
= (�1,�2,�3,�4). The set of all rectangles in X is denoted X�. A point (j, i) is touched

by a rectangle if it is a vertex of that rectangle. Let U ⊂ X . Then (j, i) ∈ U is an interior point of U
if U contains all four rectangles that touch (j, i). The interior intU is the set of all interior points of
U . The closure clU is the union of all rectangles touching interior points of U . The boundary of U is
defined by ∂U = (U ∩ clU )\intU . A section of Y is a map φ : U ⊂ X → Y such that φ(j, i) ∈ Yji. We
can now define the discrete first jet bundle of Y as
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J1Y =
{
(yji, yj i+1, yj+1 i+1, yj+1 i)

∣∣ (j, i) ∈ X , yji, yj i+1, yj+1 i+1, yj+1 i ∈ F
}

= X� ×F 4.
(107)

Intuitively, the discrete first jet bundle is the set of all rectangles together with four values assigned
to their vertices. Those four values are enough to approximate the first derivatives of a smooth section
with respect to time and space using, for instance, finite differences. The first jet prolongation of
a section φ of Y is the map j1φ : X� → J1Y defined by j1φ(�) = (�, φ(�1), φ(�2), φ(�3), φ(�4)).
For a vector field V on Y, let Vji be its restriction to Yji. Define a discrete Lagrangian L : J1Y → R,
L = L(y1, y2, y3, y4), where for convenience we omit writing the base rectangle. The associated discrete
action is given by

S[φ] = ∑
�⊂U

L ◦ j1φ(�).

The discrete variational principle seeks sections that extremize the discrete action, that is,
mappings φ(j, i) such that

d
dλ

∣∣∣∣
λ=0

S[φλ] = 0 (108)

for all vector fields V on Y that keep the boundary conditions on ∂U fixed, where φλ(j, i) = F
Vji
λ (φ(j, i))

and F
Vji
λ is the flow of Vji on F . This is equivalent to the discrete Euler–Lagrange equations

∂L
∂y1

(yji, yj i+1, yj+1 i+1, yj+1 i) +
∂L
∂y2

(yj i−1, yji, yj+1 i, yj+1 i−1)+

∂L
∂y3

(yj−1 i−1, yj−1 i, yji, yj i−1) +
∂L
∂y4

(yj−1 i, yj−1 i+1, yj i+1, yji) = 0
(109)

for all (j, i) ∈ intU , where we adopt the convention φ(j, i) = yji. In analogy to the Veselov discretization
of mechanics, we can define four 2-forms Ωl

L on J1Y, where l = 1, 2, 3, 4 and Ω1
L + Ω2

L + Ω3
L + Ω4

L = 0,
that is, only three 2-forms of these forms are independent. The 4-tuple (Ω1

L, Ω2
L, Ω3

L, Ω4
L) is the

discrete analog of the multisymplectic form ΩL. We refer the reader to the literature for details,
e.g., Reference [3]. By analogy to the continuous case, let P be the set of solutions of the discrete
Euler–Lagrange Equation (109). For a given φ ∈ P , let F be the set of first variations, that is, the set of
vector fields V on J1Y defined similarly as in the continuous case. The discrete multisymplectic form
formula then states that if φ ∈ P then for all V and W in F ,

∑
�

�∩U 6=∅

(
∑

l
�l∈∂U

[
(j1φ)∗(j1V y j1W yΩl

L)
]
(�)

)
= 0, (110)

where the jet prolongations are defined to be

j1V(y�1 , y�2 , y�3 , y�4) =
(
V�1(y�1), V�2(y�2), V�3(y�3), V�4(y�4)

)
. (111)

The discrete multisymplectic form formula given in Equation (110) is in direct analogy to the
multisymplectic form formula that holds in the continuous case (Equation (106)).

Given a continuous Lagrangian density L, one chooses a corresponding discrete Lagrangian as
an approximation L(y�1 , y�2 , y�3 , y�4) ≈

∫
� L ◦ j1φ̄ dx dt, where � is the rectangular region of the

continuous spacetime that contains � and φ̄(t, x) is the solution of the Euler–Lagrange equations
corresponding to L with the boundary values at the vertices of � corresponding to y�1 , y�2 , y�3 ,
and y�4 .

The discrete second jet bundle J2Y can be defined by considering ordered 9-tuples
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� =
(
(j− 1, i− 1), (j− 1, i), (j− 1, i + 1), (j, i− 1),

(j, i), (j, i + 1), (j + 1, i− 1), (j + 1, i), (j + 1, i + 1)
)

= (�1,�2,�3,�4,�5,�6,�7,�8,�9)

(112)

instead of rectangles �, and the discrete subbundle J2
0Y can be defined by considering 6-tuples

� =
(
(j, i− 1), (j, i), (j, i + 1), (j + 1, i + 1), (j + 1, i), (j + 1, i− 1)

)
= (�1, �2, �3, �4, �5, �6).

(113)

Similar constructions then follow, and a similar discrete multisymplectic form formula can be
derived for a second order-field theory.

Multisymplectic variational integrators for first-order field theories are introduced in Reference [3]
and generalized for second-order field theories in Reference [35].

4.2. Analysis of the Control-Theoretic Approach

4.2.1. Continuous Setting

We now discuss a multisymplectic setting for the approach presented in Section 2. Let the
computational spacetime be X = R×R with coordinates (t, x) and consider the trivial configuration
bundle Y = X × R with coordinates (t, x, y). Let U = [0, Tmax] × [0, Xmax] and let our scalar field
be represented by a section ϕ̃ : U −→ Y with the coordinate representation ϕ̃(t, x) = (t, x, ϕ(t, x)).
Let (t, x, y, vt, vx) denote local coordinates on J1Y. In these coordinates, the first jet prolongation of ϕ̃ is
represented by j1 ϕ̃(t, x) = (t, x, ϕ(t, x), ϕt(t, x), ϕx(t, x)). Then, the Lagrangian density of Equation (6)
can be viewed as a mapping L̃ : J1Y −→ R. The corresponding action of Equation (3) can now be
expressed as

S̃[ϕ̃] =
∫
U
L̃
(

j1 ϕ̃
)

dt ∧ dx, (114)

Just like in Section 2, let us for the moment assume that the function X : U −→ [0, Xmax] is known,
so that we can view L̃ as being time- and space-dependent. The dynamics is obtained by extremizing
S̃ with respect to ϕ̃, that is, by solving for ϕ̃ such that

d
dλ

∣∣∣∣
λ=0

S̃[ηλ
Y ◦ ϕ̃] = 0 (115)

for all ηλ
Y that keep the boundary conditions on ∂U fixed, where ηλ

Y : Y −→ Y is the flow of a vertical
vector field V on Y. Therefore, for an a priori known X(t, x), the multisymplectic form formula
(Equation (106)) is satisfied for solutions of Equation (115).

Consider the additional bundle πXB : B = X × [0, Xmax] −→ X of which the sections X̃ : U −→ B
represent our diffeomorphisms. Let X̃(t, x) = (t, x, X(t, x)) denote a local coordinate representation
and assume X(t, .) is a diffeomorphism. Then, define Ỹ = Y ⊕ B. We have JkỸ ∼= JkY ⊕ JkB.
In Section 3.5.2, we argued that Equation (25) can be interpreted as a local constraint on the fields ϕ̃, X̃
and their spatial derivatives. This constraint can be represented by a function G : JkỸ −→ R. Sections
ϕ̃ and X̃ satisfy the constraint if G(jk ϕ̃, jkX̃) = 0. Therefore our control-theoretic strategy expressed in
Equation (85) can be rewritten as

d
dλ

∣∣∣∣
λ=0

S̃[ηλ
Y ◦ ϕ̃] = 0,

G(jk ϕ̃, jkX̃) = 0,
(116)

for all ηλ
Y, similarly as above. Let us argue how to interpret the notion of multisymplecticity

for this problem. Intuitively, multisymplecticity should be understood in a sense similar to
Proposition 3. We first solve Equation (116) for ϕ̃ and X̃, given some initial and boundary conditions.
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Then, we substitute this X̃ into Equation (115). Let P be the set of solutions to this problem. Naturally,
ϕ̃ ∈ P . The multisymplectic form formula (Equation (106)) will be satisfied for all fields in P , but the
constraint G = 0 will be satisfied only for ϕ̃.

4.2.2. Discretization

Discretize the computational spacetime R×R by picking the discrete set of points tj = j · ∆t,
xi = i · ∆x, and define X = {(j, i) | j, i ∈ Z}. Let X� and X� be the set of rectangles and 6-tuples in
X , respectively. The discrete configuration bundle is Y = X ×R, and for convenience of notation, let
the elements of the fiber Yji be denoted by yj

i . Let U = {(j, i) | j = 0, 1, . . . , M + 1, i = 0, 1, . . . , N + 1},
where ∆x = Xmax/(N + 1) and ∆t = Tmax/(M + 1). Suppose we have a discrete Lagrangian L̃ :
J1Y −→ R and the corresponding discrete action S̃ that approximates the action in Equation (114),
where we assume that X(t, x) is known and of the form (10). A variational integrator is obtained
by solving

d
dλ

∣∣∣∣
λ=0

S̃[ϕ̃λ] = 0 (117)

for a discrete section ϕ̃ : U −→ Y, as described in Section 4.1. This integrator is multisymplectic, i.e.,
the discrete multisymplectic form formula (Equation (110)) is satisfied.

Example: Midpoint rule.

In Equation (20), consider the 1-stage symplectic partitioned Runge–Kutta method with the
coefficients a11 = ā11 = c1 = 1/2 and b1 = b̄1 = 1. This method is often called the midpoint rule and
is a 2nd order member of the Gauss family of quadratures. It can be easily shown (see References [1,2])
that the discrete Lagrangian of Equation (15) for this method is given by

L̃d(tj, yj, tj+1, yj+1) = ∆t · L̃N

(
yj + yj+1

2
,

yj+1 − yj

∆t
, tj +

1
2

∆t
)

, (118)

where ∆t = tj+1 − tj and yj = (yj
1, . . . , yj

N). Using Equations (5) and (13), we can write

L̃d(tj, yj, tj+1, yj+1) =
N

∑
i=0

L̃
(
yj

i , yj
i+1, yj+1

i+1 , yj+1
i
)
, (119)

where we defined the discrete Lagrangian L̃ : J1Y −→ R by the formula

L̃(yj
i , yj

i+1, yj+1
i+1 , yj+1

i ) = ∆t
∫ xi+1

xi

L̃
(

ϕ̄(x), ϕ̄x(x), ϕ̄t(x), x, tj +
1
2

∆t
)

dx (120)

with

ϕ̄(x) =
yj

i + yj+1
i

2
ηi(x) +

yj
i+1 + yj+1

i+1
2

ηi+1(x),

ϕ̄x(x) =
1
2

yj
i+1 − yj

i
∆x

+
1
2

yj+1
i+1 − yj+1

i
∆x

,

ϕ̄t(x) =
yj+1

i − yj
i

∆t
ηi(x) +

yj+1
i+1 − yj

i+1
∆t

ηi+1(x).

(121)

Given the Lagrangian density L̃ as in Equation (6) and assuming X(t, x) is known, one can
evaluate the integral in Equation (120) explicitly. It is now a straightforward calculation to show
that the discrete variational principle of Equation (117) for the discrete Lagrangian L̃ as defined is
equivalent to the discrete Euler–Lagrange Equation (103) for L̃d and consequently to Equation (20).

This shows that the 2nd order Gauss method applied to Equation (20) defines a multisymplectic
method in the sense of Equation (110). However, for other symplectic partitioned Runge–Kutta
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methods of interest to us, namely the 4th order Gauss and the 2nd/4th order Lobatto IIIA–IIIB
methods, it is not possible to isolate a discrete Lagrangian L̃ that would only depend on four values yj

i ,

yj
i+1, yj+1

i+1 , and yj+1
i . The mentioned methods have more internal stages, and Equation (20) couples

them in a nontrivial way. Effectively, at any given time step, the internal stages depend on all the values
yj

1, . . . , yj
N and yj+1

1 , . . . , yj+1
N , and it is not possible to express the discrete Lagrangian of Equation (15)

as a sum similar to Equation (119). The resulting integrators are still variational, since they are derived
by applying the discrete variational principle of Equation (117) to some discrete action S̃, but this
action cannot be expressed as the sum of L̃ over all rectangles. Therefore, these integrators are not
multisymplectic, at least not in the sense of Equation (110).

Constraints.

Let the additional bundle be B = X × [0, Xmax], and denote by Xn
j the elements of the fiber Bji.

Define Ỹ = Y⊕B. We have JkỸ ∼= JkY⊕ JkB. Suppose G : JkỸ −→ R represents a discretization of
the continuous constraint. For instance, one can enforce a uniform mesh by defining G : J1Ỹ → R,
G(j1 ϕ̃, j1X̃) = Xx − 1 at the continuous level. The discrete counterpart will be defined on the discrete
jet bundle J1Ỹ by the following formula:

G(yj
i , yj

i+1, yj+1
i+1 , yj+1

i , X j
i , X j

i+1, X j+1
i+1 , X j+1

i ) =
X j

i+1 − X j
i

∆x
− 1. (122)

Arclength equidistribution can be realized by enforcing Equation (27), that is, G : J2
0 Ỹ → R,

G(j20 ϕ̃, j20X̃) = α2 ϕx ϕxx + XxXxx. The discrete counterpart will be defined on the discrete sub-bundle
J2
0 Ỹ by the following formula:

G(y�l , X�r ) = α2(y�3 − y�2)2 + (X�3 − X�2)2 − α2(y�2 − y�1)2 − (X�2 − X�1)2, (123)

where, for convenience, we used the notation introduced in Equation (113) and l, r = 1, . . . , 6. Note
that Equation (123) coincides with Equation (28). In fact, gi in Equation (28) is nothing else but G
computed on an element of J2

0 Ỹ over the base 6-tuple � such that �2 = (j, i). The only difference is
that, in Equation (28), we assumed gi might depend on all the field values at a given time step, while
G only takes arguments locally, i.e., it depends on at most 6 field values on a given 6-tuple.

A numerical scheme is now obtained by simultaneously solving the discrete Euler–Lagrange
Equation (109) resulting from Equation (117) and the equation G = 0. If we know yj−1

i , X j−1
i , yj

i , and X j
i

for i = 1, . . . , N, this system of equations allows us to solve for yj+1
i , X j+1

i . This numerical scheme is
multisymplectic in the sense similar to Proposition 4. If we take X(t, x) to be a sufficiently smooth
interpolation of the values X j

i and substitute it in Equation (117), then the resulting multisymplectic

integrator will yield the same numerical values yj+1
i .

4.3. Analysis of the Lagrange Multiplier Approach

4.3.1. Continuous Setting

We now turn to describing the Lagrange multiplier approach in a multisymplectic setting.
Similarly as in Section 4.2, let the computational spacetime be X = R × [0, Xmax] with
coordinates (t, x) and consider the trivial configuration bundles πXY : Y = X × R −→ X and
πXB : B = X × [0, Xmax] −→ X . Let our scalar field be represented by a section ϕ̃ : X −→ Y with
the coordinate representation ϕ̃(t, x) = (t, x, ϕ(t, x)) and our diffeomorphism be represented by a
section X̃ : X −→ B with the local representation X̃(t, x) = (t, x, X(t, x)). Let the total configuration
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bundle be Ỹ = Y ⊕ B. Then, the Lagrangian density of Equation (6) can be viewed as a mapping
L̃ : J1Ỹ ∼= J1Y⊕ J1B −→ R. The corresponding action of Equation (3) can now be expressed as

S̃[ϕ̃, X̃] =
∫
U
L̃
(

j1 ϕ̃, j1X̃
)

dt ∧ dx, (124)

where U = [0, Tmax]× [0, Xmax]. As before, the MMPDE constraint can be represented by a function
G : JkỸ −→ R. Two sections ϕ̃ and X̃ satisfy the constraint if

G(jk ϕ̃, jkX̃) = 0. (125)

Vakonomic formulation.

We now face the problem of finding the right equations of motion. We want to extremize the
action functional of Equation (124) in some sense, subject to the constraint in Equation (125). Note that
the constraint is essentially nonholonomic, as it depends on the derivatives of the fields. Assuming
G is a submersion, G = 0 defines a submanifold of JkỸ, but this submanifold will not in general be
the kth jet of any subbundle of Ỹ. Two distinct approaches are possible here. One could follow the
Lagrange–d’Alembert principle and take variations of S̃ first but choose variations V (vertical vector
fields on Ỹ) such that the jet prolongations jkV are tangent to the submanifold G = 0 and then enforce
the constraint G = 0. On the other hand, one could consider the variational nonholonomic problem
(also called vakonomic), and minimize S̃ over the set of all sections (ϕ̃, X̃) that satisfy the constraint
G = 0, that is, enforce the constraint before taking the variations. If the constraint is holonomic,
both approaches yield the same equations of motion. However, if the constraint is nonholonomic,
the resulting equations are in general different. Which equations are correct is really a matter of
experimental verification. It has been established that the Lagrange–d’Alembert principle gives the
right equations of motion for nonholonomic mechanical systems, whereas the vakonomic setting is
appropriate for optimal control problems (see References [37–40]).

We will argue that the vakonomic approach is the right one in our case. In Proposition 5,
we showed that in the unconstrained case extremizing S[φ] with respect to φ was equivalent to
extremizing S̃[ϕ̃, X̃] with respect to ϕ̃, and in Proposition 6, we showed that extremizing with respect
to X̃ did not yield new information. This is because there was no restriction on the fields ϕ̃ and
X̃ and, for any given X̃, there was a one-to-one correspondence between φ and ϕ̃ given by the
formula ϕ(t, x) = φ(t, X(t, x)), so extremizing over all possible ϕ̃ was equivalent to extremizing
over all possible φ. Now, let N be the set of all smooth sections (ϕ̃, X̃) that satisfy Equation (125)
such that X(t, .) is a diffeomorphism for all t. It should be intuitively clear that, under appropriate
assumptions on the mesh density function ρ, for any given smooth function φ(t, X), Equation (25)
together with ϕ(t, x) = φ(t, X(t, x)) define a unique pair (ϕ̃, X̃) ∈ N (since our main purpose here is
to only justify the application of the vakonomic approach, we do not attempt to specify those analytic
assumptions precisely). Conversely, any given pair (ϕ̃, X̃) ∈ N defines a unique function φ through
the formula φ(t, X) = ϕ(t, ξ(t, X)), where ξ(t, .) = X(t, .)−1, as in Section 3.1. Given this one-to-one
correspondence and the fact that S[φ] = S̃[ϕ̃, X̃] by definition, we see that extremizing S with respect
to all smooth φ is equivalent to extremizing S̃ over all smooth sections (ϕ̃, X̃) ∈ N . We conclude that
the vakonomic approach is appropriate in our case, since it follows from Hamilton’s principle for the
original, physically meaningful, action functional S.

Let us also note that our constraint depends on spatial derivatives only. Therefore, in the setting
presented in Sections 2 and 3 it can be considered holonomic, as it restricts the infinite-dimensional
configuration manifold of fields that we used as our configuration space. In that case, it is valid to
use Hamilton’s principle and to minimize the action functional over the set of all allowable fields,
i.e., those that satisfy the constraint G = 0. We did that by considering the augmented instantaneous
Lagrangian (86).
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In order to minimize S̃ over the set of sections satisfying Equation (125), we will use the
bundle-theoretic version of the Lagrange multiplier theorem, which we cite below after Reference [41].

Theorem 1 (Lagrange multiplier theorem). Let πM,E : E −→ M be an inner product bundle over a
smooth manifold M, Ψ be a smooth section of πM,E , and h : M −→ R be a smooth function. Setting
N = Ψ−1(0), the following are equivalent:

1. σ ∈ N is an extremum of h|N ,
2. There exists an extremum σ̄ ∈ E of h̄ : E −→ R such that πM,E (σ̄) = σ,

where h̄(σ̄) = h(πM,E (σ̄))−
〈
σ̄, Ψ(πM,E (σ̄))

〉
E .

Let us briefly review the ideas presented in Reference [41], adjusting the notation to our problem
and generalizing when necessary. Let

C∞
U (Ỹ) = {σ = (ϕ̃, X̃) : U ⊂ X −→ Ỹ} (126)

be the set of smooth sections of πX Ỹ on U . Then, S̃ : C∞
U (Ỹ) −→ R can be identified with h in

Theorem 1, whereM = C∞
U (Ỹ). Furthermore, define the trivial bundle

πXV : V = X ×R −→ X (127)

and let C∞
U (V) be the set of smooth sections λ̃ : U −→ V , which represent our Lagrange multipliers

and in local coordinates have the representation λ̃(t, x) = (t, x, λ(t, x)). The set C∞
U (V) is an inner

product space with 〈λ̃1, λ̃2〉 =
∫
U λ1λ2 dt ∧ dx. Take

E = C∞
U (Ỹ)× C∞

U (V). (128)

This is an inner product bundle over C∞
U (Ỹ) with the inner product defined by〈

(σ, λ̃1), (σ, λ̃2)
〉
E
= 〈λ̃1, λ̃2〉. (129)

We now have to construct a smooth section Ψ : C∞
U (Ỹ) −→ E that will realize our constraint of

Equation (125). Define the fiber-preserving mapping G̃ : JkỸ −→ V such that for ϑ ∈ JkỸ

G̃(ϑ) =
(
πX ,JkỸ(ϑ), G(ϑ)

)
. (130)

For instance, for k = 1, in local coordinates, we have G̃(t, x, y, vt, vx) = (t, x, G(t, x, y, vt, vx)).
Then, we can define

Ψ(σ) = (σ, G̃ ◦ jkσ). (131)

The set of allowable sections N ⊂ C∞
U (Ỹ) is now defined by N = Ψ−1(0). That is, (ϕ̃, X̃) ∈ N

provided that G(jk ϕ̃, jkX̃) = 0.
The augmented action functional S̃C : E −→ R is now given by

S̃C[σ̄] = S̃[πM,E (σ̄)]−
〈
σ̄, Ψ(πM,E (σ̄))

〉
E , (132)

or denoting σ̄ = (ϕ̃, X̃, λ̃)

S̃C[ϕ̃, X̃, λ̃] = S̃[ϕ̃, X̃]−
〈
λ̃, G̃ ◦ (jk ϕ̃, jkX̃)

〉
=
∫
U
L̃
(

j1 ϕ̃, j1X̃
)

dt ∧ dx−
∫
U

λ(t, x) G(jk ϕ̃, jkX̃) dt ∧ dx

=
∫
U

[
L̃
(

j1 ϕ̃, j1X̃
)
− λ(t, x) G(jk ϕ̃, jkX̃)

]
dt ∧ dx.

(133)
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Theorem 1 states that, if (ϕ̃, X̃, λ̃) is an extremum of S̃C, then (ϕ̃, X̃) extremizes S̃ over the set
N of sections satisfying the constraint G = 0. Note that using the multisymplectic formalism we
obtained the same result as Equation (86) in the instantaneous formulation, where we could treat G as
a holonomic constraint. The dynamics is obtained by solving for a triple (ϕ̃, X̃, λ̃) such that

d
dε

∣∣∣∣
ε=0

S̃C[η
ε
Y ◦ ϕ̃, ηε

B ◦ X̃, ηε
V ◦ λ̃] = 0 (134)

for all ηε
Y, ηε

B , ηε
V that keep the boundary conditions on ∂U fixed, where ηε denotes the flow of vertical

vector fields on respective bundles.
Note that we can define ỸC = Y ⊕ B ⊕ V and L̃C : JkỸC −→ R by setting L̃C = L̃ − λ · G,

i.e., we can consider a kth-order field theory. If k = 1, 2 then an appropriate multisymplectic form
formula in terms of the fields ϕ̃, X̃, and λ̃ will hold. Presumably, this can be generalized for k > 2 using
the techniques put forth in Reference [35]. However, it is an interesting question whether there exists
any multisymplectic form formula defined in terms of ϕ̃, X̃, and objects on JkỸ only. It appears to be
an open problem. This would be the multisymplectic analog of the fact that the flow of a constrained
mechanical system is symplectic on the constraint submanifold of the configuration space.

4.3.2. Discretization

Let us use the same discretization as discussed in Section 4.2. Assume we have a discrete
Lagrangian L̃ : J1Ỹ −→ R, the corresponding discrete action S̃[ϕ̃, X̃], and a discrete constraint
G : J1Ỹ −→ R or G : J2

0 Ỹ −→ R. Note that S̃ is essentially a function of 2MN variables and that
we want to extremize it subject to the set of algebraic constraints G = 0. The standard Lagrange
multiplier theorem proved in basic calculus textbooks applies here. However, let us work out a discrete
counterpart of the formalism introduced at the continuous level. This will facilitate the discussion of
the discrete notion of multisymplecticity. Let

CU (Ỹ) = {σ = (ϕ̃, X̃) : U ⊂ X −→ Ỹ} (135)

be the set of discrete sections of πX Ỹ : Ỹ −→ X . Similarly, define the discrete bundle V = X ×R,
and let CU0(V) be the set of discrete sections λ̃ : U0 −→ V representing the Lagrange multipliers,

where U0 ⊂ U is defined below. Let λ̃(j, i) = (j, i, λ(j, i)) with λ
j
i ≡ λ(j, i) be the local representation.

The set CU0(V) is an inner product space with 〈λ̃, µ̃〉 = ∑(j,i)∈U0
λ

j
iµ

j
i . Take E = CU (Ỹ) × CU0(V).

Just like at the continuous level, E is an inner product bundle. However, at the discrete level, it is more
convenient to define the inner product on E in a slightly modified way. Since there are some nuances
in the notation, let us consider the cases k = 1 and k = 2 separately.

Case k = 1.

Let U0 = {(j, i) ∈ U | j ≤ M, i ≤ N}. Define the trivial bundle V̂ = X� ×R and let CU�(V̂) be
the set of all sections of V̂ defined on U�. For a given section λ̃ ∈ CU0(V), we define its extension
λ̂ ∈ CU�(V̂) by

λ̂(�) =
(
�, λ(�1)

)
, (136)

that is, λ̂ assigns to the square � the value that λ̃ takes on the first vertex of that square. Note that this
operation is invertible: Given a section of CU�(V̂), we can uniquely determine a section of CU0(V).
We can define the inner product

〈λ̂, µ̂〉 = ∑
�⊂U

λ(�1)µ(�1). (137)

One can easily see that we have 〈λ̂, µ̂〉 = 〈λ̃, µ̃〉, so by a slight abuse of notation, we can use the
same symbol 〈., .〉 for both inner products. It will be clear from the context which definition should be
invoked. We can now define an inner product on the fibers of E as
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〈
(σ, λ̃), (σ, µ̃)

〉
E
= 〈λ̂, µ̂〉 = 〈λ̃, µ̃〉. (138)

Let us now construct a section Ψ : CU (Ỹ) −→ E that will realize our discrete constraint G. First,
in analogy to Equation (130), define the fiber-preserving mapping G̃ : J1Ỹ −→ V̂ such that

G̃(y�l , X�r ) =
(
�, G(y�l , X�r )

)
, (139)

where l, r = 1, 2, 3, 4. We now define Ψ by requiring that for σ ∈ CU (Ỹ) the extension of Ψ(σ), defined
similar to Equation (136), is given by

Ψ̂(σ) = (σ, G̃ ◦ j1σ). (140)

The set of allowable sections N ⊂ CU (Ỹ) is now defined by N = Ψ−1(0)—that is, (ϕ̃, X̃) ∈ N ,
provided that G(j1 ϕ̃, j1X̃) = 0 for all� ∈ U�. The augmented discrete action S̃C : E −→ R is therefore

S̃C[σ, λ̃] = S̃[σ]−
〈
(σ, λ̃), Ψ(σ)

〉
E

= S̃[σ]−
〈

λ̂, G̃ ◦ j1σ
〉

= ∑
�⊂U

L̃(j1σ)− ∑
�⊂U

λ(�1)G(j1σ)

= ∑
�⊂U

(
L̃(j1σ)− λ(�1)G(j1σ)

)
.

(141)

By the standard Lagrange multiplier theorem, if (ϕ̃, X̃, λ̃) is an extremum of S̃C, then (ϕ̃, X̃) is
an extremum of S̃ over the set N of sections satisfying the constraint G = 0. The discrete Hamilton
principle can be expressed as

d
dε

∣∣∣∣
ε=0

S̃C[ϕ̃ε, X̃ε, λ̃ε] = 0 (142)

for all vector fields V on Y, W on B, and Z on V that keep the boundary conditions on ∂U fixed,

where ϕ̃ε(j, i) = F
Vji
ε (ϕ̃(j, i)) and F

Vji
ε is the flow of Vji on R, and similarly for X̃ε and λ̃ε. The discrete

Euler–Lagrange equations can be conveniently computed if in Equation (142) one focuses on some
(j, i) ∈ intU . With the convention ϕ̃(j, i) = yj

i , X̃(j, i) = X j
i , and λ̃(j, i) = λ

j
i , we write the terms of S̃C

containing yj
i , X j

i and λ
j
i explicitly as

S̃C = . . . + L̃
(
yj

i , yj
i+1, yj+1

i+1 , yj+1
i , X j

i , X j
i+1, X j+1

i+1 , X j+1
i
)

+ L̃
(
yj

i−1, yj
i , yj+1

i , yj+1
i−1 , X j

i−1, X j
i , X j+1

i , X j+1
i−1

)
+ L̃

(
yj−1

i−1 , yj−1
i , yj

i , yj
i−1, X j−1

i−1 , X j−1
i , X j

i , X j
i−1

)
+ L̃

(
yj−1

i , yj−1
i+1 , yj

i+1, yj
i , X j−1

i , X j−1
i+1 , X j

i+1, X j
i
)

+ λ
j
i G
(
yj

i , yj
i+1, yj+1

i+1 , yj+1
i , X j

i , X j
i+1, X j+1

i+1 , X j+1
i
)

+ λ
j
i−1G

(
yj

i−1, yj
i , yj+1

i , yj+1
i−1 , X j

i−1, X j
i , X j+1

i , X j+1
i−1

)
+ λ

j−1
i−1G

(
yj−1

i−1 , yj−1
i , yj

i , yj
i−1, X j−1

i−1 , X j−1
i , X j

i , X j
i−1

)
+ λ

j−1
i G

(
yj−1

i , yj−1
i+1 , yj

i+1, yj
i , X j−1

i , X j−1
i+1 , X j

i+1, X j
i
)
+ . . .

(143)

The discrete Euler–Lagrange equations are obtained by differentiating with respect to yj
i , X j

i ,

and λ
j
i and can be written compactly as
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∑
l,�

(j,i)=�l

[
∂L̃
∂yl (y�1 , . . . , y�4 ,X�1 , . . . , X�4)+

λ�1
∂G
∂yl (y�1 , . . . , y�4 , X�1 , . . . , X�4)

]
= 0,

∑
l,�

(j,i)=�l

[
∂L̃
∂Xl (y�1 , . . . , y�4 ,X�1 , . . . , X�4)+

λ�1
∂G
∂Xl (y�1 , . . . , y�4 , X�1 , . . . , X�4)

]
= 0,

G
(
yj

i , yj
i+1, yj+1

i+1 , yj+1
i , X j

i , X j
i+1, X j+1

i+1 , X j+1
i
)
= 0

(144)

for all (j, i) ∈ intU . If we know yj−1
i , X j−1

i , yj
i , X j

i , and λ
j−1
i for i = 1, . . . , N, this system of equations

allows us to solve for yj+1
i , X j+1

i , and λ
j
i .

Note that we can define ỸC = Y ⊕ B ⊕ V and the augmented Lagrangian L̃C : J1ỸC −→ R
by setting

L̃C(j1 ϕ̃, j1X̃, j1λ̃) = L̃(j1 ϕ̃, j1X̃)− λ(�1) · G(j1 ϕ̃, j1X̃), (145)

we can consider an unconstrained field theory in terms of the fields ϕ̃, X̃, and λ̃. Then, the solutions of
Equation (144) satisfy the multisymplectic form formula (Equation (110)) in terms of objects defined
on J1ỸC.

Case k = 2.

Let U0 = {(j, i) ∈ U | j ≤ M, 1 ≤ i ≤ N}. Define the trivial bundle V̂ = X� ×R, and let CU�(V̂)
be the set of all sections of V̂ defined on U�. For a given section λ̃ ∈ CU0(V), we define its extension
λ̂ ∈ CU�(V̂) by

λ̂(�) =
(
�, λ(�2)

)
, (146)

that is, λ̂ assigns to the 6-tuple � the value that λ̃ takes on the second vertex of that 6-tuple. Like before,
this operation is invertible. We can define the inner product

〈λ̂, µ̂〉 = ∑
�⊂U

λ(�2)µ(�2) (147)

and the inner product on E as in Equation (138). Define the fiber-preserving mapping G̃ : J2
0 Ỹ −→ V̂

such that
G̃(y�l , X�r ) =

(
�, G(y�l , X�r )

)
, (148)

where l, r = 1, . . . , 6. We now define Ψ by requiring that, for σ ∈ CU (Ỹ), the extension of Ψ(σ), defined
similar to Equation (146), is given by

Ψ̂(σ) = (σ, G̃ ◦ j20σ). (149)

Again, the set of allowable sections is N = Ψ−1(0). That is, (ϕ̃, X̃) ∈ N , provided that
G(j20 ϕ̃, j20X̃) = 0 for all � ∈ U�. The augmented discrete action S̃C : E −→ R is therefore
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S̃C[σ, λ̃] = S̃[σ]−
〈
(σ, λ̃), Ψ(σ)

〉
E

= S̃[σ]−
〈

λ̂, G̃ ◦ j20σ
〉

= ∑
�⊂U

L̃(j1σ)− ∑
�⊂U

λ(�2)G(j20σ).

(150)

Writing out the terms involving yj
i , X j

i , and λ
j
i explicitly, as in Equation (143), and invoking the

discrete Hamilton principle (142), one obtains the discrete Euler–Lagrange equations, which can be
compactly expressed as

∑
l,�

(j,i)=�l

∂L̃
∂yl (y�1 , . . . , y�4 ,X�1 , . . . , X�4)+

∑
l,�

(j,i)=�l

λ�2
∂G
∂yl (y�1 , . . . , y�6 , X�1 , . . . , X�6) = 0,

∑
l,�

(j,i)=�l

∂L̃
∂Xl (y�1 , . . . , y�4 ,X�1 , . . . , X�4)+

∑
l,�

(j,i)=�l

λ�2
∂G
∂Xl (y�1 , . . . , y�6 , X�1 , . . . , X�6) = 0,

G
(
yj

i−1, yj
i , yj

i+1, yj+1
i+1 , yj+1

i , yj+1
i−1 , X j

i−1, X j
i , X j

i+1, X j+1
i+1 , X j+1

i , X j+1
i−1

)
= 0

(151)

for all (j, i) ∈ intU . If we know yj−1
i , X j−1

i , yj
i , X j

i , and λ
j−1
i for i = 1, . . . , N, this system of equations

allows us to solve for yj+1
i , X j+1

i and λ
j
i .

Let us define the extension L̃ext : J2
0 Ỹ −→ R of the Lagrangian density L̃ by setting

L̃ext(y�1 , . . . , X�6) =


L̃(y�1 , . . . , X�4) if �2 = (j, 0), (j, N + 1),

where � = �∩ U ,
1
2 ∑�⊂� L̃(y�1 , . . . , X�4) otherwise.

(152)

Let us also set G(y�1 , . . . , X�4) = 0 if �2 = (j, 0), (j, N + 1). Define A = {� |�2, �5 ∈ U}. Then,
Equation (150) can be written as

S̃C[σ, λ̃] = ∑
�∈A

[
L̃ext(j20σ)− λ(�2)G(j20σ)

]
= ∑

�∈A
L̃C(j20σ, j20λ̃), (153)

where the last equality defines the augmented Lagrangian L̃C : J2
0 ỸC −→ R for ỸC = Y ⊕ B ⊕ V .

Therefore, we can consider an unconstrained second-order field theory in terms of the fields ϕ̃, X̃,
and λ̃, and the solutions of Equation (151) will satisfy a discrete multisymplectic form formula very
similar to the one proved in Reference [35]. The only difference is the fact that the authors analyzed a
discretization of the Camassa–Holm equation and were able to consider an even smaller sub-bundle
of the second jet of the configuration bundle. As a result, it was sufficient for them to consider a
discretization based on squares � rather than 6-tuples �. In our case, there will be six discrete 2-forms
Ωl

L̃C
for l = 1, . . . , 6 instead of just four.
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Remark 5. In both cases, we showed that our discretization leads to integrators that are multisymplectic on the
augmented jets JkỸC. However, just like in the continuous setting, it is an interesting problem whether there
exists a discrete multisymplectic form formula in terms of objects defined on JkỸ only.

Example: Trapezoidal rule.

Consider the semi-discrete Lagrangian in Equation (44). We can use the trapezoidal rule to define
the discrete Lagrangian in Equation (14) as

L̃d(yj, X j, yj+1, X j+1) =
∆t
2

L̃N

(
yj, X j,

yj+1 − yj

∆t
,

X j+1 − X j

∆t

)
+

∆t
2

L̃N

(
yj+1, X j+1,

yj+1 − yj

∆t
,

X j+1 − X j

∆t

)
,

(154)

where yj = (yj
1, . . . , yj

N) and X j = (X j
1, . . . , X j

N). The constrained version (see Reference [2]) of the
Discrete Euler–Lagrange Equation (103) takes the form

D2 L̃d(qj−1, qj) + D1 L̃d(qj, qj+1) = Dg(qj)Tλj,

g(qj+1) = 0,
(155)

where for brevity qj = (yj
1, X j

1, . . . , yj
N , X j

N), λj = (λ
j
1, . . . , λ

j
N) and g is an adaptation constraint,

for instance Equation (28). If qj−1, qj are known, then Equation (155) can be used to compute qj+1

and λj. It is easy to verify that the condition of Equation (94) is enough to ensure solvability of
Equation (155), assuming the time step ∆t is sufficiently small, so there is no need to introduce
slack degrees of freedom as in Equation (95). If the mass matrix of Equation (47) was constant and
non-singular, then Equation (155) would result in the SHAKE algorithm, or in the RATTLE algorithm
if one passes to the position-momentum formulation (see References [1,2]).

Using Equations (38) and (41), we can write

L̃d(yj, X j, yj+1, X j+1) =
N

∑
i=0

L̃
(
yj

i , yj
i+1, yj+1

i+1 , yj+1
i , X j

i , X j
i+1, X j+1

i+1 , X j+1
i
)
, (156)

where we defined the discrete Lagrangian L̃ : J1Ỹ −→ R by the formula

L̃
(

yj
i , yj

i+1, yj+1
i+1 , yj+1

i , X j
i , X j

i+1, X j+1
i+1 , X j+1

i

)
=

∆t
2

∫ xi+1

xi

L̃
(

ϕ̄j(x), X̄ j(x), ϕ̄
j
x(x), X̄ j

x(x), ϕ̄t(x), X̄t(x)
)

dx

+
∆t
2

∫ xi+1

xi

L̃
(

ϕ̄j+1(x), X̄ j+1(x), ϕ̄
j+1
x (x), X̄ j+1

x (x), ϕ̄t(x), X̄t(x)
)

dx

(157)

with
ϕ̄j(x) = yj

iηi(x) + yj
i+1ηi+1(x),

ϕ̄
j
x(x) =

yj
i+1 − yj

i
∆x

,

ϕ̄t(x) =
yj+1

i − yj
i

∆t
ηi(x) +

yj+1
i+1 − yj

i+1
∆t

ηi+1(x),

(158)

and similarly for X̄(x). Given the Lagrangian density L̃ as in Equation (43), one can compute the
integrals in Equation (157) explicitly. Suppose that the adaptation constraint g has a “local” structure,
for instance

gi(yj, X j) = G(yj
i , yj

i+1, yj+1
i+1 , yj+1

i , X j
i , X j

i+1, X j+1
i+1 , X j+1

i ), (159)
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as in Equation (122) or

gi(yj, X j) = G(y�l , X�r ), where �2 = (j, i), (160)

as in Equation (123). It is straightforward to show that Equation (144) or Equation (151) are equivalent
to Equation (155), that is, the variational integrator defined by Equation (155) is also multisymplectic.

For reasons similar to the ones pointed out in Section 4.2, the 2nd and 4th order Lobatto IIIA–IIIB
methods that we used for our numerical computations are not multisymplectic.

5. Numerical Results

5.1. The Sine–Gordon Equation

We applied the methods discussed in the previous sections to the Sine–Gordon equation

∂2φ

∂t2 −
∂2φ

∂X2 + sin φ = 0. (161)

This equation results from the (1+1)-dimensional scalar field theory with the Lagrangian density

L(φ, φX , φt) =
1
2

φ2
t −

1
2

φ2
X − (1− cos φ). (162)

The Sine–Gordon equation arises in many physical applications. For instance, it governs the
propagation of dislocations in crystals, the evolution of magnetic flux in a long Josephson-junction
transmission line, or the modulation of a weakly unstable baroclinic wave packet in a two-layer fluid.
It also has applications in the description of one-dimensional organic conductors, one-dimensional
ferromagnets, and liquid crystals or in particle physics as a model for baryons (see References [42,43]).

The Sine–Gordon equation has interesting soliton solutions. A single soliton traveling at the speed
v is given by

φS(X, t) = 4 arctan
[

exp
(

X− X0 − vt√
1− v2

)]
. (163)

It is depicted in Figure 2. The backscattering of two solitons, each traveling with the velocity v,
is described by the formula

φSS(X, t) = 4 arctan

[
v sinh( X√

1−v2 )

cosh( vt√
1−v2 )

]
. (164)

0

X

φ π

2π

X
0
+vt

Figure 2. The single soliton solution of the Sine–Gordon equation.
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It is depicted in Figure 3. Note that if we restrict X ≥ 0, then this formula also gives a single soliton
solution satisfying the boundary condition φ(0, t) = 0, that is, a soliton bouncing from a rigid wall.

0

φ

0

φ

0

X

φ

t<0

t=0

t>0

−2π

−π

0

π

2π

−2π

−π

0

π

2π

−2π

−π

π

2π

0

Figure 3. The two-soliton solution of the Sine–Gordon equation.

5.2. Generating Consistent Initial Conditions

Suppose we specify the following initial conditions

φ(X, 0) = a(X),

φt(X, 0) = b(X),
(165)

and assume they are consistent with the boundary conditions stated in Equation (2). In order to
determine appropriate consistent initial conditions for Equations (18) and (98), we need to solve
several equations. First, we solve for the yi’s and Xi’s. We have y0 = φL, yN+1 = φR, X0 = 0,
and XN+1 = Xmax. The rest are determined by solving the system

yi = a(Xi),

0 = gi(y1, . . . , yN , X1, . . . , XN),
(166)

for i = 1, . . . , N. This is a system of 2N nonlinear equations for 2N unknowns. We solve it using
Newton’s method. Note, however, that we do not a priori know good starting points for Newton’s
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iterations. If our initial guesses are not close enough to the desired solution, the iterations may converge
to the wrong solution or may not converge at all. In our computations, we used the constraints given
in Equation (28). We found that a very simple variant of a homotopy continuation method worked
very well in our case. Note that for α = 0 Equation (28) generates a uniform mesh. In order to
solve Equation (166) for some α > 0, we split [0, α] into d subintervals by picking αk = (k/d) · α
for k = 1, . . . , d. We then solved Equation (166) with α1 using the uniformly spaced mesh points
X(0)

i = (i/(N + 1)) ·Xmax as our initial guess, resulting in X(1)
i and y(1)i . Then, we solved Equation (166)

with α2 using X(1)
i and y(1)i as the initial guesses, resulting in X(2)

i and y(2)i . Continuing in this fashion,

we got X(d)
i and y(d)i as the numerical solution to Equation (166) for the original value of α. Note that

for more complicated initial conditions and constraint functions, predictor–corrector methods should
be used—see Reference [44] for more information. Another approach to solving Equation (166) could
be based on relaxation methods (see References [7,8]).

Next, we solve for the initial values of the velocities ẏi and Ẋi. Since ϕ(x, t) = φ(X(x, t), t),
we have ϕt(x, t) = φX(X(x, t), t)Xt(x, t) + φt(X(x, t), t). We also require that the velocities be
consistent with the constraints. Hence, the linear system is

ẏi = a′(Xi)Ẋi + b(Xi), i = 1, . . . , N

0 =
∂g
∂y

(y, X)ẏ +
∂g
∂X

(y, X)Ẋ.
(167)

This is a system of 2N linear equations for the 2N unknowns ẏi and Ẋi, where y = (y1, . . . , yN) and
X = (X1, . . . , XN). We can use those velocities to compute the initial values of the conjugate momenta.
For the control-theoretic approach, we use pi = ∂L̃N/∂ẏi, as in Section 2.3, and for the Lagrange
multiplier approach, we use Equation (46). In addition, for the Lagrange multiplier approach, we also
have the initial values for the slack variables ri = 0 and their conjugate momenta Bi = ∂L̃A

N/∂ṙi = 0.
It is also useful to use Equation (93) to compute the initial values of the Lagrange multipliers λi that
can be used as initial guesses in the first iteration of the Lobatto IIIA–IIIB algorithm. The initial guesses
for the slack Lagrange multipliers are trivially µi = 0. Note that both λ and µ are algebraic variables,
so their values at each time step are completely determined by the Lobatto IIIA–IIIB algorithm (see
References [1,27,28] for details), and therefore no further initial or boundary conditions are necessary.

5.3. Convergence

In order to test the convergence of our methods as the number of mesh points N is increased,
we considered a single soliton bouncing from two rigid walls at X = 0 and X = Xmax = 25.
We imposed the boundary conditions φL = 0 and φR = 2π, and as initial conditions we used
Equation (163) with X0 = 12.5 and v = 0.9. It is possible to obtain the exact solution to this problem by
considering a multi-soliton solution to Equation (161) on the whole real line. Such a solution can be
obtained using a Bäcklund transformation (see References [42,43]). However, the formulas quickly
become complicated and, technically, one would have to consider an infinite number of solitons.
Instead, we constructed a nearly exact solution by approximating the boundary interactions with (164):

φexact(X, t) =

{
φSS
(
X− Xmax, t− (4n + 1)T

)
+ 2π if t ∈

[
4nT, (4n + 2)T

)
,

φSS
(
X, t− (4n + 3)T

)
if t ∈

[
(4n + 2)T, (4n + 4)T

)
,

(168)

where n is an integer number and T satisfies φSS(Xmax/2, T) = π (we numerically found T ≈ 13.84).
Given how fast the functions given in Equations (163) and (164) approach their asymptotic values, one
may check that Equation (168) can be considered exact to machine precision.

We performed numerical integration with the constant time step ∆t = 0.01 up to the time
Tmax = 50. For the control-theoretic strategy, we used the 1-stage and 2-stage Gauss method (2nd and
4th order, respectively), and the 2-stage and 3-stage Lobatto IIIA–IIIB method (also 2nd/4th order).
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For the Lagrange multiplier strategy, we used the 2-stage and 3-stage Lobatto IIIA–IIIB method for
constrained mechanical systems (2nd/4th order). See References [1,12,14] for more information about
the mentioned symplectic Runge–Kutta methods. We used the constraints of Equation (28) based
on the generalized arclength density of Equation (26). We chose the scaling parameter to be α = 2.5,
so that approximately half of the available mesh points were concentrated in the area of high gradient.
A few example solutions are presented in Figures 4–7. Note that the Lagrange multiplier strategy
was able to accurately capture the motion of the soliton with merely 17 mesh points (that is, N = 15).
The trajectories of the mesh points for several simulations are depicted in Figures 8 and 9. An example
solution computed on a uniform mesh is depicted in Figure 10.

0 5 10 15 20 25

0

1

2

3

4

5

6

7

φ

t=0

 

 

Numerical

Exact

0 5 10 15 20 25

0

1

2

3

4

5

6

7

t=13.84

 

 

0 5 10 15 20 25

0

1

2

3

4

5

6

7

t=41.52

X

φ

 

 

0 5 10 15 20 25

0

1

2

3

4

5

6

7

t=50

X

 

 

Numerical

Exact

Numerical

Exact

Numerical

Exact

Figure 4. The single soliton solution obtained with the Lagrange multiplier strategy for N = 15.
Integration in time was performed using the 4th order Lobatto IIIA–IIIB scheme for constrained
mechanical systems. The soliton moves to the right with the initial velocity v = 0.9, bounces from the
right wall at t = 13.84, and starts moving to the left with the velocity v = −0.9, towards the left wall,
from which it bounces at t = 41.52.

For the convergence test, we performed simulations for several N in the range 15–127.
For comparison, we also computed solutions on a uniform mesh for N in the range 15–361.
The numerical solutions were compared against the solution in Equation (168). The L∞ errors
are depicted in Figure 11. The L∞ norms were evaluated over all nodes and over all time steps.
Note that, in case of a uniform mesh, the spacing between the nodes is ∆x = Xmax/(N + 1); therefore,
the errors are plotted versus (N + 1). The Lagrange multiplier strategy proved to be more accurate
than the control-theoretic strategy. As the number of mesh points is increased, the uniform mesh
solution becomes quadratically convergent, as expected, since we used linear finite elements for spatial
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discretization. The control-theoretic strategy also shows near quadratic convergence, whereas the
Lagrange multiplier method seems to converge slightly slower. While there are very few analytical
results regarding the convergence of r-adaptive methods, it has been observed that the rate of
convergence depends on several factors, including the chosen mesh density function. Our results are
consistent with the convergence rates reported in References [45,46]. Both papers deal with the viscous
Burgers’ equation but consider different initial conditions. Computations with the arc-length density
function converged only linearly in Reference [45] but quadratically in Reference [46].
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Figure 5. The single soliton solution obtained with the Lagrange multiplier strategy for N = 31:
Integration in time was performed using the 4th-order Lobatto IIIA–IIIB scheme for constrained
mechanical systems.
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Figure 6. The single soliton solution obtained with the control-theoretic strategy for N = 22. Integration
in time was performed using the 4-th order Gauss scheme. Integration with the 4-th order Lobatto
IIIA-IIIB yields a very similar level of accuracy.
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Figure 6. The single soliton solution obtained with the control-theoretic strategy for N = 22: Integration
in time was performed using the 4th-order Gauss scheme. Integration with the 4th-order Lobatto
IIIA-IIIB yields a very similar level of accuracy.
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Figure 7. The single soliton solution obtained with the control-theoretic strategy for N = 31: Integration
in time was performed using the 4th-order Gauss scheme. Integration with the 4th-order Lobatto
IIIA–IIIB yields a very similar level of accuracy.
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Figure 8. The mesh point trajectories (with zoomed-in insets) for the Lagrange multiplier strategy
for N = 22 (left) and N = 31 (right): Integration in time was performed using the 4th-order Lobatto
IIIA–IIIB scheme for constrained mechanical systems.
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Figure 9. The mesh point trajectories (with zoomed-in insets) for the control-theoretic strategy for
N = 22 (left) and N = 31 (right): Integration in time was performed using the 4th-order Gauss scheme.
Integration with the 4th-order Lobatto IIIA–IIIB yields a very similar result.

5.4. Energy Conservation

As we pointed out in Section 2.6, the true power of variational and symplectic integrators
for mechanical systems lies in their excellent conservation of energy and other integrals of motion,
even when a big time step is used. In order to test the energy behavior of our methods, we performed
simulations of the Sine–Gordon equation over longer time intervals. We considered two solitons
bouncing from each other and from two rigid walls at X = 0 and Xmax = 25. We imposed the boundary
conditions φL = −2π and φR = 2π, and as initial conditions we used φ(X, 0) = φSS(X − 12.5,−5)
with v = 0.9. We ran our computations on a mesh consisting of 27 nodes (N=25). Integration was
performed with the time step ∆t = 0.05, which is rather large for this type of simulations. The scaling
parameter in Equation (28) was set to α = 1.5, so that approximately half of the available mesh points
were concentrated in the areas of high gradient. An example solution is presented in Figure 12.
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Figure 10. The single soliton solution computed on a uniform mesh with N = 31: Integration in time
was performed using the 4th-order Gauss scheme. Integration with the 4th-order Lobatto IIIA–IIIB
yields a very similar level of accuracy.
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Figure 11. Comparison of the convergence rates of the discussed methods: Integration in time was
performed using the 4th-order Lobatto IIIA–IIIB method for constrained systems in case of the Lagrange
multiplier strategy and the 4th-order Gauss scheme in case of both the control-theoretic strategy and the
uniform mesh simulation. The 4th-order Lobatto IIIA–IIIB scheme for the control-theoretic strategy and
the uniform mesh simulation yield a very similar level of accuracy. Also, using 2nd-order integrators
gives very similar error plots.
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Figure 12. The two-soliton solution obtained with the control-theoretic and Lagrange multiplier
strategies for N = 25. Integration in time was performed using the 4th-order Gauss quadrature
for the control-theoretic approach and the 4th-order Lobatto IIIA–IIIB quadrature for constrained
mechanical systems in case of the Lagrange multiplier approach. The solitons initially move towards
each other with the velocities v = 0.9, then bounce off of each other at t = 5 and start moving
towards the walls, from which they bounce at t = 18.79. The solitons bounce off of each other again at
t = 32.57. This solution is periodic in time with the period Tperiod = 27.57. The nearly exact solution
was constructed in a similar fashion as Equation (168). As the simulation progresses, the Lagrange
multiplier solution gets ahead of the exact solution, whereas the control-theoretic solution lags behind.

The exact energy of the two-soliton solution can be computed using Equation (7). It is possible to
compute that integral explicitly to obtain E = 16/

√
1− v2 ≈ 36.71. The energy associated with the

semi-discrete Lagrangian in Equation (44) can be expressed by the formula

EN =
1
2

q̇T M̃N(q) q̇ + RN(q), (169)

where RN was defined in Equation (88) and for our Sine–Gordon system is given by

RN(q) =
N

∑
k=0

[
1
2

(
yk+1 − yk
Xk+1 − Xk

)2

+ 1− sin yk+1 − sin yk
yk+1 − yk

]
(Xk+1 − Xk), (170)

and MN is the mass matrix in Equation (47). The energy EN is an approximation to Equation (7) if the
integrand is sampled at the nodes X0,. . .,XN+1 and then piecewise linearly approximated. Therefore,
we used EN to compute the energy of our numerical solutions.
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The energy plots for the Lagrange multiplier strategy are depicted in Figure 13. We can see that
the energy stays nearly constant in the presented time interval, showing only mild oscillations, which
are reduced as a higher order of integration in time is used. The energy plots for the control-theoretic
strategy are depicted in Figure 14. In this case, the discrete energy is more erratic and not as nearly
preserved. Moreover, the symplectic Gauss and Lobatto methods show virtually the same energy
behavior as the non-symplectic Radau IIA method, which is known for its excellent stability properties
when applied to stiff differential equations (see Reference [12]). It seems that we do not gain much by
performing symplectic integration in this case. It is consistent with our observations in Section 2.6 and
shows that the control-theoretic strategy does not take the full advantage of the underlying geometry.
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Figure 13. The discrete energy EN for the Lagrange multiplier strategy: Integration in time was
performed with the 2nd (top) and 4th (bottom) order Lobatto IIIA–IIIB method for constrained
mechanical systems. The spikes correspond to the times when the solitons bounce off of each other or
of the walls.

As we did not use adaptive time-stepping and did not implement any mesh smoothing techniques,
the quality of the mesh deteriorated with time in all the simulations, eventually leading to mesh
crossing, i.e., two mesh points collapsing or crossing each other. The control-theoretic strategy, even
though less accurate, retained good mesh quality longer, with the breakdown time Tbreak > 1000,
as opposed to Tbreak ∼ 600 in case of the Lagrange multiplier approach (both using a rather large
constant time step). We discuss extensions to our approach for increased robustness in Section 6.
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Figure 14. The discrete energy EN for the control-theoretic strategy: Integration in time was performed
with the 4th-order Gauss (top), 4th-order Lobatto IIIA–IIIB (middle), and non-symplectic 5th-order
Radau IIA (bottom) methods.

6. Summary and Future Work

We have proposed two general ideas on how r-adaptive meshes can be applied in geometric
numerical integration of Lagrangian partial differential equations. We have constructed several
variational and multisymplectic integrators and discussed their properties. We have used the
Sine–Gordon model and its solitonic solutions to test our integrators numerically.

Our work can be extended in many directions. Interestingly, it also opens many questions in
geometric mechanics and multisymplectic field theory. Addressing those questions may have a broad
impact on the field of geometric numerical integration.

6.1. Non-Hyperbolic Equations

The special form of the Lagrangian density considered in Equation (42) leads to a hyperbolic
PDE, which poses a challenge to r-adaptive methods, as at each time step the mesh is adapted globally
in response to local changes in the solution. Causality and the structure of the characteristic lines
of hyperbolic systems make r-adaptation prone to instabilities, and integration in time has to be
performed carefully. The literature on r-adaptation almost entirely focuses on parabolic problems
(see References [7,8] and references therein). Therefore, it would be interesting to apply our methods
to PDEs that are first-order in time, for instance the Korteweg-de Vries, Nonlinear Schrödinger,
or Camassa-Holm equations. All three equations are first-order in time and are not hyperbolic in nature.
Moreover, all can be derived as Lagrangian field theories (see References [35,42,47–51]). The Nonlinear
Schrödinger equation has applications to optics and water waves, whereas the Korteweg-de Vries
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and Camassa-Holm equations were introduced as models for waves in shallow water. All equations
possess interesting solitonic solutions. The purpose of r-adaptation would be to improve resolution,
for instance, to track the motion of solitons by placing more mesh points near their centers and making
the mesh less dense in the asymptotically flat areas.

6.2. Hamiltonian Field Theories

Variational multisymplectic integrators for field theories have been developed in the Lagrangian
setting [3,35]. However, many interesting field theories are formulated in the Hamiltonian setting.
They may not even possess a Lagrangian formulation. It would be interesting to construct Hamiltonian
variational integrators for multisymplectic PDEs by generalizing the variational characterization of
discrete Hamiltonian mechanics. This would allow to handle Hamiltonian PDEs without the need
for converting them to the Lagrangian framework. Recently Leok and Zhang [52] and Vankerschaver,
Ciao, and Leok [53] have laid foundations for such integrators. It would also be interesting to
see if the techniques we used in our work could be applied in order to construct r-adaptive
Hamiltonian integrators.

6.3. Time Adaptation Based on Local Error Estimates

One of the challenges of r-adaptation is that it requires solving differential-algebraic or stiff
ordinary differential equations. This is because there are two different time scales present: one defined
by the physics of the problem and one following from the strategy we use to adapt the mesh. Stiff ODEs
and DAEs are known to require time integration with an adaptive step size control based on local
error estimates (see References [11,12]). In our work, we used constant time-stepping, as adaptive step
size control is difficult to combine with geometric numerical integration. Classical step size control is
based on past information only; time symmetry is destroyed and with it the qualitative properties of
the method. Hairer and Söderlind [54] developed explicit, reversible, symmetry-preserving, adaptive
step size selection algorithms for geometric integrators, but their method is not based on local error
estimation, thus it is not useful for r-adaptation. Symmetric error estimators are considered in
Reference [28] and some promising results are discussed. Hopefully, the ideas presented in those
papers could be combined and generalized. The idea of Asynchronous Variational Integrators (see
Reference [4]) could also be useful here, as this would allow the use of a different time step for each
cell of the mesh.

6.4. Constrained Multisymplectic Field Theories

The multisymplectic form formula stated in Equation (106) was first introduced in Reference [3].
The authors, however, consider only unconstrained field theories. In our work, we start with the
unconstrained field theory of Equation (1), but upon choosing an adaptation strategy represented by
the constraint G = 0, we obtain a constrained theory, as described in Sections 3 and 4.3. Moreover,
this constraint is essentially non-holonomic, as it contains derivatives of the fields and the equations
of motion are obtained using the vakonomic approach (also called variational nonholonomic) rather
than the Lagrange–d’Alembert principle. All that gives rise to many very interesting and general
questions. Is there a multisymplectic form formula for such theories? Is it derived in a similar fashion?
Do variational integrators obtained this way satisfy some discrete multisymplectic form formula?
These issues have been touched upon in Reference [41] but are by no means resolved.

6.5. Mesh Smoothing and Variational Nonholonomic Integrators

The major challenge of r-adaptive methods is mesh crossing, which occurs when two mesh
points collapse or cross each other. In order to avoid mesh crossing and to retain good mesh quality,
mesh smoothing techniques were developed [7,8]. They essentially attempt to regularize the exact
equidistribution constraint G = 0 by replacing it with the condition ε ∂X/∂t = G, where ε is a
small parameter. This can be interpreted as adding some attraction and repulsion pseudoforces
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between mesh points. If one applies the Lagrange multiplier approach to r-adaptation as described in
Section 3, then upon finite element discretization, one obtains a finite dimensional Lagrangian system
with a non-holonomic constraint. This constraint is enforced using the vakonomic (non-holonomic
variational) formulation. Variational integrators for systems with non-holonomic constraints have
been developed mostly in the Lagrange–d’Alembert setting, but there have also been some results
regarding discrete vakonomic mechanics. The ideas presented in References [55–57] may be used to
design structure-preserving mesh smoothing techniques.
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