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ABSTRACT

We report on the current progress of the water vapor radiometer (WVR) phase correction project for the
Combined Array for Research in Millimeter-wave Astronomy (CARMA). CARMA is a new millimeter array that
merges the Owens Valley Radio Observatory (OVRO) array, the Berkeley-Illinois-Maryland Association (BIMA)
array and eventually the Sunyaev-Zel’dovich Array (SZA). WVRs are designed for phase correction by monitoring
the water vapor in the atmosphere along the line of sight toward astronomical sources. In addition, we discuss
the stability of the current OVRO water vapor radiometers in preparation for testing at the CARMA site. We
will systematically analyze the receivers with atmospheric correlations to decouple the effects of instrumentation
and atmospheric noise. Finally, we report on the status of the correlation receivers in development.

1. INTRODUCTION

In 2004, construction began on the new Combined Array for Research in Millimeter-wave Astronomy (CARMA)
project1 by moving the Berkeley-Illinois-Maryland Association (BIMA) and the Owens Valley Radio Observatory
(OVRO) antennas to the CARMA site. The site, Cedar Flat in eastern California, is at 7200 feet elevation, which
significantly reduces the effect of atmospheric decorrelation. The collecting area of CARMA is about 725 m2

with eventual long baselines of 2 km. All merged, these attributes increase the observing efficiency by 50%-100%,
compared to the BIMA or OVRO arrays. CARMA is currently ongoing final integration and was dedicated on
May 5th, 2006.

However, even with a better site, CARMA will still suffer from atmospheric fluctuations. For interferometers,
atmospheric fluctuations decrease phase coherence and observation quality. Observing phase calibrators such as
quasars, can only recover atmospheric phase variations on time scales of 1 hour. To correct phase variation on
shorter time scales, a CARMA water vapor radiometer (WVR) system is being developed to measure and correct
for the twinkling of phase shifts from fluctuating amounts of tropospheric water vapor to increase the sensitivity
of the array. There are two water emission lines for remote sensing of the water vapor column in the microwave
band: the 616-523 rotational line transition near 22 GHz and the 313-220 rotational line transition near 183 GHz.
Early experiments and modeling of the water vapor emission by the consortium determined that the optically
thin 22 GHz line was the best phase correction method for the OVRO and BIMA sites. The 183 GHz emission
line, although very sensitive to small water columns, starts to become optically thick with moderate water vapor
(about 2 mm of precipitable water vapor, or PWV). The BIMA/OVRO sites routinely observed with 8 to 9 mm
of PWV.

The opacity of Cedar Flat was measured by the atmospheric total power using a 225 GHz tipper during three
periods: 2002 October - 2003 January, 2003 February - 2003 May, and 2003 August - February 2004. Figure 1
illustrates the opacity as a percent of the observing time during these periods (i.e. 50% of the time the opacity
was below 0.26). Table 1 summarizes the measured opacity and uses a simple atmospheric model to calculate
the associated PWV. The opacity data implies that 50% of the time the PWV is less than 5 mm, but only 5%
of the time is it less than 2 mm, suggesting again that the optically thin line at 22 GHz is the preferred remote
sensing approach for CARMA.
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Figure 1. Results from a 225 GHz tipper located at the Cedar Flat CARMA site. The horizontal axis is the opacity
measured by the tipper and the vertical axis is the fraction of the time that the opacity was that value or lower. The
data was collected from 2002 October - 2003 January, 2003 February - 2003 May, and 2003 August - February 2004.

Percent of Time Estimated Opacity Estimated PWV (mm)

90% 0.53 12
50% 0.26 5
25% 0.2 4.5
10% 0.14 3
5% 0.12 2

Table 1. Cedar Flat Atmospheric Opacity
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Figure 2. The coherence factor versus phase noise RMS. The x-axis is the phase RMS and the y-axis is the coherence
factor. The coherence factor is defined as the ratio of the receiving signal strength to the maximum signal strength.

In addition to the CARMA effort, as well as the former OVRO2 and BIMA3 efforts, there are numerous ongo-
ing projects to develop reliable phase correction WVRs, using either 22 GHz or 183 GHz radiometers, for many
radio telescope interferometers including the Very Large Array (VLA),4 the Institute for Radio Astronomy at
Millimeter wavelengths (IRAM),5 the Submillimeter Array (SMA),6 and the eventual Atacama Large Millimeter
Array (ALMA).7

2. WATER VAPOR PHASE CORRECTION

The CARMA consortium has an extensive history investigating the atmospheric fluctuations due to variations
in the water vapor column above each antenna and their subsequential correction. The decorrelation from this
radio “seeing” limits the overall sensitivity and dynamic range of the interferometric maps, more so with short
wavelength or long baseline observations.

2.1. Phase Coherence versus Signal Strength

To demonstrate the importance of the phase decorrelation in interferometry, we assume two models for the
dechoerence of the atmosphere. One is Gaussian distributed phase noise, which can be solved analytically.8 The
other is uniformly distributed phase noise, which is calculated numerically. We explore the phase noise effect
and compare spectra with WVR phase correction.

Figure 2 shows the coherence factor versus the phase noise RMS, where the coherence factor is defined as
the receiving power ratio of partially coherent waves and perfectly coherent waves for both cases. We assume
that atmospheric absorption is not involved, i.e. only the phase noise affects the signal strength. For both cases,
when the phase noise RMS is 0◦, the waves are perfectly coherent and the coherence factor is 1. For the uniform
distributed phase noise, when the RMS is 103.9◦, the waves are completely incoherent and the coherent factor is
0. For a Gaussian distributed phase noise the coherence factor will be slightly higher than the former. When the
atmosphere is stable, phase noise on short time scales tends to satisfy the Gaussian distribution. Given system
phase noise, one can quantitatively determine the data quality.

To explore the impact of the atmospheric phase RMS on observations, we used the MIRIAD9 task uvgen that
includes phase RMS variation in simulated observations, assuming uniform distributed phase noise. In Figure
3(a), we show a simulated observation with an overall system noise of about 0.16 Jy and a source with a spectral
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Figure 3. (a) The plot on the top shows a 100 GHz spectral line with 65◦ RMS of the phase noise. It is not detected
due to low Signal to Noise ratio (S/N). (b) The plot on the bottom shows the spectrum improved by lowering the RMS
to 36◦ with the WVR phase correction, a 3σ detection.

line 2 Jy above a 1 Jy continuum, where these parameters are chosen for convenience. In the case of 65◦ phase
noise RMS, the strength of both the spectral line and the continuum drop below the noise power, making this a
non-detection, even as the spectral line is theoretically detectable. Assuming that the WVR system can lower
the phase noise RMS to 36◦, in Fig. 3(b), the detection of the spectral line is clearly improved to >3σ. Clearly,
phase coherence plays a critical role in weak line detection observations.

2.2. Delay Path and Water Vapor Relationship

Water vapor is a major component altering the refraction index of the atmosphere and distorting microwave
fronts of astronomical sources.10 Empirically, the pathlength variation Lw of the atmosphere can be obtained
from (1)8

Lw(ρw, T ) = 0.299× PWV + 1742.2× 10−6

∫ ∞

ground

ρw(s)
T (s)

ds, (1)

where T is the temperature function and ρw is the water vapor density function. Both functions are in terms
of the height, s. PWV stands for the perceptive water vapor in millimeter (mm). The second term on the
right-hand side in Equation (1) is an integral from the ground to infinite height. As long as ρw(s) and T (s)
are known, one can determine the path delays of each antenna and apply phase correction by comparing the
differences of path delays. Water vapor radiometers (WVRs) are designed to detect the atmospheric water vapor
above an antenna that relates to the phase fluctuations. For the optically thin 22 GHz water vapor line, the
translation from the intensity of the spectral line to the path delay should be a simple linear scale factor.
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Figure 4. The system block diagram of the OVRO WVRs.

3. WATER VAPOR RADIOMETER HISTORY IN THE CONSORTIUM

Millimeter wave continuum radiometry at BIMA using total power receivers3 (requiring a stability of 10−4)
was successful only under certain atmospheric conditions. Analysis of the total power data showed that only
in clear weather was there any correlation between the atmospheric phase fluctuations and the total power
measurements.11 During those times, the phase correction was successful only about 50% of the time.

At OVRO, WVRs were installed in 19992 with cryogenic cooled (15 K), low-noise 18-26 GHz, InP amplifiers
Fig. 4. These receivers were an upgrade to previous less sensitive uncooled systems. Basically, the OVRO
WVRs are total-power systems with double side-band receivers, which is a simple and robust design. As shown
in Figure 4, the receiver includes radio frequency (RF) amplifiers, band pass filters, power combiners/splitters,
and detectors. The water vapor emission power goes into the horn antenna and is amplified by the RF amplifier.
The horn is driven by a motor so it can observe sources from different directions: sky, hot load, or cold load.
The band pass filter behind the RF amplifier is designed with 18-26 GHz pass band so the water vapor signal
can go through the mixer without interference from other frequency signals. The mixer shifts the signal to a
lower frequency band. An intermediate frequency (IF) filter and IF amplifiers can increase the magnitude of the
signal again.
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There are three output bands in the power splitter, 4 to 6 GHz, 7 to 9 GHz and 10 to 12 GHz. They are
filtered separately by band-pass filters and later combined by power combiners. To decrease mis-match effects
between different channels, two switches are installed. Finally, the signals are amplified and converted to low
frequency signals by diode detectors. After the signals come out of the WVR, the data are acquisitioned. The
sensitivity needed for detecting water vapor suffers from fluctuations in system gain, offset, bandwidth and noise
temperature. To stabilize the WVRs, constant calibration of these parameters is done by observing artificial
sources, the hot load and the cold load.

By analyzing the last few years of data, the residual delay errors of 100-200 µm are obtained under some
conditions by cross-calibrating the temperature scales of the WVRs and linking the delay phase of the target
source to that of the a phase calibrator at a different elevation. Point source observations show that high quality
images can be extracted from previously unusable data when the corrections are applied.

However, the general result is that the WVRs increase phase coherence less than 50% of the time. Although
the accurate measurement of the relative gains and offsets of the InP amplifiers is the most critical and difficult
step in the this phase correction approach, the simplified conversion factor may play a large role as well. The
results gathered to date suggest that using a simple constant conversion factor to infer the phase correction from
the 22.2 GHz line intensity does not work consistently and that there may be further atmospheric physics at
play. There is a trend that the worse the initial phase coherence the more likely the phase coherence will be
improved by the assumption of a constant atmospheric conversion factor. The problem is that during median
weather, when the phase correction should also be improving the observations, the water vapor emission does
not well track the phase fluctuations. So although often the coherence is increased by tracking the atmospheric
water vapor, we need to increase the robustness of this system.

At BIMA (April 1999), similar 22 GHz water line radiometry experiments were performed on three BIMA
antennas12 with two types of backends: a one channel swept frequency system and a 16 channel 4 GHz bandwidth
autocorrelator spectrometer (the Atmospheric Phase Inference Device, or APHID13). These tests also showed
that about 50% of the time the interferometry data were improved. Unfortunately in the other 50% of the data,
drifts in the measurement degraded the RMS phase. Again, an atmosphere scale factor was used instead of
an atmospheric model. From this work, it was quickly realized that one of the limiting factors was the gain
fluctuation in the system that was degrading the data.

4. CURRENT PROGRESS

Decorrelation caused by atmosphere-induced phase fluctuations across the array has effects similar to optical
“seeing”, limiting sensitivity, dynamic range, and angular resolution attainable by interferometric arrays. Our
initial results at correcting these atmospheric phase fluctuations using WVRs to improve the phase coherence are
very encouraging. By using the simplest assumptions about the atmospheric properties (i.e. a single conversion
factor from water vapor to delay), WVR corrections improved the phase coherence more than 50% of the time.
Moreover, most of the data in the worst atmospheric conditions improved by up to 60% with this simple approach.

Nonetheless, further research into phase correction is clearly needed if this technique is to evolve into a
robust phase correction scheme for CARMA. In our experiments the phase residuals after application of the
WVR corrections are larger than the expected noise from the WVR receivers, implying that our atmospheric
“model” is too simplistic, and/or the receivers have low level instabilities hampering the WVR corrections. The
CARMA consortium goals for a robust phase correction research program is to further investigate the importance
of these two factors: ongoing development of stable correlation receivers and re-investigating more sophisticated
treatment of the atmosphere properties with improved OVRO systems.

4.1. Correlation Receivers

One of the long-term problems in this field has been the question of receiver stability: are the observed fluctuations
the instrument or the atmosphere? The development of an ultra–stable correlation receiver at 22 GHz will provide
the most stable system for WVR phase correction experiments. As shown in Figure 5, the system includes a 180◦

hybrid, RF amplifiers, mixers and low pass filters for two channels.10 The gain calibration and signal detection
are processed simultaneously. One input branch of the hybrid contains the sky signal from the horn and antenna
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Figure 5. The system block diagram of the BIMA WVRs.

optics. The second input branch of the hybrid is connected to a calibration load. The calibration load has a
variable temperature, constituting a controlled thermal load (CTL). Its functionality is similar to a noise source
in a noise-adding receiver system, allowing the calibration of the system gains. The two output branches of the
hybrid, after amplification and down-conversion, are multiplied together by a low frequency mixer and read-out
by the control system. Because the calibration and sky signals propagate simultaneously through the same
paths, the gain of either output branch is a multiplicative factor to the difference signal reconstituted by the low
frequency multiplier. To measure the sky power, the CTL temperature is controlled to keep the power difference
signal as small as possible, at which point the CTL temperature and the sky temperature are the same and the
control system obtains the sky power measurement.

A lab prototype scanning system was assembled at Berkeley in 2001 by two of the authors (Bolatto and Plam-
beck), and successfully measured the 22 GHz water vapor line spectrum. The production prototype, including
a dewar, cryogenic amplifiers and CTL, a microprocessor controller, and a signal correlator was developed by
2004, but further development has been stalled in favor of higher priority CARMA integration tasks. The fun-
damental challenge of correlation radiometers is to minimize input mismatch at or before the first amplification
stage, which is connected to the hybrid, and the mismatch results in spurious correlation power that could be
interpreted as a temperature difference between the sky and the load. The difference between CTL physical and
radiometric temperatures are also crucial to WVR data. Finally, CTL temperature agility is extremely impor-
tant when the WVR tracks the varying sky temperature on short time scales. Therefore, Bolatto and Plambeck
developed a low heat capacity, electronically controlled 50 Ω microstrip load, which is capable of changing its
physical temperature by tens of Kelvin in a few hundred milliseconds.
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Figure 6. This plot shows the antenna efficiency with various finite-sized water vapor clouds at different heights above
a 10-m antenna. The antenna efficiency is the ratio of the antenna temperature to the water vapor temperature. The
antenna efficiency of an infinite water vapor cloud is 100%.

4.2. Atmosphere and Instrument Stability

Based on WVR observations from previous work, such as VLA4 and OVRO,2 most of the time the scale factor of
the 22 GHz water vapor line is larger than expected from theory. Thus, we investigate this effect by numerically
calculating antenna efficiency, which depends on the height in both near-field and far-field regions, to simulate
water vapor detection.14 In the simulations, we define the antenna efficiency as the ratio of the receiving power
from a finite-sized cloud to a infinite-sized cloud i.e. the ratio of the antenna temperature to water vapor cloud
temperature. Water vapor radiometers are fundamentally single-dish total power receivers. We scan the antenna
efficiency by putting a single layer of water vapor above a parabolic antenna and calculate the receiving power.
By integrating the transmitting power from water vapor clouds to the antenna, one can compare with the infinite-
sized cloud and obtain the antenna efficiency. Figure 6 shows the antenna efficiency for a one-dimensional 10-m
parabolic antenna with different-sized water vapor clouds at varying heights. For finite-sized water vapor clouds,
the antenna efficiency decreases with height, which is similar to a beam filling factor, except the near and far fields
effects are included in this simulation. Based on these simulations, we show that if the atmosphere fluctuations
are small, the scale-factor will increase (in units of µm/mK). Clearly, one needs to better understand the
atmospheric properties, including turbulence. The ALMA group has been working on the effects of turbulence
in the atmosphere.15

During the earliest stages of CARMA, we will use the existing OVRO WVRs to systematically investigate
both the instrument stability and the atmospheric properties at the CARMA site, e.g., what correlations with
atmospheric conditions will emerge? The main goal over the next year is to employ the OVRO WVR systems
and investigate the impact of atmospheric conditions on our ability to achieve phase correction at the Cedar Flat
site. Analysis of the existing WVR data has been hampered by system reliability issues and the unavailability
of atmospheric data on similar timescales: we will be tackling these two issues. The calibration and overall
stability of the existing systems will be evaluated, characterized, and monitored. The 6 systems will be re-
installed on the CARMA 10-meter telescopes in late 2006. We will also emplace a system to gather atmospheric
information (e.g., temperature, cloud cover, wind speed and direction, etc.) on timescales relevant to phase
correction (seconds to minutes). With better characterized WVR systems and more comprehensive atmospheric
data, we will address the main question suggested by the initial results described in Section 3: Are we missing
any atmospheric physics? To answer this question, we will analyze the atmospheric data in conjunction with the
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water water vapor fluctuations and the interferometric phase variations.
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