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Abstract This paper presents the first steps toward success-
fully translating nonlinear real-time optimization based con-
trollers from bipedal walking robots to a self-contained pow-
ered transfemoral prosthesis: AMPRO, with the goal of im-
proving both the tracking performance and the energy effi-
ciency of prostheses control. To achieve this goal, a novel
optimal control strategy combining control Lyapunov func-
tion (CLF) based quadratic programs (QP) with impedance
control is proposed. This optimal controller is first verified
on a human-like bipedal robot platform, AMBER. The re-
sults indicate improved (compared to variable impedance
control) tracking performance, stability and robustness to
unknown disturbances. To translate this complete methodol-
ogy to a prosthetic device with an amputee, we begin by col-
lecting reference human locomotion data via Inertial mea-
surement Units (IMUs). This data forms the basis for an
optimization problem that generates virtual constraints, i.e.,
parameterized trajectories, specifically for the amputee and
the prosthesis. A online optimization based controller is uti-
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lized to optimally track the resulting desired trajectories.
The parameterization of the trajectories is determined through
a combination of on-board sensing on the prosthesis together
with IMU data, thereby coupling the actions of the user with
the controller. Importantly, the proposed control law dis-
plays remarkable tracking and improved energy efficiency,
outperforming PD and impedance control strategies. This
is demonstrated experimentally on the prosthesis AMPRO
through the implementation of the holistic sensing, algo-
rithm and control framework, with the end result being sta-
ble prosthetic walking by an amputee.

Keywords Transfemoral prosthesis control · real-time
optimal control · hybrid systems · quadratic program ·
optimization problem

1 INTRODUCTION

There are approximately 222,000 people in the United States
alone that are transfemoral amputees [1]. Despite this large
amputee population, the current market for commercial trans-
femoral prostheses remains largely limited to energetically
passive prosthetic devices, limiting the day-to-day life of
amputees with increased metabolic cost and constrained lo-
comotion capabilities [2]. As one of the most important ap-
plications of bipedal robotic research, powered lower-limb
prostheses capable of providing net power in conjunction
with various prostheses controllers have been developed in
recent decades. Most notably, [3,4] developed a hydrauli-
cally actuated knee prosthesis with the “echo control” method
to mirror the modified trajectory of a healthy leg to the op-
posing side. Control based on gait-pattern generators has
been realized in [5,6]. An optimal design of a transfemoral
prosthesis with energy storage and regeneration is presented
in [7]. Using the Center of Pressure (COP) as the phase vari-
able, virtual constraint control of a powered prosthetic leg
has been realized in [8]. Under the assumption that the hu-
man gait is cyclic, variable impedance control is one of the
most common approaches for controlling prostheses [9–14].
However, despite the improvements that these smart con-
trollers have achieved, there are still limitations related to
the optimality of the controllers and the need for exhaus-
tive clinical testing to determine control parameters. These
issues motivate the main objectives of this paper.

The primary goal of this paper is to demonstrate the suc-
cessful translation of advanced (optimal) controllers from
robotic walking to prostheses, with the end result being im-
proved energy efficiency given similar tracking performance
compared to existing control strategies (PD and variable im-
pedance control). In particular, the main contributions of this
work are threefold: a) to propose the idea of using bipedal
robots to test prosthetic controllers. A nominal walking gait
is found for the robot platform which displays qualitatively
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human-like walking, and prosthetic controllers are tested on
one “leg” of the robot. Through this method, we are able
to present and test a online optimization based transfemoral
prosthesis control method: control Lyapunov function (CLF)
based quadratic programs (QPs) coupled with variable imp-
edance control. b) To introduce the custom designed self-
contained powered transfemoral prosthetic device AMPRO
explicitly with the goal to validate this systematic method.
c) Having verified the controllers on the robot platform, we
translate the complete methodology from realizing human-
like robotic walking to achieve stable prosthetic walking on
the transfemoral prosthesis device: AMPRO.

The goals of this paper are motivated by the shortcom-
ings (hand tuning and passiveness) of impedance control,
a novel prosthetic controller that combines the rapidly ex-
ponentially stabilizing control Lyapunov functions (RES-
CLFs) with impedance control is proposed with the goal
of achieving better tracking and improved energy efficiency
on prostheses. This controller was first verified in simula-
tion [15] and then tested on a human-like bipedal robot plat-
form: AMBER, which has been used in previous work [16]
to achieve stable “prosthetic” walking. These successes on
robotic systems motivate the realization of this controller on
a custom-built prosthetic device: AMPRO. We begin with
utilizing a custom motion capture system consisting of In-
ertial Measurement Units (IMUs) to collect human locomo-
tion trajectories. With the collected data, a human-inspired
optimization problem is then leveraged to obtain a stable and
robust gait for a specific test subject. IMUs are also used to
estimate human movements during walking, thus providing
human-robot sensory feedback.

Through the systematic methodology for translating hu-
man-inspired robotic walking to prostheses, stable pros-
thetic walking is realized for an amputee subject, as shown
in Fig. 1. The powered prosthetic walking gait is compared
with the original walking gait of the amputee subject us-
ing a passive device, showing that the powered gait is nat-
ural and human-like. More importantly, the proposed con-
troller also outperforms other existing controllers (such as
PD) w.r.t. both better tracking (21.6% improvement on the
erms) and improved power consumption (5% reduction). To
summarize, the procedure for testing this controller both in
simulation and on the bipedal robot helped to predict and re-
solve many implementation issues before attempting to real-
ize walking with a human test subject. The presented proce-
dure, therefore, has the potential to reduce the cost of clinical
testing of prostheses through the fast and efficient develop-
ment and testing of controllers.

The structure of this paper is as follows: In Sec. 2, hu-
man locomotion data collection with IMUs is introduced.
Based on the collected data, human-inspired optimization is
utilized to obtain the optimized trajectories for the bipedal
robot or the prosthesis. Unifying RES-CLFs based quadratic

Fig. 1: Transfemoral test subject wearing the custom built
prosthetic device, AMPRO.

programming control and the impedance control, the novel
model independent quadratic program (MIQP) controller
is discussed explicitly in Sec. 3. Before the implementation
on the actual prosthetic device, the systematic methodol-
ogy, including gait generation and optimal control, is ver-
ified in both simulation and experiment with the bipedal
robot AMBER in Sec. 4. Finally, the experimental realiza-
tion of the nonlinear online optimization based controller on
a real prosthetic device with an amputee test subject is illus-
trated in Sec. 5. Conclusions and future work are presented
at the end.

2 ROBOTIC MODEL OF HUMAN LOCOMOTION

In an effort to achieve human-like robotic walking, we turn
to the most prevalent source for natural and efficient locomo-
tion—the human body—for inspiration. In particular, a low-
cost inertial motion capture system with IMUs is developed
and interfaced with the human-inspired control approach.
This system is first used to capture the walking trajecto-
ries of a human subject. Utilizing the collected human lo-
comotion data as the reference, an optimization problem is
employed to design a stable and optimal gait which can be
directly implemented on the specific robot or test subject.

2.1 Motion Capture with IMU

There have been many methods proposed for ambulatory
measurement of human joint angles. In particular, Luinge
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and Veltink [17] proposed a Kalman filter which integrates
the 3D angular velocity while applying heading corrections
based on accelerometer readings. This approach is prone to
integration drift of the gyroscope for systems which need
to operate for long durations of time such as prostheses. A
more advanced kinematic filtering method was proposed by
Roetenberg et al. [18] for the XSens MVN motion capture
suit. This approach uses a kinematic model of the individ-
ual body segments which is used to update a Kalman filter
and provide the positions of each joint and segment of the
body. Motion capture systems have also been shown to be
effective for robotic teleoperation such as the method pro-
posed by Miller et al. [19] in which an inertial motion cap-
ture system was successfully used to teleoperate the NASA
Robonaut. This system used a complementary filter to fuse
accelerometers, gyroscopes, and magnetometers to estimate
poses which were then used to compute an inverse kinematic
relationship for pose recreation on the robot.

The algorithm used for motion capture in this work is a
planar modification of the model-based EKF first presented
by Šlajpah et al. [20]. In this approach, the human extremi-
ties are modeled as a kinematic chain built from a location
of negligible acceleration. The concept is based on a kine-
matic relation similar to a series of inverted pendula, where
the acceleration of any point B on a rigid body can be deter-
mined if the angular velocity, angular acceleration and linear
acceleration of other point A on the body are known through
the relation:

aB = aA +ω× (ω× rAB)+ ω̇× rAB, (1)

where rAB is the distance from point A to point B and ω is
the angular velocity of the link. The algorithm used in this
work is different in two aspects: the kinematic model of the
human legs is assumed to be composed of joints with ranges
of motion limited to flexion/extension, and the kinematic
chain is built from the hip. Since AMPRO has restricted ac-
tuation in solely the saggital plane and because joint varia-
tions in the coronal plane are not used in the proposed con-
trol approach, only measurements resulting in joint flexion
and extension are used in the model update. To express the
segment estimation in terms of the available joint mobility
of AMPRO, the measurements from the IMUs are projected
onto the saggital plane at each time step before they are
passed to the filter. Additionally, we assume that the forward
velocity of the hip is constant [21], [22] and that sinusoidal
movement of the hip in the vertical direction will yield neg-
ligible acceleration in comparison to walking dynamics.

An EKF is instantiated for each segment in the model
and updated sequentially along the kinematic chain from
the hip. More specifically, the hip joint is instantiated as a
fixed-base where the base acceleration and angular veloc-
ity are zero. Each distal joint in the chain is then treated
as a moving base, where the base acceleration and angular
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Fig. 2: Average joint angles for human subject using EKF
filter as compared to Winter [23]. The trajectories are used
as a comparison to show that the subject is walking with
qualitatively humanlike trajectories for use in the trajectory
optimization.

velocity are provided by the previous link. Each EKF up-
date estimates the states xk = [ωS, ω̇S,qE , q̇E ]T , with ω̇S

the first time derivative of the angular velocity in the seg-
ment (S) frame and q̇E the first time derivative of the earth-
frame (E) quaternion. The measurements for each link are
zk = [ωS

k , ω̇S
k , aS

k ] with aS
k the linear acceleration of the link,

which is the primary measurement coupled to the previous
link. Specifically, the acceleration from the previous joint is
used in the estimation model as (1) where aB is the expected
accelerometer reading, and aA is passed from the previous
link. The estimation then proceeds through each joint ac-
cording to the method detailed in [20].

Finally, the estimated orientations from the multibody
EKFs are then used to extract the joint configuration using
each link’s quaternion attitude in the global frame Eq, from
which the joint rotations used in the overall model q j can be
found as:

q j = q∗P⊗qD, (2)

where q∗P denotes the quaternion conjugate, ⊗ is the quater-
nion product, qD is the distal segment orientation and qP is
the proximal segment orientation.

During the experiment, the subject was asked to walk
along a straight line for several steps while wearing seven
IMUs to capture the walking behavior of the feet, shanks,
thighs, and torso. The joint states are estimated and collected
with the EKF algorithm. Then the joint angles are calculated
by converting the joint rotation found in (2) to an Euler angle
representation. Finally, several steps are averaged to yield
their unique trajectories for optimization. While a thorough
investigation on the accuracy of the 3D estimation method
was performed by Šlajpah et al., a comparison of the walk-
ing captured via the 2D projection was not validated with
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Fig. 3: Amputee subject with AMPRO (left) and the robotic
model (right).

an optical tracking system. To verify that the EKF method
is qualitatively capturing the human motion, knee and ankle
joint angles of a healthy subject are compared to a standard
set of saggital plane gait kinematics findings by Winter [23]
as shown in Fig. 2.

2.2 Robot Model.

A 7-link planar bipedal robot (one torso, two thighs, two
calves and two feet) with anthropomorphic parameters cor-
responding to the test subject is considered as the robotic
model of a human in this work. Due to the existence of dis-
crete behavior present in walking, i.e., impacts due to foot
strike, we represent the bipedal robot as a hybrid system [24]
with the configuration space QR: θ =(θsa,θsk,θsh,θnsh,θnsk,

θnsa)
T as shown in Fig. 3. The equations of motion of the

continuous dynamics are derived using the Euler-Lagrange
formula:

D(θ)θ̈ +H(θ , θ̇) = Bu, (3)

where D(θ) ∈ R6×6 is the inertial matrix and H(θ , θ̇) ∈
R6×1 contains the terms resulting from the Coriolis effect
C(θ , θ̇)θ̇ and the gravity vector G(θ). The torque map B =

I6 and u is the vector of torque inputs. With the notation
x = (θ ; θ̇), the affine control system ẋ = f (x)+ g(x)u can
be obtained by reformulating (3) [25]. The discrete behav-
ior of impact is modeled with the perfectly plastic impact
assumption; more details can be found in [26–28]. test test

Human-Inspired Outputs. With the goal of characteriz-
ing human walking, we take the perspective of viewing the
“complex” human locomotion system as a “black box”. The
goal becomes to drive the actual robot outputs ya(θ) to the
desired human outputs yd(t,α) that are found can be rep-
resented by the canonical walking function (CWF) with a

parameter set α in the formula as:

ycw f (t,α) = e−α4t(α1cos(α2t)+α3sin(α2t))+α5. (4)

This function is shown to be able to characterize human mo-
tion primitives universally including walking, running and
stair climbing in previous work [26,21]. For the pinned 7-
link bipedal robot model considered in this paper, a total
of 6 outputs are of interest including forward hip velocity
(hip), knee angles (sk, nsk), non-stance slope (nsl), torso an-
gle (tor) and non-stance foot angle (ns f ); for details, refer to
[29]. Therefore, we introduce the human-inspired outputs:

y(θ , θ̇ ,α) =

[
y1(θ , θ̇ ,α)

y2(θ ,α)

]
=

[
ya

1(θ , θ̇)− vhip
ya

2(θ)− yd
2(ρ(θ),α)

]
, (5)

where y1(θ , θ̇) = ya
1(θ , θ̇)− vhip is the difference between

the actual and desired hip velocity, and relative degree two
outputs y2(θ ,α) = ya

2(θ)− yd
2(ρ(θ),α) contain the differ-

ences between the actual and desired relative degree two
outputs. Note that, the desired relative degree two outputs
are defined as yd

2(ρ(θ),α) = [ycw f (ρ(θ),αi)]i∈O with αi =

(αi,1,αi,2,αi,3,αi,4,αi,5) in (4), and O= {sk,nsk,nsl, tor,ns f
} is the set of relative degree two outputs. The parameters of
all of the outputs are then combined to yield a single vector
α = (vhip,αsk,αnsk,αnsl ,αtor,αns f ) ∈ R26.

Upon observation of human locomotion data, the lin-
earized forward hip position, δ phip(θ), was discovered to
increase linearly through the progress of a step cycle [21],
[22], [30], therefore, motivating the phase variable:

ρ(θ) = (δ phip(θ)−δ p+hip)/vhip, (6)

which is therefore used to parameterize a given walking gait
as indicated in the formula of the desired outputs. Note that,
the initial forward hip position δ p+hip(θ) will be decided
through the optimized gait which will be discussed later.

2.3 Human-Inspired Optimization

Using these outputs, the feedback linearization human-insp-
ired controller [26] can be utilized to drive both y1→ 0 and
y2→ 0 in a provably exponentially stable fashion. However,
the robot will be “thrown-off” the designed trajectory when
impacts occur. This motivates the introduction of the partial
hybrid zero dynamics (PHZD) constraints aiming at yield-
ing a parameter set α that ensures the tracking of relative
degree two outputs remain invariant even through impacts,
therefore guarantees stability of the walking gait. In partic-
ular, the partial zero dynamics (PZD) surface is defined as:

PZα = {(θ , θ̇) ∈ T QR : y2(θ ,α) = 0,L f y2(θ ,α) = 0}, (7)

and the PHZD constraints can be explicitly stated as:

∆R(SR∩PZα)⊆ PZα , (PHZD)
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where ∆R and SR are the reset map and switching surface
of the robot model, respectively. The detailed explanation of
these constraints can be found in [26].

By enforcing the PHZD constraints discussed above, the
human-inspired optimization can be used to generate robot
or prosthetic trajectories that are both provably stable and
human-like [26]. More importantly, for a lower-limb pros-
thesis interacting with humans in a safety critical fashion,
more attention must be placed on the physical constraints
that relate to safety and energy conservation. One particular
goal, for example, is to optimize the torque profile such that
it is within the limit of the motors in order to bear the human
weight during the stance phase. Walking gaits which require
optimal torques also tend to decrease the energy consump-
tion of the device, prolonging battery life. These specifica-
tions yield the optimization problem subject to the PHZD
and physical constraints as stated in the following:

α
∗ = argmin

α∈R26
CostHD(α) (HIO)

s.t PHZD Constraints,

Physical Constraints,

where the cost function (HIO) is the least-square-fit error
between the human experimental data (discussed in Sec. 2.1)
and the CWF representations (5). The explicit expression of
the cost function is stated as follows:

CostHD(α) = ∑
i∈O

Ki

∑
k=1

(
ya

i [k]− yd
i (t

a
i [k],αi)

)2
, (8)

where ta
i and Ki are the discrete time and the number of dis-

crete points for the recorded output i ∈ O, respectively. O is
the output set, which is defined based on the model.

Note that the physical constraints include additional con-
straints that ensure foot clearance and that the movement
range of the joints is within hardware limits. The direct re-
sult of this optimization problem is the parameter set α that
renders an optimal (w.r.t. torque, foot clearance, joint posi-
tion and velocity) and provably stable human-like walking
gait. Additionally, the gait can be directly implemented on
the robot or prosthetic device.

To summarize, this optimization problem uses the tra-
jectory of a healthy subject as the reference, which is subject
to PHZD constraints (to ensure smooth transitions between
stance and swing phase) and physical constraints (torque
and angle limitations) such that the output gait is applica-
ble for implementation on the prosthetic device. Therefore,
the main advantages of utilizing this optimization problem
are twofold: a) an optimal smooth gait can be designed for a
specific amputee without hand tuning and, b) the output gait
can be practically used directly on the prosthetic device with
optimal torque and energy efficiency.

Remark. The term of stability mentioned here is specific to
the mathematical stability of the designed gait, i.e., the gait

has a limit cycle that is exponentially stable [24]. While this
stability property does not guarantee stable walking (w.r.t
the walking balance) of the prosthetic device, it plays a key
role during the nonlinear prosthetic controller development.
To be more specific, the main goal of this research is to trans-
late robotic walking into the design and control of the pros-
thesis. A mathematically stable gait is of essential impor-
tance for realization of robotic walking for bipedal robots in
both simulation and experiment. Utilizing this stable robotic
walking the nonlinear controller, therefore, can be verified
and improved on the robots before implementing on the pros-
thetic device.

2.4 Prosthetic Trajectory Reconstruction

The result of the optimization problem (HIO) is the param-
eter set α that define the human-inspired outputs. Via these
outputs, we can obtain desired joint angles and angular ve-
locities for the robot in every iteration through the inverse
projection from the PHZD surface. This is achieved through
a methodology termed the PHZD reconstruction [31]. In
particular, on the PHZD surface, the zero dynamic coordi-
nates can be defined as:

ξ1 = δ phip(θ) := cθ , (9)

ξ2 = ya
1(θ , θ̇) := δ ṗhip(θ) := cθ̇ , (10)

where c is the coefficient array defining the linearized hip
position δ phip(θ) [29]. As the direct result of (6) and (9), the
desired relative degree two outputs can be stated as yd

2(ρ(θ),

α) = yd
2(ξ1,α). Similarly, due to the linearity of the actual

relative degree two outputs, we have ya
2 = Hθ and ẏa

2 = Hθ̇ .
Therefore, utilizing the fact that the actual outputs are equal
to the desired outputs on the PHZD surface, we have the
following relationships between the desired joints states and
the desired outputs of the robot, which are given by:

θd(ξ ) =Ψ(ξ1,α) =

[
c
H

]−1(
ξ1

yd
2(ξ1,α)

)
, (11)

θ̇d(ξ ) = Φ(ξ1,ξ2,α) =

[
c
H

]−1
(

vhip
∂yd

2(ξ1,α)

∂ξ1
ξ2

)
.

The immediate result of this expression is that by knowing
ξ1 and ξ2 (which are the linearized forward hip position and
forward hip velocity, respectively), the desired angles and
velocities can be obtained directly using the parameter α .
More importantly, the resulting joint angles and velocities
are guaranteed to be smooth, human-like and optimal.
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3 PROSTHETIC CONTROLLER DESIGN

This section will begin by briefly introducing the frame-
work of variable impedance control. This traditional con-
trol approach is utilized in the development of a novel con-
trol Lyapunov function (CLF) [32] based model independent
quadratic program (MIQP) controller for prosthetic joints.

3.1 Impedance Control for Prosthesis

Based on the notion of impedance control in [33], the torque
at each joint during a single step can be represented in a
piecewise fashion by a series of passive impedance functions
[10] of the form:

τ
imp = k(θ −qe)+bθ̇ , (12)

where, k, qe and b represent the impedance parameters for
stiffness, equilibrium angle and damping, respectively, which
are constant for a specific phase.

While impedance control with a finite state machine is
one of the most widely used algorithms suggested to date
[13,10], one main challenge of impedance control is that it
requires the choice of the control parameters for each phase.
Currently, clinicians and prosthetic researchers often choose
these parameters by trial and error hand tuning for each pa-
tient as noted in [10]. Motivated by this shortcoming, the au-
thors took a different approach in the previous work [34] to
learn the impedance parameters for a lower-limb prosthesis
by the observation of unimpaired human walkers. The re-
sults have been validated in both simulation and experiment
with a transfemoral prosthetic device. As an extension of
this work, it is also shown that the impedance parameters can
be estimated by using the least-square-error method to fit
the simulated data or experimental data with the piecewise
impedance functions. Therefore, by using the impedance es-
timation algorithm as discussed in the previous works, the
impedance controller can be implemented directly on the
robot or prosthetic device with minimum tuning [15,16].

3.2 CLF Model Independent QP

As a means for stabilizing systems undergoing impacts, rapi-
dly exponentially stabilizing control Lyapunov functions (R-
ES-CLFs) were introduced in [32] to yield controllers with
stronger convergence guarantees. Quadratic programs can
be used to realize RES-CLFs via inequality constraints. Wh-
en combined with impedance control (implemented as a feed
-forward term), the result is a novel feedback control method-
ology: Model Independent Quadratic Programs (MIQP)+Im-
pedance control.

3.2.1 Human-Inspired Control Revisited

With the human-inspired outputs defined in (5), the dynam-
ics in (3) can be reformulated as:[

ẏ1
ÿ2

]
=

[
L f y1(θ , θ̇)

L2
f y2(θ , θ̇)

]
︸ ︷︷ ︸

L f

+

[
Lgy1(θ , θ̇)

LgL f y2(θ , θ̇)

]
︸ ︷︷ ︸

A

u, (13)

where L f is the Lie derivative and A is the dynamic decou-
pling matrix, which is invertible because of the specific cri-
terion of the outputs selection [16]. By picking u=A−1(−L f
+µ), equation (13) becomes:[

ẏ1
ÿ2

]
= µ. (14)

By designing µ properly (see [26]) one can drive both y1→
0 and y2→ 0 exponentially. However, due to the lack of the
model information, it is not possible to realize this controller
on prostheses. As a result, traditional PID control or vari-
able impedance control are typically seen as a more favor-
able option—it does not require accurate model information,
i.e., it is model independent. However, PID controllers lack
formal guarantees (when applied to nonlinear systems) and
require hand tuning [35]. This motivates the need to find a
new control strategy that overcomes the weaknesses of PID
control while maintaining model insensitivity.

3.2.2 CLF MIQP

By defining the vector η = (y, ẏ) ∈ Rn1+2×n2 with n1, n2
denoting the numbers of relative degree one outputs and rel-
ative degree two outputs, respectively, equation (14) can be
written as a linear affine control system:

η̇=

0n1×n10n1×n20n1×n2

0n2×n10n2×n2 In2×n2

0n2×n10n2×n20n2×n2


︸ ︷︷ ︸

F

η+

In1×n1 0n1×n2

0n2×n10n2×n2

0n2×n1 In2×n2


︸ ︷︷ ︸

G

µ. (15)

Considering the Continuous Algebraic Riccati Equations
(CARE) with P = PT > 0:

FT P+PF−PGGT P+ I = 0, (16)

we can obtain the optimal solution µ = −GT Pη . The so-
lutions of the CARE also allows for the construction of a
rapidly exponentially stabilizing control Lyapunov function
(RES-CLF) [36]. By defining ηε = (yp/ε; ẏp) with ε > 0,
we define the positive definite RES-CLF to be:

Vε(η) = η
T
[ 1

ε
I 0

0 I

]
P
[ 1

ε
I 0

0 I

]
η := η

T Pε η . (17)

Differentiating this function yields:

V̇ε(η) = LFVε(η)+LGVε(η)µ, (18)
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where LFVε(η) = ηT (FT Pε +Pε F)η , LGVε(η) = 2ηT Pε G.
In order to exponentially stabilize the system, we want

to find µ such that, for a specifically chosen γ > 0 [32], we
have:

LFVε(η)+LGVε(η)µ ≤− γ

ε
Vε(η). (19)

Therefore, an optimal µ could be found by solving the fol-
lowing quadratic program (QP):

m(η) = argmin
µ∈Rn1+n2

µ
T

µ (20)

s.t ϕ0(η)+ϕ1(η)µ ≤ 0, (CLF)

where ϕ0(η) = LFVε(η)+ γ

ε
Vε(η) and ϕ1(η) = LGVε(η).

The end result of solving the QP problem is a piecewise local
optimal control input µ which is independent of model in-
formation, i.e., we obtain a MIQP. More explicitly, the main
principle of the MIQP algorithm is to construct a new linear
control system (15) that only focuses on the errors between
the actual outputs and desired outputs, while not requiring
any information about the original model. Note that, in order
to obtain optimal torques that are also subject to other con-
straints (for example, torque bounds due to hardware lim-
its), we relax the CLF constraints with a large penalty value
p > 0 [24]. In particular, we consider the MIQP:

argmin
(δ ,µ)∈Rn1+n2+1

pδ
2 +µ

T
µ (21)

s.t ϕ0(η)+ϕ1(η)µ ≤ δ , (CLF)

µ ≤ µMAX , (Max Torque)

−µ ≤ µMAX . (Min Torque)

This QP problem yields an optimal controller µ that regu-
lates the errors of the output dynamics in a rapidly exponen-
tially stable fashion while simultaneously guaranteeing the
result input torque is physically applicable.

3.3 MIQP+Impedance Control

While MIQP control benefits from its model independent
property in an optimal fashion, the controller will generate
the same torque for two different systems if they have the
same tracking error. Consequently, this will result the con-
troller to be less responsive to the actual system and tend
to have overshooting problem Therefore, model information
is utilized in order to achieve a more responsive controller;
this motivates the introduction of MIQP+Impedance con-
trol. With the impedance controller τ imp as a feed-forward
term, the desired torque τd of the prosthetic joints can be
stated as:

τ
d = τ

qp + τ
imp, (22)

where τqp is the torque computed from the MIQP problem.
Taking this idea further, we add the impedance term τ imp

into the MIQP construction for the total hardware torque
bounds, which yields the following MIQP+Impedance for-
mula as follows:

argmin
(δ ,τqp)∈Rn1+n2+1

pδ
2 + τ

qpT
τ

qp (23)

s.t ϕ0(η)+ϕ1(η)τqp≤δ −ϕ1(η)τ imp, (CLF)

τ
qp ≤ τ

qp
MAX , (Max QP Torque)

− τ
qp ≤ τ

qp
MAX , (Min QP Torque)

τ
qp ≤ τMAX − τ

imp, (Max Input Torque)

− τ
qp ≤ τMAX + τ

imp. (Min Input Torque)

By adding the impedance control as a feed-forward term
into the input torque, the model independent dynamic sys-
tem (15) gathers proper information about the system. It
can, therefore, adjust τqp accordingly to accommodate for
the feed-forward term to achieve good tracking. By setting
the QP torque bounds τ

qp
MAX , the overshoot problem will be

eliminated. We also set the total input torque bounds for the
QP problem such that the final optimal input torques (22)
will satisfy the hardware torque bounds τMAX and allow the
control to be implemented practically on the robots or pros-
thetic devices.

Remark. In order to make the MIQP controller work prop-
erly, there are three parameters to be determined, which are
ε , p and the torque bounds τ∗MAX with τ∗MAX = max{τqp

MAX ,

τMAX}. Specifically, ε determines the outputs convergence
rate; p is the CLF penalty term that regulates the wellness
of the tracking performance and τ∗MAX is defined based on
the hardware limitation. While τ∗MAX is determined by the
device, changing ε and p will affect the performance of the
QP. For example, if ε or p are increased (corresponding to
quicker convergence and heavier penalty for bad tracking),
the tracking will be improved while at the same time requir-
ing more control torque input. Consequently, the QP tends
to fail more given the fixed τ

qp
MAX . More detailed discussion

about the feasibility of the QP can be referred to [37].
The unique merit of the MIQP controller is that it only

takes the output error as the input and stabilizes the out-
put dynamics in a rapidly exponentially convergent manner.
The original system may vary, however, the MIQP controller
will adopt to different systems by increasing the calculated
torque as long as the τ

qp
MAX is set to be sufficient large. De-

tails about the feasibility conditions of the QP problem can
be referred to [37].

4 VERIFICATION ON AMBER

Before implementing the optimal controller on a prosthetic
device with an amputee subject, the controller is verified on
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Fig. 4: The biped robot AMBER (left) and the angle con-
ventions (right). The right leg with red dash line denotes the
prosthetic device; the red dash circle represents the prosthe-
sis joint that will be controlled using prosthetic controllers.

the bipedal robot AMBER in both simulation and experi-
ment. The results are discussed in this section.

4.1 AMBER Test Platform

AMBER (short for A&M Bipedal Experimental Robot) is
a planar bipedal robot with 5 links (one torso, two thighs
and two calves, see Fig. 4). With pointed feet configuration,
AMBER is powered by 4 DC motors and is thus underactu-
ated at the ankle. In previous work, AMBER has achieved
stable and human-like walking experimentally using a volt-
age P controller [38]. In this work, we use AMBER as the
platform to test the proposed prosthetic controller. The right
calf is assumed to be the “prosthetic device” which has the
same length and mass configuration of the left calf that is
marked as the “healthy leg”. The proposed controller will
be implemented on the prosthetic device, i.e., on the right
knee joint. The controller for the remaining actuators will
still be the original voltage P controller as discussed in [38].

The configuration space QA of the AMBER model is de-
fined with coordinates given as: θ =(θsa,θsk,θsh,θnsh,θnsk)

T

as shown in Fig. 4. With the mass and length properties cor-
responding to the physical robot AMBER, the equations of
motion for the robot can be obtained with equation (3). Note
that, since AMBER has DC motors with small inductances,
the electromechanical system with voltage inputs have the
following form:

Vin = Raia +Kω ω, (24)

where Vin ∈ R4×1 is the vector of voltage inputs to the mo-
tors, ia ∈ R4×1 is the vector of currents through the motors,
Ra ∈R4×4 is the resistance matrix, and ω ∈R4×1 is the vec-
tor of motor speed which has the relation as ω = rmθ̇ with
rm ∈ R4×4 denoting the total reduction of the system. Since

the motors are controlled individually, with the torque con-
stant Kϕ ∈ R4×4, the applied inputs are:

u = Kϕ R−1
a (Vin−Kω ω). (25)

Therefore, the impedance torque and QP torque discussed in
Sec. 3 will be replaced with impedance voltage V imp and QP
voltage V qp, respectively [16].

4.2 Simulation Verification with AMBER

With the model in hand, the robotic gait can be obtained us-
ing the optimization problem as discussed in Sec. 2.2 with
outputs specific to the model of AMBER [16]. The simula-
tion results of AMBER is then discussed. The tracking re-
sults of the prosthesis joint by using different controllers will
be compared. Robustness tests is also performed and com-
pared with using different controllers.

4.2.1 Tracking Performance with Different Controllers

With the exception of the prosthesis joint, on which different
controllers will be implemented, the remaining joints will
be controlled with the voltage P control. Three different
controllers are tested as the prosthetic controller: P control,
impedance control and MIQP+Impedance control. Fig. 6
shows the tracking performances of the prosthesis knee joint
using these three controllers. Using the tracking results of P
control as the nominal reference as shown in Fig. 6a, we can
see that the MIQP+Impedance control improves the track-
ing performance for both stance and non-stance phases by
more than 10 times w.r.t the RMS error, while impedance
control yields worse tracking results.

4.2.2 Stability Testing

Stability and robustness are another fundamental require-
ments for a prosthesis controller. Two robustness tests are

Fig. 5: Gait tiles of walking over an obstacle with
MIQP+Impedance control in both simulation (top) and ex-
periment (bottom).
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Fig. 6: Actual and desired outputs of the prosthesis knee
joint with different controllers in both simulation (left) and
experiment (right).

applied to the robot in simulation; one is to add an instanta-
neous push and another one is to let the robot walk above an
unforeseen obstacle. In particular, a 2N impulse force (last-
ing for 0.05s) has been applied to the prosthetic leg while
in swing phase. The results show that the prosthetic device
with the proposed controller can tolerate this disturbance
and maintain good tracking. We also tested the same dis-
turbance using only the impedance controller; the tracking
error becomes bigger due to the disturbance and the robot
falls after 6 steps. For the obstacle test, we let the robot

Table 1: Simulation and Experiment Results Comparison of
AMBER Using Different Controllers.

Control Simulation Experiment
erms[rad] emax[rad] erms[rad] emax[rad]

P sknee 0.0149 0.027 0.0863 0.1515∗

nsknee 0.0523 0.0931 0.1538 0.3626

Imped sknee 0.0258 0.0614 0.1902 0.3308
nsknee 0.1447 0.3115 0.1791 0.3517∗

MIQP sknee 0.00098∗ 0.0022∗ 0.0602∗ 0.209
+Imp nsknee 0.0016∗ 0.0038∗ 0.1049∗ 0.3543

walk over a 20mm height obstacle. The gait tiles can be
seen in Fig. 5, showing that the robot can overcome the ob-
stacle smoothly. A similar test is also conducted with only
impedance control. The robot can walk over the obstacle,
however, the tracking performance becomes worse. More
details can be found in [16].

4.3 Experimental Verification on AMBER

Starting with the estimated impedance parameters obtained
from the simulation discussed above, we are able to tune the
parameters within a small range and get sustainable walking
by only using the impedance controller. The tracking result
of using impedance controller can be seen in Fig. 6d. Com-
pared to the tracking of P control as shown in Fig. 6b, the
impedance control shows worse tracking performance.

MIQP+Impedance Control. Using the impedance param-
eters from the previous section, we apply the impedance
control as the feed-forward term while using the MIQP as
the feedback term to correct the tracking errors and reject
the disturbances. From Fig. 6f, we can see the tracking with
using MIQP+Impedance controller is the best among the
three methods in both stance phase and non-stance phase
(RMS error reduced by more than 50% for both phases).The
detailed comparisons of both the simulation and experiment
results are shown in Table. 1. We also tested the robustness
of the walking with MIQP+Impedance control, the robot
was able to overcome a 40mm block and could withstand big
pushes on the prosthetic leg, while the impedance control
can only overcome a 20mm block. The experiment obstacle
walking gait tiles are compared with the simulated gait tiles,
as shown in Fig. 5.

With the verification in both simulation and experiment
as discussed above, we can conclude that the proposed op-
timal nonlinear controller shows improved tracking perfor-
mance and seems to be more robust to disturbances and ob-
stacles than the traditional approaches.

5 PROSTHETIC DEVICE IMPLEMENTATION

With the systematic methodology including gait generation
and controller implementation verified on the robot platform,
we now have the framework to realize the real-time opti-
mization based nonlinear controller experimentally on a self-
contained transfemoral prosthesis: AMPRO. The experiment
setup including the design of the prosthesis AMPRO and the
test subject is introduced first. Then the results of using the
MIQP+Impedance controller along with other controllers
are analyzed in a comparative study.
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Fig. 7: Components diagram of the prosthesis AMPRO.

5.1 Experiment Setup

The experiment setup including the prosthetic device AM-
PRO and the amputee subject are introduced at this section.
The two-level control architecture along with the IMU feed-
back sensing are also explained.

5.1.1 AMPRO

AMPRO (AMBER Prosthetic) is designed to be a high pow-
ered, compact and structurally safe device. The device uses
a roller chain drive train consisting of a 374 W brushless DC
motor (Moog BN34 silencer series) and a harmonic gear-
head to actuate the ankle and knee joints in the sagittal plane.
This design utilizes two incremental encoders for each mo-
tor and is designed to incorporate absolute encoders at the
joints. Two Elmo motion controllers are used for low-level
torque control purposes. Additionally, two FlexiForce (Par-
allax 30056) force sensors are located at the base of the foot
(mounted at the toe and heel) to measure the normal reac-
tion forces which are used for the purpose of leg switch.
The prosthetic device is powered by a 8-cell LiPo battery
with 4000 mAh capacity. The technical diagram can be seen
in Fig. 7 and the design specifications are listed in Table. 2.

5.1.2 Test Subject

The experimental subject during these experiments has been
a unilateral amputee of three years due to osteosarcoma. The
subject is a 19-year-old male that utilizes a passive knee
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Fig. 8: Flow chart of the pseudo-code.

prosthesis (Ossur Total Knee 2100) for daily-use paired with
a Ossur K2 Sensation foot. For the conducted experiments,
the test subjects daily-use suction socket was connected to
AMPRO using a standard pyramid connector. Some of the
important parameters for the test subject were measured and
are located in Table. 2. The residual limb of the subject
was measured from the approximate location of the lateral
condyle to the true ankle joint and from the true ankle joint
to the base of the foot (for the calf and foot measurements
respectively). During the experimental trials, the test subject
used a custom made shoe that features a small extension of
the sole of the shoe. This extension was required in order to
have the subject’s residual limb of equal length to the com-
bination of AMPRO and the subject’s suction socket con-
nection.

Table 2: Specifications of the AMPRO and the Subject.

Specifications AMPRO Amputee Subject
Total Weight (Kg) 8.1 62
Total Height (cm) 56.3 173

Socket Length (cm) 8.8 *
Calf Height (cm) 40.7 41.6
Foot Height (cm) 6.8 9

Shoe Extension (cm) * 5.7
Ankle Range of Movement(deg) -20 ∼ 30 *
Knee Range of Movement(deg) 0 ∼ 70 *

Max Joint Velocity (rpm) 81.25 *
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represents the swing phase.

5.1.3 Control Architecture

The architecture of control implementation consists a high-
level controller and a low-level controller. The high-level
controller of AMPRO is coded into C++ packages and run
on the Robot Operating System (ROS). The complete code
is realized independently with a low-power single-board co-
mputer: Beaglebone Black (BBB) at 200 Hz. The pseudo-
code of the algorithm is shown as the flowchart in Fig. 8.
To provide a point of human-robotic interaction, two IMUs
are mounted on the shin and thigh of the human leg. As the
IMU sensing is used only during human stance, an IMU on
the human foot is eliminated based on the assumption that
the user will walk with flat-foot during the interval of inter-
est. The EKF internal model for each IMU is used to obtain
relative orientation and velocity for both the knee and ankle.
In particular, while the human leg is in stance, IMU read-
ings are utilized to compute the forward hip position ξ1 and
forward hip velocity ξ2; therefore, the desired swing trajec-
tories of the prosthetic can be calculated accordingly using
the PHZD reconstruction method discussed above. For hard-
ware implementation, one BBB is dedicated to run the EKF
algorithms as introduced in Sec. 2.2. The communication
to the main BBB which runs the primary code structure is
achieved over a networked crossover cable.

5.2 Prosthetic Gait Generation

An obvious problem encountered when designing a gait for
an amputee is the lack of original locomotion data for the
amputee. Human gait researchers and biomechanists have
found that humans share a common pattern of joint trajecto-
ries during locomotion [23]. Therefore, a feasible approach

is to use the nominal trajectories obtained from healthy sub-
jects as the initial test gait for the amputee. While this is
a common practice for prosthesis researchers and clinical
physicians [10,39], this approach requires hand tuning and
heuristic experience, which can be costly and time consum-
ing. This motivates the authors in this work to take a dif-
ferent approach by using the human-inspired optimization
problem to design an optimal gait for the amputee, there-
fore, eliminating the requirement of hand tuning.

In particular, the IMU motion capture system discussed
in Sec. 2.2 is utilized to collect the flat-foot trajectory of a
healthy subject who has the similar anthropomorphic param-
eters (limb lengths and body weight) of the amputee subject
considered in this work. Using this trajectory set as the ref-
erence, and subject to both the PHZD constraints and phys-
ical constraints, the human-inspired optimization problem
is leveraged to design a stable gait for the specific amputee
subject. The limit cycle as shown in Fig. 9 indicates the sta-
bility of the gait mathematically. The optimized trajectories
along with the IMU motion capture data are also shown in
Fig. 9. We can see that the optimized knee angle follows
a similar pattern as the healthy subject. However, the opti-
mized ankle angle is different with the reference human tra-
jectory especially in the late stance and swing phase. This
mismatch is mainly due to the flat-foot walking assump-
tion considered in this preliminary work. During the IMU
data collection experiment, the healthy subject was unable
to walk with strictly flat-foot. Therefore, there is always a
minor foot roll at the end of the stance phase. Because of the
flat-foot assumption, the swing foot is restricted to a small
roll angle in order to have enough foot clearance. Conse-
quently, the ankle angle dorsiflexes during the swing phase
instead of plantar-flexing.

Remark. Flat-foot walking is a simplification of human walk-
ing. We realize that it introduces limitations on the pros-
thetic gait, however, it captures the essential behavior of
walking that suits the capabilities of the first iteration of the
prosthetic device AMPRO. Specifically, the first iteration of
AMPRO is designed to walk with flat-foot, in order to test
controllers obtained from the control framework designed
for bipedal robots. More complex behaviors such as multi-
contact gaits will be addressed in the ongoing development
of the next iteration of AMPRO which will also translate the
control framework from the multi-contact capable bipedal
robot, AMBER2.

5.3 Experimental Results

Before the implementation of MIQP+Impedance control on
the prosthesis, the PD controller:

τ
pd =−Kp(θa−θd(ξ1))−Kd(θ̇a− θ̇d(ξ1,ξ2)), (26)
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Fig. 11: Net mechanical power comparison of the prosthetic
joints of one step (including stance phase and swing phase)
with using different controllers.

is first realized to track the designed trajectories to achieve
stable walking. The PD gains are tuned based on the feed-
back from the test subject. Walking trials were performed
on a treadmill providing a constant speed of 1.3 mph. Utiliz-
ing the impedance estimation algorithm introduced in [40],
the impedance parameters are then esitmated based on the
experimental walking data obtained using PD control.

With the impedance parameters obtained in the previ-
ous section, we apply impedance control as the feed-forward
term while using the MIQP control as the feedback term to
track the desired joint trajectories. In particular, for the first
round of test, we set both the torque bounds τ

qp
MAX and τMAX

to be 40 Nm which is determined based on the PD walking
experiment data. In order to show the torque optimality of
the proposed novel controller, the torque bounds τ

qp
MAX and

τMAX are reduced to be 20 Nm for the second round of test.
While the novel control contains both the feedback term and
feed-forward term, we also compare it with an augmented
control strategy, PD+Impedance:

τ
d = τ

pd + τ
imp, (27)

which also includes the impedance control as a feed-forward
term. The tracking results of using different controllers are
shown in a comparative way in Fig. 10. The average me-
chanical power consumption of the prosthetic device during
one step is shown in Fig. 11. More detailed performance
comparisons are listed in the Table. 3. The gait tiles of the
level walking using the proposed optimal controller along
with the simulated gaits are shown in Fig. 12.

5.4 Discussion

With this controller, the tracking results of both the ankle
and knee are plotted in Fig. 10 along with the results ob-
tained through other controllers. It is evident that the track-
ing performance of both the ankle and the knee are excep-
tionally good for MIQP+Impedance control. The tracking
results with lower torque bounds are shown in Fig. 10d.
While the tracking performance is not as good as the track-
ing with higher torque bounds, it is better than using PD con-
trol. More importantly, this better tracking is achieved with
lower torque and smaller total energy consumption when
compared to PD control (5% improvment), which can also
be seen in Fig. 11 and Table. 3.

To illustrate the overall control performance more clearly,
the experimental results (including tracking errors, maxi-
mum torque requirement and average net power consump-
tion) of 5 steps are listed in Table. 3, thereby giving a de-
tailed comparison. In particular, the best performances are
highlighted in the table, from which we can see that except
the max knee error (using PD+Impedance) and the mini-
mum ankle power (using PD control), all of the best per-

Table 3: Experiment Results Comparison of AMPRO Using
Different Controllers.

Control erms emax σstd τmax[Nm] P[W ]

PD Ankle 0.0377 0.1552 0.0185 22.456 9.9630∗

Knee 0.1096 0.3957 0.0363∗ 40.986 28.824
PD+ Ankle 0.0356 0.1694 0.0165 23.787 12.805
Imp Knee 0.0617 0.2875 0.0463 38.9207 30.627

MIQPL Ankle 0.0248 0.0965∗ 0.0216 19.846∗ 11.290
+Imp Knee 0.0906 0.3930 0.0399 37.083 25.577∗

MIQPH Ankle 0.0246∗ 0.1066 0.0122∗ 20.944 12.482
+Imp Knee 0.0573∗ 0.2318∗ 0.0545 32.669∗ 28.229
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Fig. 12: Gait tile comparison between the outside NHS experimental walking and the simulated walking.

formances are achieved with the MIQP+Impedance con-
trollers. Note that, we argue that the low power required of
the ankle joint with PD control is because of the bad track-
ing performance (worst among all the controllers) of the PD
controller. Therefore, to summarize, after comparing with
different controllers, the MIQP+Impedance controller has
the best balanced performance between tracking and power
requirements.

The resulting powered prosthetic joint trajectories us-
ing the proposed optimal controller and the PD controller
are compared with the IMUs collected healthy human lo-
comotion data and the passive prosthetic walking data (the
amputee walking with a passive device) in Fig. 13. Com-
pared with the passive prosthetic walking, we can see that
the ankle joint is improved for the power prosthetic walk-
ing with bigger movement. The human-likeness of the ankle
joint will be improved in the future work with multi-contact
walking. For the knee joint, we can see that both the passive
device and powered device with different controllers have a
similar swing pattern compared to the healthy human walk-
ing. However, for the stance knee trajectory, both the passive
device and the powered device with PD control tend to lock

the knee at the last portion of the stance phase. On the other
hand, the powered device with MIQP+Impedance control
has better performance with bigger knee bending and no
knee locking. A slight delay was also noticed for the pow-
ered prosthetic walking when switching from stance phase
to swing phase. This was caused by the delay of the force
sensor recovering from the loaded status during the stance
phase, which will be fixed by considering a load cell in the
future design.

6 CONCLUSIONS

This work proposed a novel systematic methodology, in-
cluding gait generation and optimal control, to achieve pros-
thetic walking for any specific subject, while at the same
time aiming to improve control optimality and reduce clin-
ical tuning. In particular, benefiting from the low-cost IMU
motion capture system and the human-inspired optimiza-
tion problem, a smooth and optimal prosthetic gait can be
designed specifically for the amputee while simultaneously
being applicable to the prosthetic device. The real-time op-
timization based nonlinear controller (MIQP+Impedance)
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Fig. 13: Comparisons of both the ankle and knee joint angles of healthy human walking, passive prosthetic walking and
powered prosthetic walking with PD control and MIQPL+Impedance control. Different colors represent different step trials.

shows improved performance with respect to both track-
ing and energy efficiency. This methodology has been first
successfully validated on the bipedal robot platform, and
then implemented on the custom built self-contained trans-
femoral prosthesis to achieve stable prosthetic walking with
an amputee subject.

Traditional control approaches (e.g. variable impedance
control) to powered prostheses rely on the extensive use of
many control parameters in order to achieve successful op-
eration of the device or for a particular subject. The method-
ology in this work takes the first steps toward designing the
controllers and verifying their application both in the simu-
lation and on the bipedal robot platform before implemen-
tation on a prosthetic device. Benefiting from this formal
approach, it has the potential to reduce the clinical test and
tuning for the amputee at the gait and control design stage.
While future work should focus on showing that this ap-
proach also helps on the adaptation and comfortability of
the amputee users, we believe that with the automation of
the gait generation and controller design process proposed
in this work, the tuning can potentially be reduced and the
adaptation can be achieved in a more intuitive way. A new

design of AMPRO is currently focused on reducing the size
of the electric motors, optimizing the other structural com-
ponents and adding load cells with the aim of providing
a more comfortable experience for the user while reducing
overall power consumption. Future work will be focused on
the realization of a multi-contact walking gaits (as realized
on bipedal robot AMBER2 in [29]) and different locomo-
tion modes to achieve more natural and versatile human-like
prosthetic walking.
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