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Abstract

A vortex particle method for the simulation of two-
dimensional compressible flows is developed. The
computational elements are Lagrangian particles
that carry vorticity, dilatation, enthalpy, entropy
and density. The velocity field is decomposed into
irrotational and solenoidal parts, which allows its
calculation in terms of the particles’ vorticity and
dilatation. The particle coverage is truncated and
incident acoustic waves are absorbed using a suitable
boundary treatment. A Kirchhoff surface formula-
tion is developed for computing the far-field sound.
The method is applied to a co-rotating vortex pair
and the results are discussed.

1 Introduction

Vortex methods have matured into useful tools
for the high-fidelity simulation of incompressible
flows.1,10 Particles carry vorticity and convect with
the local flow velocity. The goal of the present work
is to adapt vortex methods for use in compressible
flows, particularly those in which sound is generated.

A computational method whose basic elements are
vorticity-laden particles is a natural tool with which
to simulate flows that generate sound. It has been
known that vorticity is intrinsic to the production
of sound since the work of Powell.17 Several re-
searchers8,13,17 have identified ∇ · (u× ω) as source
term for a wave equation, and Möhring14 has devel-
oped an integral expression where the acoustic field
is linear in the vorticity in certain cases.

The details of the method, which we refer to as
the dilating vortex particle method (DVPM), will
be discussed in Section 2. This discussion will in-
clude the calculation of the velocity field and the so-
lution of the compressible equations of motion using
Lagrangian particles. Also, the issue of simulating a
flow in an infinite domain with a finite region of par-
ticle coverage is dealt with, as are the topics of fast
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summation of the velocity field and redistribution of
distorted particle configurations. The computation
of the acoustic far-field using a Kirchhoff surface and
the equation of Möhring is addressed in Section 3.
The method is applied to a model problem in Section
4 and the results are discussed.

2 Details

2.1 Velocity decomposition

We decompose the velocity field into irrotational and
solenoidal components, u = us + uir, each derived
from a potential: us ≡ ∇ × A and uir ≡ ∇ϕ. If
A is chosen to be solenoidal, then the curl and the
divergence of the velocity leads to, respectively,

∇2A = −∇× u ≡ −ω, and
∇2ϕ = ∇ · u ≡ θ.

(1)

When equations (1) are inverted using the Green’s
function for the negative Laplacian, G, the results
are

A = G � ω, and
ϕ = −G � θ,

(2)

where � denotes convolution and an arbitrary har-
monic component has been ignored. The resulting
velocity field is

u = (K×) � ω − K � θ, (3)

where K ≡ ∇G. The first term is the Biot-Savart
integral, and the second is its dilatational counter-
part.

As in the incompressible vortex particle method,
the vorticity field is approximated by a set of regular-
ized particles, or “blobs”, of vorticity. In the present
method these blobs will also carry dilatation to ap-
proximate this field. The particle representations of
the two fields are

ω̃(x, t) =
∑

p

Γp(t)ζε(x − xp(t)), and (4)

θ̃(x, t) =
∑

p

Qp(t)ζε(x − xp(t)), (5)
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where Γp = Vpω(xp) and Qp = Vpθ(xp). The func-
tion ζε is the blob function scaled by ε, the radius of
the blob—ζε(x) = ζ(x/ε)/εd, where d is the phys-
ical dimension. The positions and volumes of the
particles are, respectively, {xp(t)} and {Vp(t)}. The
particles will translate according to the local fluid
velocity,

dxp

dt
= u(xp), (6)

and their volume will change according to the local
fluid dilatation,

dVp

dt
= Qp. (7)

The approximations (4) and (5) are introduced to
the velocity expression and serve to desingularize the
velocity kernels. Thus, the ODE that governs the
particle positions is

dxp

dt
=

∑
q

Kε(xp − xq) × Γq(t)

−
∑

q

Qq(t)Kε(xp − xq), (8)

where Kε = K � ζε is the smoothed velocity ker-
nel. From hereon the flow will be assumed two-
dimensional, so the vorticity has only a single com-
ponent. The Green’s function is G = − 1

2π log |x|
and the velocity kernel is

K(x) = − x
2π|x|2 . (9)

Accounting for the radial symmetry of the blob func-
tion, we obtain

Kε(x) = − x
2π|x|2 q(|x|/ε), (10)

where q(r) ≡ 2π
∫ r

0
τζ(τ) dτ . For convergence of this

method,7 it is necessary that the particles overlap
each other (i.e. the ratio of blob radius to inter-
particle spacing, κ = ε/∆x, is greater than unity).
Part of the error in (8) is related to the order of
accuracy of the blob function. In the present method
we use an 8th-order-accurate function (see Section
4).

2.2 Governing equations

The vorticity and dilatation strengths of the parti-
cles evolve according to the compressible equations
of motion. To ensure some compactness of their
form, the equations are expressed in terms of the

specific enthalpy (h), specific entropy (s) and den-
sity (ρ) as follows:

Dω

Dt
= −ωθ + ∇× (h∇s) · ê3

+
1

Re
∇×

[
1
ρ

(
4
3
∇θ −∇× ω

)]
· ê3 (11)

Dθ

Dt
= −∇2h−∇u : (∇u)T + ∇ · (h∇s)

+
1

Re
∇ ·

[
1
ρ

(
4
3
∇θ −∇× ω

)]
, (12)

Ds

Dt
=

1
Re

Φ
ρh

+
1

RePr
1
ρh

∇2h, (13)

Dρ

Dt
= −ρθ. (14)

where Φ is the viscous dissipation, expressed as

Φ = ω2 + 2∇u : (∇u)T − 2
3
θ2. (15)

An acoustic scaling has been used to nondimension-
alize the variables in terms of the ambient speed
of sound, a∞, and density, ρ∞; the dynamic vis-
cosity, µ; the thermal conductivity, k; the specific
heat at constant pressure, cp; and a characteristic
length scale, L. The fluid properties have been as-
sumed constant and uniform, and the medium to
behave as a calorically perfect gas. The Reynolds
number is Re = ρ∞a∞L/µ and the Prandtl number
is Pr = µcp/k.

An equation of state can be used to relate the
enthalpy to the density and entropy:

h =
ργ−1

γ − 1
eγs, (16)

where γ is the ratio of specific heats, taken to be
1.4. Because the equations involve the enthalpy, en-
tropy and density, the particles will also carry these
quantities, and their fields will be composed as such:

f̃(x, t) =
∑

p

Vpf(xp)ζε(x − xp(t)), (17)

where f is either h, s or ρ.
The spatial derivatives in equations (11)–(15) are

discretized using Particle Strength Exchange, or
PSE, a technique first developed by Degond and
Mas-Gallic2 for approximating the Laplacian in the
advection-diffusion equation. The scheme can be ex-
tended to general differential operators, as shown by
Eldredge et al.3 The essence of the method is the
approximation of the derivative Dβ (where β is a
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multi-index denoting the degree of derivative) by an
integral operator,

Lεf(x) =
1

ε|β|

∫
IR2

(f(y) ∓ f(x)) ηβ
ε (x−y) dy, (18)

whose kernel, η, is tailored to β with some order of
accuracy. The choice of sign in (18) is determined
by whether the derivative is odd or even, for reasons
to be discussed shortly. The integral is discretized
via a quadrature over the particles,

Dβf(xp) ≈
1

ε|β|

∑
q

Vq (fq ∓ fp) ηβ
ε (xp − xq), (19)

where fp = f(xp). If |β| ≡ β1 + β2 is even, then
the negative sign is chosen, and if |β| is odd, then
the positive sign is chosen. Allowing for this choice
ensures the conservation of important global quan-
tities when PSE is applied in certain equations. For
instance, if (19) is used to approximate the Lapla-
cian in the convection-diffusion equation in an un-
bounded domain, then the discrete volume integral,∑

Vpfp, will remain constant in time.
For spatial derivatives in the velocity, the gradient

operator is applied directly to the velocity kernels on
the right-hand side of (8):

(∇u)p =
∑

q

Γq(t)∇Kε(xp − xq) × ê3

−
∑

q

Qq(t)∇Kε(xp − xq). (20)

The new kernel, Rε = ∇Kε, can be written in terms
of ζ and q as

Rij
ε (x) =

(
−ζε(x) +

q(|x|/ε)
π|x|2

)
xixj

|x|2

− q(|x|/ε)
2π|x|2 δij .

Note that limr−>0 R
ij
ε (r) = 1

2ζε(0)δij .
Material derivatives in the continuous equations

are replaced by ordinary time derivatives of the par-
ticle strengths. The particle forms of equations (11)
and (12) are reformulated in terms of the integral
values of vorticity and dilatation: the particle circu-
lation, Γp, and source strength, Qp. This approach,
when combined with (7), eliminates the θ term from
equation (11) and an analogous term embedded in
the double contraction term in equation (12). Equa-
tions (7), (8) and the particle form of equation (13)
are also solved. Given the initial density of a par-
ticle, the density at subsequent times is calculated

through ρp(t) = ρp(0)Vp(0)/Vp(t). This treatment
explicitly ensures that the method conserves mass.
The enthalpy of a particle is computed using the par-
ticle form of (16). The particle evolution equations
may be solved simultaneously using a standard time
integration scheme, such as the fourth-order Runge-
Kutta method.

Also needed are initial conditions for the primary
variables. Often it may be sufficient to set the initial
dilatation and entropy to zero (unless the circum-
stances of a particular problem require otherwise),
and then compute the initial enthalpy from the ini-
tial vorticity (or velocity, rather) through a solution
of the following Poisson problem:

∇2h = −∇us : (∇us)T . (21)

This effectively reduces the magnitude of the tran-
sient that results from not specifying these initial
conditions in an exactly consistent manner. With
the initial enthalpy and entropy of a particle spec-
ified, the initial particle density can then be com-
puted through (16):

ρp(0) = [(γ − 1)hp(0)]1/(γ−1) exp
(
− γ

γ − 1
sp(0)

)
.

(22)
The particles are initially located on a uniform
Cartesian grid, with Vp(0) = ∆x2, where ∆x is the
particle spacing.

2.3 Spatial compactness

Compressible flows inherently contain radiated com-
ponents. If this radiation is to be accomodated in a
numerical method by the exchange of strengths de-
scribed above, then some means must be provided
that allows the outer particles to exchange strength
with an infinite region exterior to the particles. Fur-
thermore, the integral for computing the irrotational
component of the velocity (the second term of equa-
tion (3)) must be addressed, because its integrand
does not confine itself to the partical coverage.

We note that in general it may be possible to re-
tain some measure of the spatial compactness as-
sociated with incompressible vortex methods in the
extension to compressible flow. Instead, we propose
here a simpler, but likely more expensive approach,
wherein particles are retained to a somewhat larger
distance into the acoustic field and a non-reflecting
boundary condition is enforced to absorb incident
acoustic waves. Further refinements of the domain
truncation will be proposed in future work.
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The Engquist-Majda5 hierarchy of conditions are
used, of which the first member is(

∂f

∂t
+

∂f

∂r
+

f

2r

)
r=R

= 0, (23)

where R is the radius of curvature of the boundary
and f is any quantity governed by the linear wave
equation. A means must be developed for enforcing
the condition. We create a new class of boundary
particles, which lie on the periphery of the cover-
age in a “boundary zone”, that has a different set of
properties from the class of interior particles. The
new particles translate as the others do (albeit with
a very small motion), but their enthalpy, hp, is gov-
erned by

dhp

dt
= −

(
∂h

∂r

)
p

− (hp − h∞)
2Rp

(24)

instead of (the particle form of) equation (16), where
Rp is the radial distance of the particle from the ori-
gin. Their dilatation, vorticity (which is zero by
assumption) and entropy are held constant. The
boundary zone has a depth that depends on the blob
radius of the particles; typically only a few particles’
depth is required.

The spatial derivative in (24) is approximated us-
ing PSE. However, the technique of approximating
the derivative by a full-space integral is inaccurate.
A kernel centered at a point near the boundary ex-
pects to have information available from an approxi-
mately circular region surrounding the point. If any
portion of this region fails to intersect with the com-
putational domain, then the subsequent quadrature
of the integral will be poor. In these cases an in-
tegral over the “inner half-space” is used in lieu of
the full-space version,3 and its quadrature will only
involve particles located in a half-disc corresponding
to the intersection of the kernel support with the
half-space. The error from such a treatment can be
shown to be dominated by the incomplete annihi-
lation of a cylindrical wave by equation (23); for a
general wave the leading-order error is O(R−5/2).

For the dilatation term in equation (3), the inte-
gration is simply truncated at the boundary of par-
ticle coverage. For most flows of interest, the irro-
tational component is significantly smaller than the
solenoidal, and furthermore the dilatation external
to the domain is likely to contribute very little to
this small irrotational part.

2.4 Fast summation

The velocity computation in (8) is inherently O(N2),
which would prohibit simulations using more than

a few thousand particles. Several fast summation
methods have been developed for reducing this cal-
culation to O(N logN) or O(N). The Fast Mul-
tipole Method (FMM) of Greengard and Rokhlin6

treats the particles as monopoles and lumps their
far-field interactions into interactions between clus-
ters, using formulas that shift the centers of the
multipole expansions. The FMM is adapted to the
present method by regarding the particles as vortex-
source superpositions. The reader is referred to El-
dredge et al.4 for details.

2.5 Remeshing

Because of the nature of its topology, the flow will of-
ten contain regions of high accumulated strain where
fluid elements have been stretched. Such behavior is
reflected in those regions becoming sparsely popu-
lated with computational elements, thus violating
the convergence requirement of vortex methods that
the blobs overlap. Particles must periodically be re-
distributed to prevent such accumulation. Interpo-
lation of this type has proved an essential part of
SPH15 and vortex particle methods.1 Extra care
must be taken when interpolating in the present
method because of the sensitivity of the acoustic
field to even the smallest errors. Through trial and
error, we have found that interpolation can degrade
the smoothness of the enthalpy and introduce an
error which is subsequently amplified by PSE, over-
whelming (12) unless higher-order interpolation with
some degree of smoothing is used.4 Through expe-
rience we have found that a 6th-order kernel works
well for interpolation:

W (x1, x2) =
1
π

(
15
8

− 5x2
1

2
+

x4
1

2

)

×
(

15
8

− 5x2
2

2
+

x4
2

2

)
e−(x2

1+x2
2).

The particle vorticity, dilatation, density and en-
tropy are interpolated every one or two steps onto a
new set of particles using

f̃p =
∑

q

Wσ(x̃p − xq)Vqfq, (25)

where {fq}, {xp} and {Vp} are the old particle
strengths, positions and volumes, and {f̃q} and {x̃p}
are the new particle strengths and positions. The
kernel is scaled by the interpolation radius, Wσ(x) =
W (x/σ)/σ2, where σ = 1.7∆x.
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3 The acoustic field

In the far-field, variables such as the pressure and en-
thalpy are governed by the homogeneous wave equa-
tion. The solution in this so-called “acoustic” region
can be determined in one of three ways: the exten-
sion of particle coverage to this region, a Kirchhoff
surface, or an acoustic analogy. The first is imprac-
tical for low Mach number flows unless particles of
varying size are incorporated into the method for
efficient resolution of the disparate length scales, a
feature still under development. Thus, in the present
work we use the latter two, and for the last we use
the analogy of Möhring.14

3.1 Kirchhoff surface

Provided that the computational domain extends
into the acoustic region, the entire far-field solution
can be deduced from the limited acoustic informa-
tion available from the near-field simulation through
the use of a Kirchhoff surface. For a field quantity, f ,
governed by the linear, homogeneous wave equation
in Ωe, the Kirchhoff equation expresses its solution
in this domain in terms of its boundary and initial
values.

In two dimensions, provided that the initial values
of f and its derivative are zero in the exterior domain
and on its interior boundary ∂Ωe, the solution f(x, t)
in Ωe can be expressed as:4

f(x, t) =
1
2π

∫
∂Ωe

∫ t∗

0

[(
∂f

∂τ
+

f(y, τ)
t− τ + |x − y|

)

×(êR · ny) − ∂f

∂ny
(y, τ)

]

× dτ dS(y)√
(t− τ)2 − |x − y|2

. (26)

The time integral is integrated to the retarded time,
t∗ = t − |x − y|. The vector êR is the unit vector
from the source position, y, in the direction of the
observation point, x; ny is the inward normal at y
(or outward from the interior region).

The variable f chosen determines how far one
must go from the nonlinear source region to find the
acoustic region. If the enthalpy is chosen, then the
region in which this variable is entirely acoustic is
apparently quite distant from the source. Outside
of the vortical region, the enthalpy obeys Bernoulli’s
equation: h = h∞− 1

2 |u|2−
∂χ
∂t , where χ is the scalar

potential consistent with the velocity induced by the
vorticity. An asymptotic matching of the near- and
far-field solutions reveals that, while an expansion of
∂χ
∂t matches with the outer solution term by term,

the 1
2 |u|2 term has no counterpart in the far-field,

yet persists to large distances because it decays like
1/r2. A more appropriate acoustic variable is the
stagnation enthalpy, B = h + 1

2 |u|2. In the irrota-
tional region, B = B∞− ∂χ

∂t , so it satisfies the acous-
tic equations just outside of the vortical region; in
the far-field, B and h are equal.

The integrals of equation (26) are discretized in
space and time. A circular Kirchhoff surface is used
that surrounds the vortical region but is sufficiently
removed from the edge of the computational domain
to avoid corruption from the boundary treatment.
The stagnation enthalpy of each particle is computed
from the results of the DVPM simulation and the
particle data is interpolated onto the surface control
points. The time derivative is computed from back-
ward differencing and the normal derivative from a
PSE calculation.

3.2 Möhring analogy

For flows in which the vortical region is compact
relative to the wavelength of sound, the Möhring
acoustic analogy14 can be used to compute the far-
field sound. It requires only the third time deriva-
tive of the second moments of vorticity to calculate
the pressure at points outside of the source region.
The expression for the pressure was adapted to two-
dimensional flow by Mitchell et al.,12 to which we
refer the reader for details.

4 Results

The method was applied to a pair of identical vor-
tices in a compressible medium. As the vortices or-
bit each other they generate sound at a frequency of
twice their rotation rate. The problem has been ex-
plored by several researchers (e.g. Müller and Ober-
meier16) and recently simulated by Mitchell, Lele
and Moin12 using a compact finite-difference method
on a stretched grid. The vortices are initially placed
at (x, y) = (0,±R). All quantities are scaled by R
and the ambient speed of sound, a∞. For compar-
ison with Mitchell et al., each vortex is Gaussian-
distributed according to

ω =
1.25Γ0

πr2
0

e−1.25r2/r2
0

where the circulation and radius of each vortex are
Γ0 = −2π(0.7)−1M0r0 and r0 = 0.15, respectively.
The circulation Reynolds number, Re ≡ |Γ0|/ν is
7500, the vortex Mach number, M0 ≡ U0/a∞ (where
U0 is the maximum azimuthal velocity of a single
Gaussian vortex) is 0.56, and the Prandtl number
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a∞t/R = 1.5

a∞t/R = 65

a∞t/R = 450

a∞t/R = 500

a∞t/R = 550

a∞t/R = 600

Figure 1: Vorticity (left) and dilatation (right) in co-rotating vortex problem.

is 0.7. With these flow parameters, the initial rota-
tion time is τ = 105 and the wavelength of sound
is λ = 52.5. Such a large separation in the acous-
tic and flow length scales qualifies the vortices as a
compact source, which makes efficient resolution of
the problem difficult. Instead of attempting to cap-
ture both the near- and far-field simultaneously, the
present investigation focused on the near-field dy-
namics only. The method is capable of computing
both, but without particles of variable size it cannot
compute both regions practically.

Initially, the flow is taken as homentropic and
dilatation-free. The initial enthalpy is deduced from
a solution of the Poisson equation (21), which is
solved with the same Green’s function approach used
to invert the potential equations (1). The particles
are distributed on a Cartesian grid inside a circu-
lar domain of radius RΩ with Ncore particles laid
across the diameter of each vortex; a boundary zone
with a depth of 4 particles surrounds the domain.
The particles are remapped to the same Cartesian
grid every nrm time steps. A fourth-order Runge-
Kutta scheme is used for time advancement with a

time-step size of ∆t = 0.009. The blob radius and
particle spacing are related by ε = ∆x0.85. All of the
kernels used in the interior are 8th order accurate,
except for the one-sided boundary kernel, which is
2nd order accurate:

ζ(x) = 1
π (4 − 6|x|2 + 2|x|4 − 1

6 |x|6)e−|x|2 ,

ηlap(x) = 1
π (40 − 40|x|2 + 10|x|4 − 2

3 |x|6)e−|x|2 ,

η(1,0)(x) = − 1
πx1(20 − 20|x|2 + 5|x|4 − 1

3 |x|6)e−|x|2 ,

ηL,(1,0)(x) = − 4
πx1(5 − 2|x|2)e−|x|2 .

The results of the vorticity and dilatation fields
from a computation with Ncore = 13, RΩ = 4 (cor-
responding to about 83, 500 particles), and nrm = 2
are depicted in the series of panels of Figure 1. The
first row of panels shows the fields soon after the
initialization. An acoustic transient is emitted from
each core as the dilatation settles to the correct
value; the transient is not strong and exits the do-
main without significant reflection. A quadrupole
structure is observed in the dilatation in the next
row of panels; the same structure was observed by
Mitchell et al. The configurations of both fields per-
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a∞t/R

∆p
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ρ ∞
a2 ∞
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×
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Figure 2: Pressure fluctuations observed at (x, y) =
(0, 1

2λ). Mitchell: ‘–·–’; DVPM and Kirchhoff sur-
face at r = 3.5: ‘——’; DVPM and Möhring analogy:
‘· · · · · ·’.

sist for several rotations, though both quantities are
diffused by viscosity over this duration, as observed
in the third set of panels (in which the contour lev-
els have been adjusted for better resolution of the
diffused magnitudes). After approximately four ro-
tations the continual effects of viscosity and com-
pressibility force the cores to merge, depicted in the
final three rows of panels. The resulting dilatation
field is a much weaker quadrupole centered at the
core of the new elliptical vortex. Further compu-
tation, not shown, reveals the axisymmetrization of
the core and thus the disappearance of the dilata-
tion.

The pressure fluctuations observed at one half-
wavelength from the origin (on the y-axis), using
both the Kirchhoff surface and the Möhring formula,
are depicted in Figure 2 and compared with the re-
sults of Mitchell et al. Note that because of the sym-
metry of the problem each rotation of the vortices
corresponds to two wavelengths of sound. The mag-
nitude and phase of the pressure agree quite well for
the first two rotations. The large spike in Mitchell’s
data at the outset is due to the acoustic transient.
Such a spike is not exhibited in the present results
because of the filtering by the Möhring integral and
the neglect of the initial transient period for the
Kirchhoff surface. After a little more than three ro-
tations the vortices in Mitchell’s simulation merge,
reflected by a small rise and then quick decay of the

Figure 3: Dilatation field at t = 81 for a non-
compact vortex pair. The countour levels are sat-
urated so much smaller values in the outer regions
are clear.

pressure. Merger in the present simulation is de-
layed by an extra one-and-a-half rotations, though.
As shown by Melander et al.,11 incompressible vor-
tices which are initially separated by more than the
critical distance for convective merger persist in a
‘metastable’ state for a duration dependent upon a
viscous timescale. The vortices eventually undergo
convective merger, but the time at which this begins
may be quite sensitive to small perturbations. Thus,
it is not surprising that merger occurs later in our
simulation.

The difficult task of capturing both the near-field
dynamics and the far-field acoustics is alleviated
when the acoustic wavelength is not so large com-
pared to the extent of the vortical region. As a fur-
ther demonstration of the capabilities of the DVPM,
the same problem was simulated with larger vortex
cores, r0 = 0.45, which corresponds to a wavelength
of λ = 17.5. Larger cores permits a larger region to
be covered by particles. Using the same number of
particles as in the previous simulation, the compu-
tational domain was enlarged to a radius RΩ = 12.
The resulting dilatation field at t = 81 is depicted
in Figure 3, with the contour levels saturated for
clarity of the acoustic field. At the time shown, the
vortices are merging. It is interesting to note that
Mitchell et al. did not observe merger after five full
rotations, or 175 units of time, using vortices of the
same size but with a much larger Reynolds number.
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The counter-clockwise tilting of the dilatation struc-
ture in the outer regions is due to the phase lag of
compressibility.

5 Conclusion

A vortex particle method for two-dimensional com-
pressible flow has been developed. This method is
the first Lagrangian method for simulation of the
full compressible Navier-Stokes equations. By us-
ing particles which are able to change volume and
which carry vorticity, dilatation, enthalpy, entropy,
and density, the equations of motion are satisfied.
A scheme for enforcing a non-reflecting boundary
condition has also been introduced and successfully
implemented. The Fast Multipole Method has been
adapted to compressible particles for more efficient
implementation. The new vortex method has been
applied to co-rotating vortices in a compressible
medium, and the results agree well with those of
previous work.

Because of the small relative magnitude of the
acoustic field, the method requires more delicate ap-
plication of techniques that have proven robust for
incompressible vortex methods, for instance compu-
tation of derivatives using PSE (which must now
suppress dispersion of waves) and interpolation dur-
ing remeshing (which must preserve smoothness in
the interpolated quantities). This subtle balance
comes as no suprise, as workers in computational
aeroacoustics have long been cognizant of the need
for high-order methods (e.g. Lele9).

We believe this method shows promise, but fur-
ther developments are necessary in order to solve
problems of larger scale. A more “efficient” defi-
nition of the particles—for instance, a division of
the particles into those which are active and those
which are passive in the velocity induction—is cur-
rently being explored. Such a division would permit
simulations with two different time steps when the
time scales of physical phenomena in the flow are
distinct. Along the same lines, an implementation
of the method with variably-sized particles, which
would allow more efficient resolution of flows with
disparate length scales, is under development. Such
an extension would make simultaneous solution of
the near and acoustic fields practical. The bound-
ary treatment proposed here is sufficient for absorb-
ing incident acoustic waves, but does not fully ex-
ploit the decomposition of the velocity at the heart
of the method. A more natural scheme is currently
being developed. Finally, using existing techniques
for computing vortex stretching, we believe that the

method is readily extendable to three-dimensional
flows.
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