arXiv:1812.04170v1 [quant-ph] 11 Dec 2018

For Fixed Control Parameters the Quantum Approximate
Optimization Algorithm's Objective Function Value Concentrates

for Typical Instances

Fernando G.S.L. Brandao,'? Michael Broughton,®!

Edward Farhi,** Sam Gutmann, and Hartmut Neven!

Google Inc., Venice, California 90291, USA
2Institute for Quantum Information and Matter,
California Institute of Technology, Pasadena, California 91125, USA
S Department of Computer Science, University of Waterloo,
Waterloo, Ontario, N2L 3G1, Canada
4Center for Theoretical Physics, Massachusetts
Institute of Technology, Cambridge, MA 02139
(Dated: December 12, 2018)

Abstract

The Quantum Approximate Optimization Algorithm, QAOA, uses a shallow depth quantum
circuit to produce a parameter dependent state. For a given combinatorial optimization problem
instance, the quantum expectation of the associated cost function is the parameter dependent
objective function of the QAOA. We demonstrate that if the parameters are fixed and the instance
comes from a reasonable distribution then the objective function value is concentrated in the sense
that typical instances have (nearly) the same value of the objective function. This applies not just
for optimal parameters as the whole landscape is instance independent. We can prove this is true
for low depth quantum circuits for instances of MaxCut on large 3-regular graphs. Our results
generalize beyond this example. We support the arguments with numerical examples that show
remarkable concentration. For higher depth circuits the numerics also show concentration and we
argue for this using the Law of Large Numbers. We also observe by simulation that if we find
parameters which result in good performance at say 10 bits these same parameters result in good
performance at say 24 bits. These findings suggest ways to run the QAOA that reduce or eliminate
the use of the outer loop optimization and may allow us to find good solutions with fewer calls to

the quantum computer.


http://arxiv.org/abs/1812.04170v1

I. INTRODUCTION

Soon we will have gate model quantum computers that can run shallow depth quantum
circuits on scores of qubits. Even without perfect fidelity we will learn about quantum al-
gorithms in a regime where classical simulation is no longer practical. A good candidate to
run on near term devices, as well as on larger devices with high fidelity, is the Quantum
Approximate Optimization Algorithm or QAOA [1l]. For certain combinatorial search prob-
lems, the shallowest depth version of QAOA has worst case performance guarantees that
beat random guessing [1, 2], but not the best classical algorithms for these problems [3-].
At higher depth we do not know if the QAOA will outperform classical algorithms. This
question needs to be explored analytically, through simulation, and by running on actual
hardware. In all cases we need strategies for picking parameters that optimize performance.
For a given instance of a combinatorial search problem one strategy is to seek to optimize
the objective function by varying the control parameters attempting to go uphill to find
good solutions. In this paper we look at instances of combinatorial search problems that
are chosen randomly from some fixed instance distribution. We show that the parameter
landscape of the objective function is (nearly) independent of the chosen instance. This
points to a strategy for finding good parameters. Take one instance of the problem and
work hard to get good parameters. This may be computationally expensive. But once this
has been done, these same parameter values will yield good values of the cost function on
other randomly chosen instances. In other words the amortized cost of solving instances goes
to zero inversely with the number of instances being studied. Recent work has also looked at
strategies for picking optimal parameters that reduce calls to the quantum computer [6-§],
while others have also remarked on the independence of the function value on the instance
8, 19].

We begin by reviewing the QAOA and setting notation. The goal is to find a good
approximation ratio for a combinatorial search problem over n bits. We denote bit strings
as z = 212 ... 2, and the search problem is specified by m clauses each of which is defined
on a subset of the bits. Associated with each clause « is a cost function C,(z) which is 1 if

z satisfies the clause o and is 0 if z does not. The total cost function is then

O(2) =Y Cul2). 1)



Let Chax be the maximum over all z of C(z). If an algorithm proposes z* as a candidate
solution then the approximation ratio is

C(z%)

A—
Cmax

(2)

and the goal of any algorithm is to make A as close to 1 as possible. If each clause is
satisfied on half of its input values then random guessing gives A = (m/2)/Cpax which is
lower bounded by 1/2.

The quantum computer operates in a 2" dimensional Hilbert space with a computational

basis |z). Now the quantum operator C' is defined as
Clz) =C(2)]2). (3)

We introduce a unitary operator that depends on C' and a parameter v as

m

UC,y)=e " =][e . (4)

a=1
Note that each term in the product commutes with the others and because C' is integer

valued, 7 is an angle between 0 and 27w. We introduce another operator

B:Zn:Xj (5)

where X is the Pauli X operator on qubit j, and an associated unitary that depends on a

parameter (3

U(B, )= 8 =% (6)
j=1

where 3 is an angle between 0 and 7.
The QAOA consists of an alternation of operators of the form (@) with operators of the

form (@) acting on the initial state

1
|s) = \/Q—nZZ:IZ% (7)

Each layer has its own parameters. Let v = v;...7, and 8 = (;...5, and define the

quantum state
7. 8) = U(B,3,)U(C, ) ... U(B, )U(C,m) |s) . (8)
For a given instance of a problem, the associated objective function on 2p parameters is

3



We use ‘cost’ to refer to Eq. (Il) which depends on strings and ‘objective’ to refer to Eq.
@) which depends on parameters. For a fixed instance and value of p, we view (@) as the
parameter landscape. The ultimate goal is to find the high points in the landscape. For now
we want to see how the landscape varies as we look at different instances which come from
some instance distribution. For example we might look at n bit instances of Max3Sat where
the distribution is uniform over all instances with the ratio of the number of clauses to the
number of bits fixed. Or we could look at MaxCut on graphs where each edge is included
with probability 3/(n — 1) so the expected value of the valence is 3. However in this paper
we focus on MaxCut where the distribution is over all 3-regular graphs. Our results will

generalize beyond the examples but they contain the essence of the more general arguments.

II. FIXED p WITH n LARGE

In this section we consider how the objective function varies when we pick typical in-
stances from a given distribution while holding p fixed and taking n to be large. We start

with MaxCut whose cost function can be written as

C= Z Cliky (10)
(4k)
and
1
C(jk> = 5(—ZjZk + 1). (11)

Now the objective function can be written as
Fy(v,8) =Y _(s|UN(Cim) .. .UN(B, 8,)CiU (B, 5,) ... U(C, ) |s)
k)

(12)
(Jk)

where we will make use of the fact that the objective function is a sum over individual edge
functions. We first consider only 3-regular graphs and the shallowest depth for the QAOA
which is p = 1. Consider one term in equation (I2)) that comes from the edge (jk). We can

write the relevant piece as
F<jk>(717 B1) = (s UT(Ca ’Yl)UT(Ba Bl)ZjZkU(Bv BU(C, 1) |s) - (13)

The effects of the conjugation by U(B, ;) is to rotate Z; and Zj about the x-axis so
Z; — Zjcos(261) + Y;sin(2p) and similarly for Z;. Still only qubits j and k are involved.

4



Now conjugation by U(C, ;) introduces only the qubits that are immediately connected to

qubits 7 and k£ on the 3-regular graph. There are 3 possibilities illustrated here

14
j P J k J k (14)

So in the sum over all edges there are only 3 functions that can contribute
Fi(71, B1) = waFo (71, 1) +w a Foa (11, 81) +ws (71, B1) (15)

where we is the number of edges that locally look like the first picture in Eq. (I4)) and
similarly for w and wy<. Now we introduce fractions of each type so that fo = we/m,

fa =wa/m and fsi = wy</m where m = 3n/2 is the number of edges. So now

Fi(71, 81) = | foFo(1, 81) + faFaln, Bi) + S<B<(n1, 1) | -m . (16)

The key point is that for the distribution at hand, as n grows, the fractions feo, f~ and fi<
concentrate. In this particular case as n gets big, for a typical 3-regular graph, almost all
edges’ neighborhoods locally look like trees. So fy< goes to 1 and the other two are of order
1/n. Regardless of the parameter values, the objective function is the same up to order 1/n
for almost all 3-regular graphs.

Consider what happens as we increase p still working with 3-regular graphs. Look at
edge (jk). The successive conjugations by the cost function unitary bring into play qubits
that are at most p away from j and k. For fixed p the number of subgraph types is fixed
and is independent of the number of bits. As n gets large, on random 3-regular graphs,
the subgraph fractions will concentrate. (For a random 3-regular graph, in fact there is
one dominant subgraph type, a tree.) This means that for fixed p as n gets large, for fixed
parameters, the objective function value doesn’t depend on which n-bit-3-regular graph is
randomly chosen. See also [§].

Consider now a different distribution of graphs, for example where each edge is included
with probability 3/(n — 1) so the average valence is 3. With this distribution, tossed graphs
have isolated vertices and disconnected components. So we might focus on the largest
connected component. Now at p = 1 there are more subgraph types than we found on

3-regular graphs. Coming out of each of the two vertices on edge (jk) can be 0,1,2,3...

5



edges. Still the fraction of each subgraph type will concentrate as n gets large, dominated
by trees. Since there is now a family of trees, there will be \/n fluctuations on the number
of tree types and so the total cost function value will concentrate with /n fluctuations.
With p larger than 1 but fixed as n grows, there will still be concentration in the number of
subgraph types and correspondingly concentration in the total cost function.

For p fixed and n large, with fixed parameters v and B we have shown that the cost
function will be the same on all typical instances of MaxCut on 3-regular graphs or Renyi
graphs with probability 3/(n — 1). The same reasoning will apply to other combinatorial
search problems which have the restriction that the number of clauses in which any variable
can appear does not grow with n or at least grows only slowly with high probability. Oth-
erwise for fixed p, the relevant subgraph types will cover multiple times the instance graph
and our fixed p arguments will not apply.

There are well known theorems about well-behaved functions (e.g. with bounded Lip-
schitz constants) of strings which state that the function value concentrates when the
strings are chosen randomly. For example consider a specialized version of the McDiar-

mind /Hoeffding/Azuma inequality:

Theorem. Let bit strings x4, ..., xr, be generated as independent random variables according
to some distribution. Consider an arbitrary function of the strings f(x1,...,xr) which has
the property that if any bit is flipped the function value changes by no more than a constant

c. Then

Pr (|G, n) ~ B > 1) <exp(—L2Cf) _ (17)

An n vertex graph has (g) possible edges so we can think of a graph as described by
(Z) bits where each bit says if an edge is present or not. So now think of the function F
in (@) as a function of (%) bits. We can show that the function (@) does not change much
when an edge is removed if p is fixed, as long as the maximum valence does not grow with
n. However now L is of order n? so for the right hand side of (I7) to be small we need ¢ of
order n and we are not getting good concentration. But what we have done is too simple.
The theorem above does not notice that we are working with say Renyi graphs with edge
probability 3/(n — 1). There is a graph version of this theorem (see Remark 3.25 of [10])
which gives a concentration result for the Erdos-Renyi graph case. But in our attempts to

use it we found concentration that was not as tight as what we obtained with the subgraph



argument.

However there is an advantage to this approach. Suppose we consider a generalization
of the QAOA to situations where for each p we have angles « for each clause. Or consider
weighted MaxCut. Now our subgraph counting arguments will not work because each edge
is unique and we can not count subgraph types. Still the graph concentration techniques
can be used. But if p grows with n, we do not know how to meet the hypothesis of the
theorems which is that the function value (@) does not change much if we remove an edge.

However in the large p case we have other arguments which will be presented in section [Vl

III. NUMERICS THAT SHOW CONCENTRATION

Here we present some numerics that support the arguments made in the previous section
and prepare for the next section on higher p. We look at the MaxCut cost function working
at 20 bits tossing 3-regular graphs. The number of edges in each graph is 30 and to decrease
some fluctuations in some parameter regimes we put the further restriction that each graph
has a MaxCut value of 26, which means that the largest possible value of the cost function
is the same for all graphs.

If we select the control parameters at random, especially at high p, one could argue that
we are producing a random state and the quantum expectation of any clause would be near
1/2, so the total objective function would be near 15. In this sense the fact that we get
the same value of the objective function regardless of which random graph is tossed would
have an alternate explanation based on random states. So for our numerics we work with
three regimes for each value of p. For the first we select values of the parameters so that the
objective function has a small value, much less than 15. In section [V] we will explain how
these parameters are chosen. But for each p, once the 2p parameters are fixed we toss 25
random graphs and evaluate the quantum expectation of the cost function. The first column
of Table 1 shows the results for p ranging from 2 to 7. We give the average over the 25 sample
graphs and the standard deviation of the 25 samples. The concentration is evident. In the
next column for each p we select 2p angles at random. Typically the quantum expectation
of the cost function is near 15. Again we toss 25 random 3-regular graphs and report the
average over the 25 and the standard deviation. For the data in the third column for each

p we select 2p angles that make the objective function large. Again we will discuss how this



is achieved in section [Vl But once the parameters are fixed we see that each tossed graph
has nearly the same value of the objective function since the standard deviation over the 25

samples is small.

Low Random High

P Mean Std. Mean Std. Mean Std.
2 6.636 0.319 14.691 0.036 22.409 0.228
3 5.218 0.294 15.125 0.042 23.109 0.175
4 3.933 0.259 14.627 0.157 23.822 0.272

3.132 0.159 15.725 0.113 24.349 0.179
6 2.550 0.100 16.404 0.140 24918 0.266
7 1.954 0.088 15.975 0.096 25.110 0.221

TABLE 1: Mean and standard deviation of objective function values across 25 random 20-node-
3-regular graph instances each having a MaxCut value of 26. For each p there are 3 sets of fixed
parameters. The first is chosen to give a low cost function value, the second is randomly chosen
and the third is chosen to make the cost function high. In the low and high cases the angles are

not the best possible, but are chosen to drive the objective function away from a random point

in the landscape.

So far we have an argument that predicts concentration for low p. But the chart shows

that concentration is maintained when p increases. We discuss this next.

IV. HIGHER p

Return to Eq. (I2) and consider one term associated with edge (jk). The middle term is
conjugated by p operators of the form U(C,~) as in Eq. (). Each conjugation may bring
in new qubits which can be thought of as being reached by taking p steps from j and k.
If there are no backward steps and only new qubits are reached we can picture the qubits
connected to j or k as vertices on a tree. For example for p = 1 we have the tree seen in
the third picture in equation (I4]). This has 6 qubits. If we go to p = 2 the tree has 14
qubits. For p ranging from 2 to 7 the relevant tree sizes are 14, 30, 62, 126, 254 and 510.
So working with 20 qubit graphs, we see that certainly by p = 3 the qubits connected to



each edge are covered many times by the conjugation operation. We have left the domain of
fixed p with n large. However if you look at the data in Table 1 we see that even for p =7
we have concentration. Thus we need another explanation for the concentration, other than
what was shown in Section [l

We are going to make use of the fact that the objective function we evaluate is a sum of

m individual terms,
m

F(’Yaﬁ) = Z <7aﬁ| COé |7aﬁ> : (18)

a=1

We always think of the parameters v and 3 as fixed. The randomness comes from tossing

instances. So for the rest of this section we stop carrying around the v and 8 and we write

F=Y"¢,. (19)

We have some distribution of n-bit instances of some combinatorial search problem. We can
think of each term in (I9)) as a random variable whose value lies between 0 and 1. The sum is
of order the number of clauses m. In most cases of interest m is linear or quadratic in n. By
the Law of Large Numbers, if the terms in (I9) are independent then the standard deviation
of F, regardless of the distribution, is of order y/m. In this case we have concentration as
typical instances will have the same value of F' up to corrections of order \/m. So we need
to investigate the correlations between individual terms in Eq. (I9). We do this by example,
returning again to MaxCut on 3-regular graphs.

For MaxCut each clause is labeled by an edge so we can think of a as an edge label.
In (I9) the individual terms are correlated because they correspond to edges on the same
graph. Let us see if we can use our simulations to estimate the correlations between different
edges. First we need to be explicit about the random process that generates €,. Pick a
random n-bit-3-regular graph. Toss a random permutation of the integers 1,2,...,m and
use this sequence to relabel the edges. (We randomly relabel the edges so that the edge name
has no possible connection with the process that generated the graph.) Take the quantum
expectation of the clause corresponding to edge « in the quantum state determined by the
graph. (Recall again that the angles are fixed.) This defines random variables that we call
Co,a=1,...,m.

Now any €, has the same distribution as C;. So we have

E[C.] = E[€] and std(C,) = std(Cy) . (20)



The correlation between G, and G,/ is

. COV(GQ, Ga/)
Corr(Ca, Car) = std(Cy) std(Co) (21)

where
Cov(C,,Cy) =E [(Ga — ElC,])(Cy — E[Ga/])], (22)

where the expectation is taken over the random graph and the random permutation, and

the standard deviation is the square root of the variance
Var(C,) =E [(€, — E[C4])?] . (23)

Using (20) and (2I) the correlation coefficient between €, and C, can be written as

Corr(Cy, Co ) = %&;Sa/) . (24)
Now consider the variance of F'
Var(F) =E [(F — E[F])?] . (25)
Since F' is a sum, see ([[9), we have that
Var(F) = i\far(@a) + ) Cov(Cq, Cu) (26)
a=1 atal

SO

> Cov(€q, Cor) = Var(F) = > Var(C,) . (27)
aFa’ a=1
Inside each graph the C, are correlated. The random permutation guarantees that the

correlation is the same for each pair C,, C,. So each covariance is

1
_ F)— 2
m(m = 1) [ Var(F) — m Var(€;)] (28)
and each correlation coefficient is
1 Var(F)
m—1|mVar(G) 1] ' (29)

We want to toss random graphs to estimate this quantity. Suppose we toss N graphs (we

will use N = 100). For fixed angles, for each of the NV graphs we calculate F' via (I8) and

get N samples F with £ =1,..., N, where the mean is estimated as
T
F=_ F 30

10



and the variance is estimated as

N

G- (31)

k=1
Next we need to estimate Var(C;). Since the mean and variance of each C, are the same as

for Gy, we want to use all mN samples for the estimate. We can write for the estimate of

E[C]
a=1 k=1 (32)

and for the estimate of Var(C;) we use

ﬁ > (Cak—0), (33)

a=1 k=1

where the m/N — 1 makes the estimate unbiased (in the uncorrelated case). We use (33)) to
estimate Var(C;) and (BI]) to estimate Var(F') and obtain our estimate of the correlation
coefficient via (29).

Working at 20 bits we tossed random 3-regular graphs with the MaxCut value fixed
at 26 to numerically investigate the correlation coefficient given by (28). Here we worked
at p=8 with five sets of fixed parameters. One set was chosen to produce a low value of
the objective function, one set at medium low value, one set at a medium high value and
one set at a high value. (Presumably, fixing the MaxCut value reduces the spread of the
objective function especially when using the high value parameters.) We also included a
set of random parameters. We tossed 100 graphs for each set of parameters. The results
are shown in Table 2. In general the correlation coefficient (20) can range from -1 which
is perfectly anti-correlated to 1 which is perfectly correlated. (In our case the correlation
coefficient must be > m_—_ll as can be seen in (29).) The observed values we get near zero
are good evidence that the individual terms that sum to make F' have tiny correlations.
Working at 20 bits this can help explain why the objective function is nearly independent of
the tossed graph. If we go to higher bit number we imagine that the correlation coefficient

will tend to zero because in bigger graphs the edges are further apart.

11



F s/tzl(F ) Correlation Coefficient
Low 2.311 0.118 -0.016
Med Low 7.621 0.297 0.013
Random 15.203 0.262 0.040
Med High 21.4978 0.250 0.008
High 24.995 0.220 -0.031

TABLE 2: Each row has a set of fixed parameters at p = 8. The data comes from tossing 100
3-regular graphs with a MaxCut of 26. In the first row the parameters are chosen (see section
[V]) to produce a low value of the cost function. In the second row the parameters are chosen for

a medium low value. Etc. In all cases the correlation coefficient is small.

V. FROM SMALL TO LARGE INSTANCES

We have observed in our numerical experiments that for any p, if we fix parameters such
that the objective function has a high value at some small number of qubits then those same
parameters will produce a high value at a larger number of qubits. When we looked for very
good parameters so that the objective function value is close to optimal at low bit number
then these same parameters produced a near optimal value of the objective function at a
higher bit number. We illustrate this with an example. We tossed a random 3-regular graph
at 10 bits and worked at p = 8. We searched for good parameters by doing 200 random
restarts with a canned Matlab optimization algorithm running on a laptop. This produced
a set of angles with an approximation ratio of 0.984. It is possible that further searching
would have led to an even higher approximation ratio but our goal was not to find the
very best parameters. We then used these 16 angles and evaluated the cost function on 25
randomly chosen 3-regular graphs with 24 vertices. The average approximation ratio for the
25 instances was 0.934 with a standard deviation of 0.014. This value for the approximation
ratio is high and it came without any searching at 24 qubits.

The good parameters we found at 10 bits at p = 8 will not work well on arbitrarily large
graphs. If the number of vertices is very large, then working at p = 8, the local pictures on
a very large graph will not cover the graph. For p = 8, working on very big 3-regular graphs

the largest number of qubits that can be involved in any clause is 1022. If we have a graph

12



with tens of thousands of vertices then these local terms will not see the large loops. And it
is only odd length loops that prevent a MaxCut instance from being fully satisfiable. The
QAOA will not be able to tell the difference between a graph with large loops that are all
even length from a graph with large odd length loops. So certainly in worst case the QAOA
will not work as well on large graphs with fixed p and parameters found on small graphs.
In the near future, experimentalists will provide us with gate model quantum computers
with up to 100 qubits. Suppose we run the QAOA on hardware to find good approximation
ratios for MaxCut on 3-regular graphs that are randomly generated. Then certainly at
p = 8 we are well out of the fixed p large n regime. It may be that we can find good
parameters with a classical simulator at say 20 bits and these same angles will produce good
approximation ratios when run on a quantum computer at high bit number. This is a way

to test the QAOA and the hardware in a regime that can not be classically simulated.

VI. FUTURE OUTLOOK

The main finding of this paper is that if we look at the objective function of the QAOA (@)
then for fixed v and B this function has the same value on all typical instances generated
by some reasonable distribution. For fixed p and search problems where the number of
clauses in which any variable can appear is bounded, we can prove that for n large there
is concentration with fluctuations of order the square root of the number of clauses. For p
growing with n, we can argue for the concentration using the Law of Large Numbers and
the assumption that individual terms in the objective function are not very correlated. Our
numerical experiments bolster these arguments.

This leads to a strategy for running the QAOA on a quantum computer where the task is
to find a good approximation ratio for some combinatorial search problem. Suppose we have
a guarantee that the instances come from some reasonable distribution. Then given the first
instance to solve, work hard to find the optimal parameters. This may be done by conducting
a variational search for good parameters making repeated calls to the quantum computer.
Or we may adopt a leapfrogging strategy as will be discussed in the next paragraph. However
once good parameters have been found for one instance, these same parameters can be used
on other typical instances. It might be possible to improve performance for each instance

by doing a narrow search in the neighborhood of the good parameters. Whether this is cost

13



effective will depend on the problem at hand, the expense of running the quantum device and
the desired performance. However our findings eliminate the need to blindly search on each
instance and gets rid of (or significantly lessens) the burden of the outer loop optimization
beyond the first instance.

Another key finding is that if we fix p, then parameters that bring the cost function
to a high value at low bit number will also bring the cost function to a high value on
larger instances. In our numerical simulations we found good parameters at 10 bits and
using these parameters we got good performance at 20 and 24 bits. There was no additional
optimization at the higher bit numbers. This suggests a strategy for finding good parameters.
Say we have a quantum computer with 100 qubits and we are looking at random instances
of MaxCut on some distribution of graphs. Toss a random instance at say 20 bits and use
a classical computer to find optimal angles. Here p is fixed at say 6. Once the 12 angles
are found we could run the quantum computer on a randomly chosen instance at 50 qubits
using these 12 parameters. Refine the angles by doing a local search near the given angles.
This may take some time on the quantum computer but the starting point should already
be good. Now we have a new set of 12 parameters which are working well at 50 qubits.
Use these same parameters on randomly chosen instances as 100 bits. Further refine if
desired. This leapfrogging strategy will greatly reduce the computational cost of the outer
loop optimization.

We have introduced strategies for running the Quantum Approximate Optimization Algo-
rithm that greatly reduce the number of function calls to the quantum computer compared
with direct variational approaches. This may shorten the time it will take until we can
run the QAOA on a near term device and test its performance in regimes where classical

simulation is not available. We look forward to these experiments.

VII. ACKNOWLEDGEMENTS

We thank the Google Al Quantum team for useful discussion. EF also thanks Soonwon
Choi, Misha Lukin, Hannes Pichler, Sheng-Tao Wang and Leo Zhou for many good chats.
We acknowledge Jeffrey Goldstone for help with the acknowledgements. The work of EF was
partially supported from NSF grant CCF-1729369 and ARO contract W911NF-17-1-0433.

14



FB work is partially supported by NSF.

[1]

Edward Farhi, Jeffrey Goldstone, Sam Gutmann.
A Quantum Approximate Optimization Algorithm, 2014.
arXiv:1411.4028! [quant-ph].

Edward Farhi, Jeffrey Goldstone, Sam Gutmann.
A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Con-
straint Problem, 2015.

arXiv:1412.6062! [quant-ph].

Eran Halperin, Dror Livnat, Uri Zwick.
MAX CUT in cubic graphs, 2004.

Journal of Algorithms, Volume 53 Issue 2, Pages 169-185.

Boaz Barak, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev, David
Steurer, Luca Trevisan, Aravindan Vijayaraghavan, David Witmer, John Wright.

Beating the random assignment on constraint satisfaction problems of bounded degree, 2015.
Electronic Colloquium on Computational Complexity, Report No. 82 (2015). larXiv:1505.03424
[cs.CC].

Johan Hastad.
Improved bounds for bounded occurrence constraint satisfaction, 2015.

https://www.nada.kth.se/~johanh/bounded2.pdf

D. Wecker, M. B. Hastings, M. Troyer.
Training A Quantum Optimizer, 2016.
Phys. Rev. A, Volume 94 Issue 2, Pages 0223009.

Gavin E. Crooks.

Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut
Problem, 2018.

arXiv:1811.08419/ [quant-ph].

15


http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1412.6062
http://arxiv.org/abs/1505.03424
https://www.nada.kth.se/~johanh/bounded2.pdf
http://arxiv.org/abs/1811.08419

8]

Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, Mikhail D. Lukin.
Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementa-
tion on Near-Term Devices, 2018.

arXiv:1812.01041! [quant-ph].

Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, Mark Howard.
Simulation of quantum circuits by low-rank stabilizer decompositions, 2018.

arXiv:1808.00128! [quant-ph].

Charles Bordenave.
Lecture Notes on Random Graphs and Probabilistic Combinatorial Optimization. 2016.

www.math.univ-toulouse.fr/ bordenave/coursRG.pdf

16


http://arxiv.org/abs/1812.01041
http://arxiv.org/abs/1808.00128

	I Introduction
	II Fixed p with n large
	III Numerics that Show Concentration
	IV Higher p
	V From small to large instances
	VI Future Outlook
	VII Acknowledgements
	 References

