Zn⁺-O- dual-spin surface states formation by modification of ZnO nanoparticles with diboron compounds

Yang Cao, Yongguang Tu, Peng Zhou, Jianning Zhang, Yuchen Deng, Biao Kong, Xu Zhang, Shaojun Guo, Rui Zhu, Ding Ma, Yang Yang, and Fanyang Mo

Langmuir, Just Accepted Manuscript • DOI: 10.1021/acs.langmuir.9b01955 • Publication Date (Web): 14 Aug 2019

Downloaded from pubs.acs.org on August 14, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Zn\(^{+}\)-O\(^{-}\) dual-spin surface states formation by modification of ZnO nanoparticles with diboron compounds

Yang Cao, Yongguang Tu, Peng Zhou, Jianning Zhang, Yuchen Deng, Biao Kong, Xu Zhang, Shaojun Guo, Rui Zhu, Ding Ma, Yang Yang and Fanyang Mo

1Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
2State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China.
3Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China.
4College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing, 100871, China.

Supporting Information Placeholder

ABSTRACT: ZnO semiconductor oxides are versatile functional materials that used in photoelectronic, catalysis, sensing, etc. The Zn\(^{+}\)-O\(^{-}\) surface electronic states of semiconductor oxides were formed on ZnO’s surface by Zn 4s, O 2p orbitals coupling with the diboron compound’s B 2p orbitals. The formation of spin coupled surface states was based on the spin orbit interaction on the interface, which has not been reported before. It shows that the semiconductor oxide’s spin surface states can be modulated by regulating surface orbital energy. The Zn\(^{+}\)-O\(^{-}\) surface electronic states were confirmed by ESR results, which may help expand fundamental research on spintronics modulation and quantum transport.

KEYWORDS: ZnO, Surface state, Spintronics, Diboron compound, Spin-orbit coupling

INTRODUCTION

ZnO are key semiconductor oxide materials for wide applications in optoelectronic devices, piezoelectric devices, catalysis, sensing, etc. Surface engineering of zinc oxide have been studied for decades. Surface disorder treatment, defects engineering are basically surface states engineering methods. Organic molecule modification method have also been developed to modulate the surface states by charge transfer method to adjust electronic structures and band structures. According to the previous study, the orbitals on the surface of the nanoparticles are distinct from that bulk and should be sensitive to surface modification, which can induce unique surface states. Surface spin orbitronics are important issues and are mostly studied in transition metal surface, topological insulators, two-dimensional materials. But there exists no similar reference in semiconductor oxide systems. Zn\(^{3d}\)(O\(^{2p}\)) systems possess special electronic structure that has been reported and studied in ZnO relate chemistry. Monovalent zinc ions have been prepared under extremely harsh physical conditions, such as \(\gamma\)-irradiation, electron impact ionization, glow discharge and laser vaporization. In 2004, the Carmona group reported a landmark discovery of the dimetallic sandwich compound decamethylidiazocene (Zn2(η5-C\(_5\)Me\(_5\))\(_2\)), containing a central subvalent Zn-Zn bond with both Zn atoms formally in the +1 oxidation state. Chen group recently reported the first example of mononuclear univalent Zn\(^{+}\) in solid materials of zeolite. Organodiboron compounds represent a group of stable and highly versatile reagents that are extremely useful in organic synthesis. Despite their widespread use in synthetic chemistry, these diboron(4) species have not been used to modify inorganic materials. We find that surface modification of ZnO nanoparticles with diboron compounds can induce surface Zn\(^{+}\)-O\(^{-}\) dual spin states. Based on the experimental characterization as well as the reference that modulate magnetic spin of SrRuO\(_3\) by tuning oxygen coordination environment, we surmise that the spin surface states originated from surface orbital hybridization companied with electron redistribution induced by modulation of oxygen coordination environment. To the best of our knowledge, there is no similar report on forming these dual spin states. A conceptually new method for the facile generation of abundant surface Zn\(^{+}\)-O\(^{-}\) surface states on ZnO nanoparticles were developed under mild conditions (<80 °C).
by means of diboron(4) reagents. In this process, the intimate interaction of the diboron(4) reagent’s B center with the surface bridging O$_{2c}$ of ZnO facilitates the adsorption of the organodiboron reagents onto the ZnO nanoparticles which lead to spontaneous electron transfer resulting in Zn$^+$-O^- dual-spin surface states (Figure 1b-d). Notably, this process exhibits a facile method to modulate ZnO’s surface states by introducing dual-spin electrons coupled to surface orbitals.

According to the literature, surface oxygen sites coordination changes can induce electron behaviors like magnetism.22 We posited that electrophilic organic adsorbates with an appropriate reduction potential might favorably interact with the surface O$_{2c}$ sites. Importantly, this binding changed the coordination behavior of surface O$_{2c}$ and affected the surface states. We were particularly interested in the use of organic diboron(4) reagents due to their unique Lewis acidity and reducing ability (vide supra). Previous work in the area of synthetic organic chemistry showed that upon binding to a Lewis basic oxygen atom, these organic diboron(4) species could function as single electron reducing agents; thus, allowing various important transformations.23-29 Based on these reasons, we envisioned that the coordination of such diboron(4) compounds with the surface oxygen atom in metal oxide materials may lead to the formation of surface diboron-oxygen Lewis pairs which may induce single electron transfer from the ipso-O$_{2c}$ site to the adjacent Zn site. Furthermore, the interaction of diboron(4) species with the oxygen atom may stabilize the resulting low valent Zn–high valent O pair (Figure 1b-d).

EXPERIMENTAL DETAILS

RESULTS AND DISCUSSION

The diboron(4) compound could be uniformly dispersed onto the ZnO nanoparticles in a diboron(4)-soluble solvent, such as methanol or ether. Blue samples were obtained after solvent evaporation and heating at 80 °C under vacuum for 3 h. These blue samples are tagged as B-ZnO. They can be stored outside...
of a glovebox for at least 6 months while retaining the blue color. This color change only occurs with diboron(4) compounds. Monoboron compounds, such as methyl borate, are unable to sensitize the ZnO with no color change when mixed with ZnO. We investigated the structures and properties of these diboron(4)-sensitized ZnO nanoparticles with UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmittance electronic microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and boron nuclear magnetic resonance (11B NMR). The UV-Visible absorption spectra (Figure 2b and S1) of B-ZnO shows that the sample with the diboron compound modification exhibit enhanced visible light absorption (wavelength >400 nm). The blue color and the visible light absorption of the B-ZnO samples imply formation of the reduced state of zinc(I).

![Figure 2](image)

Figure 2. (a) Four commercially available diboron(4) compounds used in this study: B$_2$Pin$_2$ (bis(pinacolato)diboron), B$_2$(OH)$_4$ (tetrahydroxydiborane), B$_2$Cat$_2$ (bis(catecholato)diboron) and B$_2$(NMe$_2$)$_4$ (tetrakis(dimethylamino)diboron). (b) UV-Visible spectral absorbance of the white ZnO and B-ZnO samples. (c) HRTEM photo of B1-ZnO sample (The red dotted curve shows the interface of the surface molecule while the white arrow shows the organic molecule layer) (d) HADDF image of B1-ZnO sample (e) the carbon mapping image in the HADDF mode. (f) Zn mapping image of the B1-ZnO sample (g) C mapping image of the B1-ZnO sample (h) O mapping image of the B1-ZnO sample (i) XRD spectra of pristine ZnO and four B-ZnO samples. (j) In situ ATR-FTIR spectrum of B4 on ZnO over 60 min performed at room temperature with a B4 molecule for comparison (in red).

We then performed TEM characterization to explore the surface structure of the material. A thin organic molecule layer (ca. 0.5-2 nm) on the surface of the material can be seen in the TEM picture (Figure 2c). The corresponding C phase mapping in the HADDF mode (Figure 2e) and the corresponding Zn, C and O element mapping (Figure 2f-h) exhibit C phase mapping distribute over a larger area than Zn, O phase mapping, which means a carbon-containing layer on the surface of ZnO nanoparticle (Figure 2d). The powder X-ray diffraction analysis (Figure 2i) showed that the commercial ZnO and diboron compound modified ZnO samples can be indexed to wurtzite
lattice nanoparticles. There were no new peaks after modification which indicate no changes in the crystal structure upon adsorption. The X-ray photoelectron spectroscopy showed that the O 1s and Zn 2p binding energies of B1-ZnO are lower than the pristine ZnO sample. The valance band of B1-ZnO also shifted to a lower energy, which means that the valance band electron was much closer to the Fermi level energy, and electron may be more likely to jump to the conduction band (Figure S2).

The ZnO shows increased visible light absorption based on the surface interaction with the diboron compound. To make a better understanding of the adsorption process, an in-situ FT-IR analysis was used to track the surface bonding behavior. Figure 2j shows the in-situ ATR-FTIR spectra along a 60 min course of the B4 molecule interaction with ZnO nanoparticles. The magnification vibration in 1600~900 cm\(^{-1}\) shows the fingerprint of the B4 molecule when interacting with ZnO. For comparison, free B4 molecule IR signals were found to agree well with simulations using the Gaussian09 software (Figure S4). The calculated results suggest a B–B bond stretching vibration peak at ca. 1000 cm\(^{-1}\) where the intensity is zero. This conforms to the fact that B4 is a C2 symmetric molecule. The symmetry may be lost when B4 was adsorbed on ZnO resulting in the corresponding B–B bond vibration signals appearance. Indeed, new vibrations at around 1268 cm\(^{-1}\) and 1028 cm\(^{-1}\) appear which can be indexed to the B–B bond vibration. The B–B bond vibration was silent in free B4 molecule which suggests that B4 interacts with the ZnO nanoparticle through the B–B moiety. ATR-FTIR spectra of other B-ZnO samples all show an extra absorption around 1020 cm\(^{-1}\) compared to the free diboron molecule, which was indexed to the asymmetry sp\(^2\)-sp\(^3\) B–B bond vibration (Figure S5). On the other hand, most typical pure diboron(4) compound absorption peaks have very small changes in the wavenumber in the modified samples, which mean that the main chemical structure of the molecule remains unchanged.

Figure 3. (a-d) EPR spectra of four B-ZnO samples at 2 K. The inset in (b) is magnifications of the green rectangular areas with g values of 2.2~1.99. (e-h) Solid-state boron nuclear magnetic resonance spectra of B1-B4 and four B-ZnO samples. (i) Zn K-edge and (j) O K-edge TEY spectra of B1-ZnO and ZnO.

Then the surface electronic states and the diboron molecule’s structure were characterized by ESR, NMR and XAFS. (Figure 3) The electron paramagnetic resonance (EPR) spectrum of the B1-ZnO sample showed a strong singlet line centered on a g value of 1.960 at 2 K (Figure 3a). Some g > 2.0 signals were also observed, which could be indexed to the radical state of organic molecule. The observed g values were characteristic of a paramagnetic Zn\(^{2+}\) center as exemplified in a few reports such as ZnO synthesized by evaporation (g = 1.96),\(^{31}\) heat treated ZnO (g = 1.955),\(^{32}\) defect-rich ultrathin ZnAl-LDH (g = 1.99),\(^{33}\) and Zn\(^{2+}\)-doped ZSM-5 molecule sieve (g = 1.99).\(^{34}\)

Furthermore, the solid-state boron nuclear magnetic resonance (\(^{11}\)B NMR) can be used to elucidate the binding details of the diboron (4) adsorbed on ZnO (Figure 3e-h). The peaks around 20–40 ppm for the free diboron (4) compounds were assigned
to the two identical symmetric boron atoms in the pure B1-B4 molecule. (B1: 24.3 ppm, B2: 22.2 ppm, B3: 23.0 ppm, and B4: 36.5 ppm) In the adsorption samples, the bonding on the boron atom will cause the molecule to lose its symmetry resulting in two distinct chemical environments around the two boron atoms. Thus, a chemical shift was observed at 4.4 ppm for B1-ZnO in the 11B NMR which was presumably responsible for the complexation mode (B2: 1.63 ppm, B3: 7.5 ppm, and B4: 1.6 ppm). This new peak appeared in the very upfield region compared with that for the free B1 indicating a change in the coordination on the boron atom. Mechanistically, tetracoordinating boron has a higher electron density than the tricoordinating species due to its formal negative charge which results in a chemical shift upfield in the NMR spectrum. Moreover, Marder and co-workers reported a N-heterocyclic carbene (NHC)-B1 adduct with a 0.34 ppm chemical shift which they assigned to the tetracoordinating boron. The peak close to 0 ppm in the present case should be attributed to one of the boron atoms in the diboron(4) molecule coordinating with the bridged oxygen or the hydroxyl group on the ZnO surface.

Figure 4. (a) Optimized geometric structures and (b) charge density difference mappings for the B1 adsorption on the ZnO {110} surface. The isosurfaces of the electron density difference plots are all 0.001 e Å$^{-3}$. The yellow and light blue surfaces represent electron depletion and accumulation. The silvery gray, red, earth yellow, green and pink spheres are the Zn, O, C, B and H atoms, respectively. The projected density of state (PDOS) plots of (c) B1 molecule adsorption on ZnO {110} plane and (d) pristine ZnO {110} surface calculated by GGA+U. (U=7.5 eV, the insert is a magnification of the PDOS around the Fermi level.

X-ray absorption fine structure (XAFS) spectra were used to investigate this surface complexation. The X-ray absorption near edge structure spectroscopy (XANES) spectra of the Zn K-edge (Figure 3i) showed that B-ZnO and ZnO have little difference, indicating that the diboron (4) compounds only interacted with the surface ZnO layer. The introduction of the diboron compound did not influence the bulk properties of the ZnO substrate, which was in accordance with the Fourier-transformed (FT) k^2-weighted extended X-ray absorption fine structure (EXAFS) spectra in Figure S6. The XANES spectra of the O K-edge were measured in the FEY mode, which provided information about the surface O atoms. We compared ZnO with B4-ZnO to exclude the influence of the O atoms in the diboron compounds. The absorption around 537.6 eV could be ascribed to the hybridization of the Zn 4p and O 2p orbitals. The negative shift (-0.4 eV) of the absorption peak to 537.2 eV showed that the surface O atom shifted to a lower valence state (Figure 3j), due to the formation of a B−O coordination bond that led to the formation of a lower valence state of the Zn$^{+}$ species.

DFT calculations were further used to study the adsorption of the diboron molecule on the ZnO nanoparticle surface. This study focuses on the ZnO {110} surface, which is non-polar and contributes up to 80% of the ZnO total surface area. The optimized geometry of the B1 adsorption on the ZnO surface was shown in Figure 4a. The B1 molecule was tightly bound with the surface O$_{2c}$ atom through the B−O coordination bond. The charge density difference plots in Figure 4b showed the charge redistribution around the adsorption site of the ZnO {110} surface mainly on p orbital of O atoms and s orbital in surface Zn atoms, and it also exhibited electron redistribution in the organic molecule. This charge redistribution could result in the formation of a Zn$^{+}$−O$^-$ pair. Next, the projected density of state (PDOS) of the ZnO surface with the adsorption of B1 molecule was shown in Figure 4c. As a comparison, the PDOS of the pristine ZnO {110} surface was shown in Figure 4d. Some intermediate states just below the Fermi level appeared upon the
adsorption of the B1 molecule. What’s more, O 2p states in B1-ZnO model showed a density states of 199 eV\(^{-1}\) at -1.4 eV, while in pristine ZnO, the relate density was 204 eV\(^{-1}\) at -1.9 eV; Zn 4s states at 1 eV was 1.3 eV\(^{-1}\) in the model of pristine ZnO \{110\} surface, 1.4 eV\(^{-1}\) at around 0.66 eV in B1-ZnO model. It could be concluded that O 2p states were reduced but Zn 4s states were increased in the B1-ZnO model, and the band gap was shrunk. The circumstance showed that the surface adsorption of B1 molecule induce electron redistribution that some states were moved from O 2p to Zn 4s, which is consistent with the formation of the Zn\(^{2+}\)–O\(^{-}\) pair. The B2, B3, B4 molecule adsorption on the ZnO \{110\} surface were also analyzed (Figure S8). The PDOS plots (Figure S9) showed the presence of electron-filled Zn 4s states within the band gap, suggesting that the adsorption of the diboron molecule could lead to the formation of the Zn\(^{2+}\) species on the ZnO surface. The stability of the newly formed Zn\(^{2+}\)–O\(^{-}\) pair was examined by calculating the adsorption energy of an O\(_2\) molecule on the adjacent sites of the Zn\(^{2+}\)–O\(^{-}\) pair. The adsorption energy is generally positive (Table S1), indicating that it is energetically unstable for the O\(_2\) molecule to get close to the Zn\(^{2+}\)–O\(^{-}\) center. This result demonstrated that the organic complexation could prevent further oxidation of the Zn\(^{2+}\) species by O\(_2\) molecule, thus stabilize the formed Zn\(^{2+}\)–O\(^{-}\) pair in the air atmosphere.

CONCLUSIONS

Zn\(^{2+}\)–O\(^{-}\) dual-spin surface states were formed by a surface modification method. The diboron compound successfully induced surface charge redistribution by adjusting the surface orbital energy. Based on changing the coordination environment of O\(_2\), and the unique structure of the diboron compound itself, new spinning surface states constituting Zn 4s, O 2p, and organic molecules’ orbitals were formed. And the spin-orbit coupling was induced by the surface states to form dual-spin Zn\(^{2+}\)–O\(^{-}\) states.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

* Email: fmo@pku.edu.cn.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENT
The project was supported by the Natural Science Foundation of China (Grant 21772003). We also thank the “1000-Youth Talents Plan” and Peking University for start-up funds. A portion of the EPR work was performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory of the Chinese Academy of Sciences. The authors thank beamline BL408U1A and BL14W1 (Shanghai Synchrotron Radiation Facility) for providing the beam time. This work was also partially funded by the BHP-PKU CCUS project supported by BHP Billiton. Cao Y., Tu Y., Zhang J. run the experimental work; Cao Y., Zhou P. do the theoretical work; Deng Y. give some help to the experimental work; Zhang X. give some advice to the theoretical work, Kong B., Guo S., Zhu R., Ma D., Yang Y. check the manuscript; Mo F. direct the whole project.

REFERENCES

(14) Isoya, J.-I.; Fujiwara, S., ESR of Hot Ions: Zn (I), Cd (I), and Hg (I) in γ-Irradiated Potassium Tetracyano Zincate (II), Cadmate (II), and Mercurate (II). *Bull. Chem. Soc. Jpn. 1972, 45 (7), 2182-2188.*

(16) Weis, P.; Kemper, P. R.; Bowers, M. T., Mn\(^{2+}\) (H\(_3\)) n and Zn\(^{2+}\)(H\(_3\))\(_2\), Clusters:

(18) Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A., Decamethylzincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond. Science 2004, 305 (5687), 1136-1138.

ZnO Surface modification

Surface orbital energy modulation