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More on the extremal number of subdivisions

David Conlon∗ Oliver Janzer† Joonkyung Lee‡

Abstract

Given a graph H , the extremal number ex(n,H) is the largest number of edges in
an H-free graph on n vertices. We make progress on a number of conjectures about
the extremal number of bipartite graphs. First, writing K ′

s,t for the subdivision of the

bipartite graph Ks,t, we show that ex(n,K ′

s,t) = O(n3/2− 1
2s ). This proves a conjecture

of Kang, Kim and Liu and is tight up to the implied constant for t sufficiently large in
terms of s. Second, for any integers s, k ≥ 1, we show that ex(n, L) = Θ(n1+ s

sk+1 ) for a
particular graph L depending on s and k, answering another question of Kang, Kim and
Liu. This result touches upon an old conjecture of Erdős and Simonovits, which asserts
that every rational number r ∈ (1, 2) is realisable in the sense that ex(n,H) = Θ(nr) for
some appropriate graph H , giving infinitely many new realisable exponents and implying
that 1 + 1/k is a limit point of realisable exponents for all k ≥ 1. Writing Hk for the
k-subdivision of a graph H , this result also implies that for any bipartite graph H and
any k, there exists δ > 0 such that ex(n,Hk−1) = O(n1+1/k−δ), partially resolving a
question of Conlon and Lee. Third, extending a recent result of Conlon and Lee, we
show that any bipartite graph H with maximum degree r on one side which does not
contain C4 as a subgraph satisfies ex(n,H) = o(n2−1/r).

1 Introduction

For a graph H, the extremal number ex(n,H) is the maximal number of edges in an H-
free graph on n vertices. The celebrated Erdős–Stone–Simonovits theorem [6,7] states that

ex(n,H) =
(

1− 1
χ(H)−1 + o(1)

)

n2

2 , where χ(H) is the chromatic number of H. This deter-

mines the asymptotics of ex(n,H) for any H of chromatic number at least 3. However, for
bipartite graphs H, it only gives ex(n,H) = o(n2). One of the central problems in extremal
combinatorics is to obtain more precise bounds in this case. For an overview of this inter-
esting area, we refer the reader to the comprehensive survey by Füredi and Simonovits [13].

Our starting point here lies with one of the few general results in the area, first proved
by Füredi [12] and later reproved by Alon, Krivelevich and Sudakov [1] using the celebrated
dependent random choice technique [11]. Note that here and throughout, we use the asymp-
totic notation O, o,Ω, ω to indicate that n → ∞ and everything else is kept constant. In
particular, the implied constants for O and Ω can depend on any parameter other than n.

Theorem 1.1 (Füredi, Alon–Krivelevich–Sudakov). Let H be a bipartite graph such that in

one of the parts all the degrees are at most r. Then ex(n,H) = O(n2−1/r).

This result is known to be tight [2, 20], since, for s sufficiently large in terms of r,
ex(n,Kr,s) = Ω(n2−1/r). Moreover, it is conjectured [22] that this should already hold when
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s = r. On the other hand, a recent conjecture of Conlon and Lee [5] says that containing
Kr,r as a subgraph should be the only reason why Theorem 1.1 is tight up to the constant.

Conjecture 1.2 (Conlon–Lee). Let H be a bipartite graph such that in one of the parts all

the degrees are at most r and H does not contain Kr,r as a subgraph. Then there exists some

δ > 0 such that ex(n,H) = O(n2−1/r−δ).

To say more, recall that the k-subdivision of a graph L is the graph obtained by replacing
the edges of L by internally disjoint paths of length k + 1. We shall write Lk for the k-
subdivision of L and L′ for the 1-subdivision. It is easy to see that any C4-free bipartite
graph in which every vertex in one part has degree at most two is a subgraph of K ′

t for some
positive integer t. Conlon and Lee [5] verified their conjecture in the r = 2 case by proving
the following result.

Theorem 1.3 (Conlon–Lee). For any integer t ≥ 3, ex(n,K ′
t) = O(n3/2−1/6t).

Our first result gives some small progress towards Conjecture 1.2 when r > 2.

Theorem 1.4. Let H be a bipartite graph such that in one of the parts all the degrees are

at most r and H does not contain C4 as a subgraph. Then ex(n,H) = o(n2−1/r).

The proof of this result relies on ideas of Janzer [14], who found a simpler proof of
Theorem 1.3 with much improved bounds. Since K ′

3 = C6 and ex(n,C6) = Θ(n4/3), this
result is tight up to the implied constant for t = 3 and it is plausible that it is also tight for
all other t.

Theorem 1.5 (Janzer). For any integer t ≥ 3, ex(n,K ′
t) = O(n3/2− 1

4t−6 ).

Improving another result of Conlon and Lee [5], Janzer [14] also obtained the following
bound for the extremal number of K ′

s,t, the 1-subdivision of Ks,t.

Theorem 1.6 (Janzer). For any integers 2 ≤ s ≤ t, ex(n,K ′
s,t) = O(n3/2− 1

4s−2 ).

This theme was again taken up in a recent paper of Kang, Kim and Liu [18], where they
made the following conjecture about the 1-subdivision of a general bipartite graph.

Conjecture 1.7 (Kang–Kim–Liu). Let H be a bipartite graph. If ex(n,H) = O(n1+α) for

some α > 0, then ex(n,H ′) = O(n1+α
2 ).

In particular, as ex(n,Ks,t) = O(n2− 1
s ), they conjectured that ex(n,K ′

s,t) = O(n3/2− 1
2s ),

though they were only able to push their methods to give an alternative proof of Theorem 1.6.
Our next result is a proof of this latter conjecture.

Theorem 1.8. For any integers 2 ≤ s ≤ t, ex(n,K ′
s,t) = O(n3/2− 1

2s ).

Moreover, this result is tight when t is sufficiently large compared to s.

Corollary 1.9. For any integer s ≥ 2, there exists some t0 = t0(s) such that if t ≥ t0, then

ex(n,K ′
s,t) = Θ(n3/2− 1

2s ).

We now turn to another central conjecture in extremal graph theory. Following Kang,
Kim and Liu [18], we say that r ∈ (1, 2) is realisable (by H) if there exists a graph H such
that ex(n,H) = Θ(nr). The rational exponents conjecture of Erdős and Simonovits (see, for
example, [8]) states that every rational between 1 and 2 is realisable.

Conjecture 1.10 (Rational exponents conjecture). For every rational number r ∈ (1, 2),
there exists a graph H with ex(n,H) = Θ(nr).
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In a recent breakthrough, Bukh and Conlon [3] have proved that for any rational number
r ∈ (1, 2) there exists a finite family H of graphs such that ex(n,H) = Θ(nr), where ex(n,H)
denotes the maximal number of edges in an n-vertex graph which does not contain any
H ∈ H as a subgraph.

However, Conjecture 1.10 remains wide open. In fact, until very recently only a few
realisable numbers were known, namely, 1 + 1

m and 2 − 1
m for m ≥ 2. We have already

seen how the exponents 2− 1/m arise from complete bipartite graphs. The exponent 1 + 1
m

is realisable by the theta graph θm,ℓ consisting of ℓ internally disjoint paths of length m
between two vertices, with the upper bound being due to Faudree and Simonovits [10] and
the matching lower bound for ℓ sufficiently large due to Conlon [4].

Just a few months ago, Jiang, Ma and Yepremyan [16] enlarged the class of realisable
exponents by proving that 7/5 and 2 − 2

2m−1 for m ≥ 2 are also realisable. Subsequently,
Kang, Kim and Liu [18] proved that for each a, b ∈ N with a < b and b ≡ ±1 (mod a), the
number 2 − a

b is realisable, a result which then included all known examples of realisable
exponents. Their main result was a tight upper bound on the extremal number of certain
graphs from which the result just mentioned for b ≡ −1 (mod a) follows fairly easily. We
now define this family of graphs.

Consider a graph F with a set R ( V (F ) of root vertices. The ℓ-blowup of this rooted
graph is the graph obtained by taking ℓ vertex-disjoint copies of F and identifying the
different copies of v for each v ∈ R. We let Hs,1(r) be the graph consisting of vertices xi
(1 ≤ i ≤ r − 1), y, zj (1 ≤ j ≤ s) and wj,k (1 ≤ j ≤ s, 1 ≤ k ≤ r− 1) and edges xiy for all i,
yzj for all j and zjwj,k for all j, k. Then Hs,t(r) is the rooted t-blowup of Hs,1(r), with the
roots being {xi : 1 ≤ i ≤ r − 1} ∪ {wj,k : 1 ≤ j ≤ s, 1 ≤ k ≤ r − 1}. For a picture, we refer
the reader to Figure 1, where the root vertices are marked by rectangular boxes. The result
of Kang, Kim and Liu [18, Lemma 3.2] is now as follows.

Theorem 1.11 (Kang–Kim–Liu). For any integers s, t ≥ 1 and r ≥ 2, ex(n,Hs,t(r)) =

O(n
2− s+1

r(s+1)−1 ).

In Section 5, we give a new proof of this result which is significantly shorter than the
original one. Combined with results of Bukh and Conlon [3], Theorem 1.11 easily implies
that 2 − s+1

r(s+1)−1 is realisable for every s ≥ 1, r ≥ 2. Therefore, following Kang, Kim and

Liu, we see that 2 − 1
r is a limit point of the set of realisable exponents for every integer

r ≥ 2.
To go further, we define Ls,t(k) to be the graph which is the (k − 1)-subdivision of Ks,t

with an extra vertex joined to all vertices in the part of size t. Put differently, this graph is
the rooted t-blowup of Ls,1(k), where Ls,1(k) has vertices u, v, wi,j (1 ≤ i ≤ k, 1 ≤ j ≤ s) and
edges uv, vw1,j (1 ≤ j ≤ s), wi,jwi+1,j (1 ≤ i ≤ k−1, 1 ≤ j ≤ s), with roots u,wk,1, . . . , wk,s.
We refer the reader to Figure 1 for an illustration, where again the root vertices are marked
by rectangular boxes. We have the following result.

Theorem 1.12. For any integers s, t, k ≥ 1, ex(n,Ls,t(k)) = O(n1+ s
sk+1 ).

This result has several interesting corollaries. The first is a complete resolution of Problem
5.2 from [18].

Corollary 1.13. For any integers s, k ≥ 1, there exists some t0 = t0(s, k) such that if t ≥ t0,

then ex(n,Ls,t(k)) = Θ(n1+ s
sk+1 ). In particular, the exponent 1 + 1/k is a limit point of the

set of realisable numbers.

Recall that Hk denotes the k-subdivision of the graph H. Building on work of Kostochka
and Pyber [21] and Jiang [15], Jiang and Seiver [17] gave an upper bound for the extremal
number of the k-subdivision of a graph.
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Figure 1: Hs,1(r) and Ls,1(k)

Theorem 1.14 (Jiang–Seiver). Let k ≥ 2 be an even integer and let H be a graph. Then

ex(n,Hk−1) = O(n1+16/k).

Conlon and Lee [5] have conjectured that the following strengthening should hold.

Conjecture 1.15 (Conlon–Lee). Let k ≥ 2 be an even integer and let H be a graph. Then

there exists some δ > 0 such that ex(n,Hk−1) = O(n1+1/k−δ).

Our Theorem 1.12 establishes this conjecture for bipartite H.

Theorem 1.16. For any integers s, t, k ≥ 1, ex(n,Kk−1
s,t ) = O(n1+ s

sk+1 ). In particular, for

any bipartite graph H, there exists δ > 0 such that ex(n,Hk−1) = O(n1+1/k−δ).

Proof. Kk−1
s,t is a subgraph of Ls,t(k).

This is nearly tight, as the next proposition shows.

Proposition 1.17. For any integers s, k ≥ 1, there exists some t0 = t0(s, k) such that if

t ≥ t0, then ex(n,Kk−1
s,t ) = Ω(n1+ s−1

sk ).

Even for subdivisions of general graphs, we obtain a large improvement on Theorem 1.14.

Theorem 1.18. Let k ≥ 2 be an even integer and let H be a graph. Then there exists some

δ > 0 such that ex(n,Hk−1) = O(n1+2/k−δ).

Proof. We have Hk−1 = (H1)k/2−1. But H1 is bipartite, so Theorem 1.16 applies.

The rest of the paper is organised as follows. In Section 2, we present some preliminary
lemmas that will be used in the proofs. Then, in Section 3, we prove Theorem 1.4. We
prove Theorem 1.8 and Corollary 1.9 in Section 4. In Section 5, we give our new proof
of Theorem 1.11, while Section 6 contains the proofs of Theorem 1.12, Corollary 1.13 and
Proposition 1.17. We conclude with some further remarks and questions.

2 Preliminaries

A common feature of our proofs is that we first assume our host graph is sufficiently regular.
Let us say that a graph G is K-almost-regular if maxv∈V (G) deg(v) ≤ Kminv∈V (G) deg(v).
The reason why we may assume that our graph is almost regular is the following result of
Jiang and Seiver [17], which is a slight modification of a much earlier result of Erdős and
Simonovits [9].
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Lemma 2.1 (Jiang–Seiver). Let ε, c be positive reals, where ε < 1 and c ≥ 1. Let n be a

positive integer that is sufficiently large as a function of ε. Let G be a graph on n vertices with

e(G) ≥ cn1+ε. Then G contains a K-almost regular subgraph Greg on m ≥ n
ε−ε2

2+2ε vertices

such that e(Greg) ≥
2c
5 m

1+ε and K = 20 · 2
1
ε2

+1
.

In Section 3, we will need a version of this lemma where c can be smaller than 1.

Lemma 2.2. Let ε, c be positive reals, where ε < 1. Let n be a positive integer that is

sufficiently large as a function of ε and c. Let G be a graph on n vertices with e(G) ≥

cn1+ε. Then G contains a K-almost regular subgraph Greg on m ≥ n
ε−ε2

4+4ε vertices such that

e(Greg) ≥
2c
5 m

1+ε and K = 20 · 2
1
ε2

+1
.

The proof of this is the same as the proof of Lemma 2.1 with one straightforward modi-
fication. Nevertheless, we include it here for completeness. Note that here and throughout
logarithms will be understood to be base two.

Proof. For convenience, we will drop all floor and ceiling signs, noting that doing so does
not affect the analysis in an essential way. Let ε, c be positive reals, where ε < 1. Let n be a
positive integer sufficiently large as a function of ε and c. Let G be a graph on n vertices with

e(G) ≥ cn1+ε. Set p = 2
1
ε2

+1. We partition V (G) into 2p almost equal parts B1, . . . , B2p,
where B1 consists of n

2p vertices of the highest degrees in G.

Suppose first that at most c
2n

1+ε edges of G are incident to B1. We say that G is of
type 1. Let H = G \ B1. Then e(H) ≥ c

2n
1+ε. Successively remove vertices of degree

less than c
10n

ε from H until we get stuck. Denote the remaining subgraph by Greg. Let
m = |V (Greg)|. Since at most c

10n
ε · n = c

10n
1+ε edges were removed in the deletion process,

we have e(Greg) ≥
4c
10n

1+ε ≥ 2c
5 m

1+ε. Moreover, δ(Greg) ≥
c
10n

ε by construction. Note now
that dG(x) ≥ ∆(Greg) for all x ∈ B1 and also

∑

x∈B1
dG(x) ≤ cn1+ε, since at most c

2n
1+ε

edges of G are incident to B1. Therefore, ∆(Greg)(n/2p) ≤
∑

x∈B1
dG(x) ≤ cn1+ε, from

which we get ∆(Greg) ≤ 2pcnε. Thus, ∆(Greg)/δ(Greg) ≤ 2pcnε/ c
10n

ε = 20p. So Greg is
K-almost-regular. Since

m ≥ 2e(Greg)/∆(Greg) ≥
4c

5
n1+ε/2pcnε =

2

5p
n ≥ n

ε−ε2

4+4ε

for large n, the lemma holds in this case.
Suppose now that more than c

2n
1+ε edges of G are incident to B1. We say that G is of

type 2. By averaging, for some j ∈ {2, . . . , 2p}, the subgraph G1 of G induced by B1 ∪ Bj

has more than 1
2p

c
2n

1+ε = c
4pn

1+ε edges. Let n1 = |V (G1)|. Then n1 = n/p. Note that

cn1+ε
1 = c(np )

1+ε = c
pn

1+ε 1
pε ≤ c

4pn
1+ε, using that pε = 2(

1
ε2

+1)ε ≥ 4. So e(G1) ≥ cn1+ε
1 .

We can now replace G with G1 and repeat the analysis. If G1 is of type 1, we terminate.
If G1 is of type 2, we define G2 from G1 in the same way we defined G1 from G. We continue
like this as long as the new graph Gi is of type 2. We terminate when Gi is of type 1
for the first time. With G0 = G, let k be the smallest i such that Gi is of type 1. Then
|V (Gk)| =

n
pk

and e(Gk) ≥ c
(4p)k

n1+ε. Since e(Gk) ≤ |V (Gk)|
2, we have c

(4p)k
n1+ε ≤ n2

p2k
.

Thus, (p4 )
k ≤ n1−ε

c ≤ n
1−ε+ ε(1−ε)2

2(1+ε2) as n is sufficiently large, so k ≤
(

1− ε+ ε(1−ε)2

2(1+ε2)

)

logn
log(p/4) .

Since nk := |V (Gk)| = n/pk, log nk = log n− k log p ≥
(

1−
(

1− ε+ ε(1−ε)2

2(1+ε2)

)

log p
log(p/4)

)

log n.

Plugging in p = 2
1
ε2

+1, we get

log nk ≥

(

1−

(

1− ε+
ε(1− ε)2

2(1 + ε2)

) 1
ε2 + 1
1
ε2

− 1

)

log n =
ε− ε2

2 + 2ε
log n

5



and, therefore, nk ≥ n
ε−ε2

2+2ε . Since Gk is of type 1, our earlier arguments imply that it

contains a subgraph Greg on m vertices, where m ≥ 2
5pnk ≥ n

ε−ε2

4+4ε for large n. Furthermore,

e(Greg) ≥
2c
5 m

1+ε and Greg is K-almost-regular, as required.

We will in fact need a version of this lemma which gives an almost-regular bipartite
subgraph. We say that a bipartite graph G with bipartition A ∪ B is balanced if 1

2 |B| ≤
|A| ≤ 2|B|. The proof of the following lemma is almost identical to the proof of Lemma 2.3
in [5] and is therefore omitted.

Lemma 2.3. Let ε, c be positive reals, where ε < 1. Let n be a positive integer that is

sufficiently large as a function of ε and c. Let G be a graph on n vertices with e(G) ≥ cn1+ε.

Then G contains a K-almost regular balanced bipartite subgraph Gbip on m ≥ n
ε−ε2

4+4ε vertices

such that e(Gbip) ≥
c
10m

1+ε and K = 60 · 2
1
ε2

+1
.

The main focus of this paper is on proving upper bounds for extremal numbers. However,
in many cases we can use a result of Bukh and Conlon [3] to show that there is a matching
lower bound. To say more, suppose that F is a graph with a set of roots R ( V (F ). For any
non-empty S ⊂ V (F )\R, let eS be the number of edges in F adjacent to S. Set ρF (S) =

eS
|S|

and ρ(F ) = ρF (V (F )\R). We say that (F,R) (or F if R is clear) is balanced if ρ(F ) ≤ ρF (S)
holds for every non-empty S ⊂ V (F ) \R. Let us write ℓ ∗ F for the ℓ-blowup of the rooted
graph F , as defined in Section 1. The result of Bukh and Conlon is now as follows.

Lemma 2.4 (Bukh–Conlon). Let F be a balanced bipartite rooted graph with ρ(F ) > 0.

Then there is some ℓ0 ∈ N such that, for every ℓ ≥ ℓ0, ex(n, ℓ ∗ F ) = Ω(n
2− 1

ρ(F ) ).

The notation we use in the remaining sections is mostly standard. For a graph G and
v ∈ V (G), we write NG(v) (or N(v) if G is clear) for the neighbourhood of v in G. We
also write dG(v) or d(v) for the degree of v. Finally, if u1, . . . , ur ∈ V (G), then we write
dG(u1, . . . , ur) = d(u1, . . . , ur) = |NG(u1) ∩ · · · ∩NG(ur)|.

3 C4-free bipartite graphs with max degree r on one side

In this section, we prove Theorem 1.4. In order to prove this theorem, we may clearly assume
that all the degrees in one part of H are exactly r. Then Lemma 2.3 reduces Theorem 1.4
to the following statement.

Theorem 3.1. Let r ≥ 2 be an integer, let K ≥ 1 be fixed and let H be a bipartite graph

such that in one of the parts all the degrees are exactly r and H does not contain C4 as a

subgraph. Then, for any constant c > 0, there exists n0 such that if n ≥ n0 and G is a

K-almost-regular balanced bipartite graph with bipartition A ∪ B, |B| = n, and minimum

degree δ ≥ cn1−1/r, then G contains a copy of H.

We will need the following generalisation of a simple lemma from [5].

Lemma 3.2. Let r ≥ 2 be an integer and let G be a bipartite graph with bipartition A ∪B,

|B| = n, and minimum degree at least δ on the vertices in A. Then, for any subset U ⊂ A
with |U | ≥ rn

δ ,

∑

u1...ur∈(Ur)

d(u1, . . . , ur) ≥
δr

rrnr−1
|U |r ≥

δr

rrnr−1

(

|U |

r

)

.

6



Proof. Writing dU (v) for |NG(v) ∩ U |, we have that

∑

u1...ur∈(Ur)

d(u1, . . . , ur) =
∑

b∈B

(

dU (b)

r

)

≥ n

(∑

b∈B dU (b)/n

r

)

= n

(∑

u∈U d(u)/n

r

)

≥ n

(

δ|U |/n

r

)

≥ n
(δ|U |

rn

)r
=

δr

rrnr−1
|U |r,

where the first inequality follows from the convexity of
(

x
r

)

and in the last inequality we used
that |U | ≥ rn

δ .

Given a bipartite graph G with bipartition A ∪ B, the neighbourhood r-graph is the
weighted r-uniform hypergraph WG on vertex set A where the weight of the hyperedge
u1 . . . ur (for u1, . . . , ur distinct) is d(u1, . . . , ur). For a subset U ⊂ A, we write W (U) for the
total weight in U , i.e., W (U) =

∑

u1...ur∈(Ur)
d(u1, . . . , ur). In this language, the conclusion

of Lemma 3.2 is that W (U) ≥ δr

rrnr−1

(

|U |
r

)

.
In the next definition, for a weighted r-graph W on vertex set A and u1, . . . , ur ∈ A, we

write W (u1, . . . , ur) for the weight of the hyperedge u1 . . . ur. Moreover, in what follows we
fix r ≥ 2 and a bipartite graph H with the property that in one part all the degrees are
exactly r. Let h = |V (H)|.

Definition 3.3. Let W be a weighted r-graph on vertex set A and let u1, . . . , ur ∈ A be
distinct. We say that u1 . . . ur is a light edge if 1 ≤ W (u1, . . . , ur) <

(

h
r

)

and that it is a

heavy edge if W (u1, . . . , ur) ≥
(h
r

)

.

Note that if there is a K
(r)
h in WG formed by heavy edges, then clearly there is a copy of

H in G. This observation is an important ingredient in our next lemma.

Lemma 3.4. Let G be an H-free bipartite graph with bipartition A∪B, |B| = n, and suppose

that W (A) ≥ 2hrn. Then the number of light edges in WG is at least
W (A)
2h2r .

Proof. Suppose B = {b1, . . . , bn}. Let ki = |NG(bi)| and suppose that ki ≥ h for some i.

As G is H-free, there is no K
(r)
h in W [NG(bi)] formed by heavy edges. Since ex(t,K

(r)
h ) ≤

(1− 1/
(h
r

)

)
(t
r

)

holds for t ≥ h, the number of light edges in W [NG(bi)] is at least
(kir )
(hr)

. But

∑

i:ki<h

(

ki
r

)

< hrn ≤
W (A)

2
,

so

∑

i:ki≥h

(

ki
r

)

≥
W (A)

2
.

Since every light edge is present in at most
(h
r

)

of the sets NG(bi), it follows that the total
number of light edges is at least

1
(h
r

)

∑

i:ki≥h

(

ki
r

)

(h
r

) ≥
W (A)

2h2r
,

as required.
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Corollary 3.5. Let G be an H-free bipartite graph with bipartition A ∪ B, |B| = n, and
minimum degree at least δ on the vertices in A. Then, for any subset U ⊂ A with |U | ≥ 2hrn

δ ,

the number of light edges in WG[U ] is at least δr

2h2rrrnr−1

(|U |
r

)

.

Proof. By Lemma 3.2, we have W (U) ≥ δr

rrnr−1 |U |r ≥ 2rhrn. Hence, the result follows by
applying Lemma 3.4 to the graph G[U ∪B].

We now recall Definition 5 from [19].

Definition 3.6. An r-uniform hypergraph G = (V,E) is (ρ, d)-dense if, for any subset U ⊂ V
of size |U | ≥ ρ|V |, eG(U) ≥ d

(|U |
r

)

.

Recall also that a linear hypergraph is a hypergraph where any two edges intersect in at
most one vertex. The following result follows from Theorem 7 in [19].

Theorem 3.7 (Kohayakawa–Nagle–Rödl–Schacht). Let L be a linear r-uniform hypergraph

on ℓ vertices. Then, for every d > 0, there exist ρ = ρ(L, d) > 0, ε = ε(L, d) > 0 and

n0 = n0(L, d) such that every (ρ, d)-dense r-uniform hypergraph G = (V,E) on n ≥ n0

vertices contains at least ε|V |ℓ copies of L.

We are now in a position to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. We may assume that δ ≤ n1−1/2r, as we already know that
ex(n,H) = O(n2−1/r). Suppose that G is H-free. Define G to be the r-uniform (sim-
ple) hypergraph whose vertex set is A and whose edges are precisely the light edges of WG.
By Corollary 3.5, for any U ⊂ A with |U | ≥ 2hrn

δ , we have

eG(U) ≥
δr

2h2rrrnr−1

(

|U |

r

)

≥
cr

2h2rrr

(

|U |

r

)

.

Suppose H has bipartition X ∪Y with every vertex in Y having degree r. Define L to be the
r-uniform hypergraph whose vertex set is X and whose edges are the neighbourhoods NH(y)
for y ∈ Y . Since H does not contain a C4, it follows that L is linear. Let d = cr

2h2rrr and
choose ρ > 0, ε > 0 and n0 as in the conclusion of Theorem 3.7. Note that for n sufficiently
large, we have 2hrn

δ < ρ|A|, so G is (ρ, d)-dense and consequently contains at least ε|A||X|

copies of L. All these copies of L provide homomorphic copies of H in G. To see this,
suppose that we have a copy of L in G. We map the vertices of X to the vertices of A so
that the copy of L in X maps isomorphically onto the copy of L in G. Call this map f .
To complete the embedding, for each y ∈ Y , we map y to a vertex in the neighbourhood of
f(NH(y)). Note that this neighbourhood is non-empty because NH(y) is an edge of L and
each such edge was mapped under f to an edge of G, which, by definition, has a non-empty
neighbourhood. However, some of the resulting copies of H may be degenerate in the sense
that distinct vertices in Y may be mapped to the same vertex in B.

We now give an upper bound for the number of degenerate copies of H, counting only
those copies that were obtained by the method above. Any such degenerate copy must
contain some u ∈ B and v1, . . . , vr+1 ∈ NG(u) with v1 . . . vr a light edge in WG. The number
of possible choices for such a configuration is at most (2n)r ·

(h
r

)

· Kδ, since we can choose

v1, . . . , vr in at most (2n)r ways (since |A| ≤ 2n), then we can choose u in at most
(

h
r

)

ways (since v1 . . . vr is a light edge) and, finally, we can choose vr+1 in at most Kδ ways
(since ∆(G) ≤ Kδ). But the number of ways to extend this to a copy of H is at most

(2n)|X|−r−1 ·
(h
r

)(|X|
r ), because we can map those vertices in X that have not been mapped in

at most (2n)|X|−r−1 ways and, given any choice for the images of X, there are at most
(h
r

)

possible choices for the image of each y ∈ Y , since we are only counting those copies of H in
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which NH(y) is mapped to a light edge. Thus, of the ε|A||X| copies of H that we found, at

most
(h
r

)(|X|
r )+1

Kδ(2n)|X|−1 are degenerate. Since δ ≤ n1−1/2r and |A| ≥ n/2, for sufficiently
large n we obtain a non-degenerate copy of H.

4 The 1-subdivision of Ks,t

In this section, we prove Theorem 1.8 and Corollary 1.9. By Lemma 2.3, Theorem 1.8 reduces
to the following.

Theorem 4.1. Let 2 ≤ s ≤ t be fixed integers and let K ≥ 1 be a constant. Suppose that G
is a balanced bipartite graph with bipartition A∪B, |B| = n, such that G is K-almost-regular

with minimum degree δ = ω(n1/2− 1
2s ). Then, for n sufficiently large, G contains a copy

of K ′
s,t.

Note that the assumption that δ = ω(n1/2− 1
2s ) is purely for notational convenience.

The proof goes through in exactly the same way when we replace this assumption with
δ ≥ Cn1/2− 1

2s for a sufficiently large constant C, but using ω allows us to ignore how this
constant changes at each step. We will use a similar convention in the following sections.

In what follows, let 2 ≤ s ≤ t be fixed integers and K ≥ 1 a constant. Given a bipartite
graph G with bipartition A ∪ B, we write WG for the neighbourhood graph of G on vertex
set A. Recall from Section 3 that this is the weighted graph where the weight W (u, v) of
the pair uv is dG(u, v). For distinct u, v ∈ A, we say that uv is a light edge (in WG) if
1 ≤ W (u, v) <

(s+t
2

)

and a heavy edge if W (u, v) ≥
(s+t

2

)

.
Let us first give a rough sketch of the proof of Theorem 4.1. Note that any Ks,t in the

neighbourhood graph WG yields a homomorphic copy of K ′
s,t in G. However, it may be a

degenerate copy. Nevertheless, the first step is to find many copies of Ks,t in WG. By the

degree conditions, the total weight in WG is ω(n2− 1
s ), so if WG was a simple graph rather

than a weighted graph, we could find ω(ns) copies of Ks,t. Thus, we first prove that there

are ω(n2− 1
s ) pairs in A which determine an edge (of arbitrary positive weight) in WG.

Once we have established this, we run the usual proof for finding a Ks,t, namely, we
double count the number of s-stars in the graph WG (or, more precisely, in the simple graph
obtained by replacing each edge of WG by a simple edge). On average, a set of size s will
have a common neighbourhood of size ω(1). This provides us with ω(ns) copies of Ks,t in
WG. We then argue that if all of these yield degenerate copies of K ′

s,t in G, then some
degenerate copies can be patched together to find an s-set S with abnormally large common
neighbourhood. More precisely, there is an s-set S ⊂ NG(b) for some b ∈ B with common
neighbourhood of size ω(δ) in WG, which is very large compared to the typical size ω(1) of
the common neighbourhood of an s-set. It is then fairly easy to use this property to show
that there must be a Ks,t in WG (with the part of order s being equal to S) that gives a
non-degenerate copy of K ′

s,t in G.

For distinct vertices u1, . . . , us ∈ A, we write N ′
W (u1, . . . , us) for the set of those x ∈ A

which are distinct from all ui and for which there exist distinct b1, . . . , bs ∈ B such that
bi ∈ NG(ui) ∩ NG(x) for all i. Informally, the xui are edges in WG coming from distinct
elements of B. We also write d′W (u1, . . . , us) = |N ′

W (u1, . . . , us)|.
Roughly speaking, the next lemma gives a lower bound on the number of s-stars in the

graph WG, as promised in the sketch above.

Lemma 4.2. Let G be a K ′
s,t-free balanced bipartite graph with bipartition A ∪B, |B| = n,

such that G is K-almost-regular with minimum degree δ = ω(n1/2− 1
2s ). Then

∑

d′W (u1, · · · , us) = Ω(nδ2s),

9



where the sum is taken over all choices of distinct u1, . . . , us ∈ A.

In the proof of this lemma, we make use of the following result, which is an easy conse-
quence of Lemma 10 from [14].

Lemma 4.3. Let G be a K ′
s,t-free bipartite graph with bipartition A∪B, |B| = n, and suppose

that W (A) ≥ 8(s+ t+ 1)2n. Then the number of light edges in WG is at least
W (A)

4(s+t+1)3
.

Since the total weight of edges in WG is at least n
(δ
2

)

, we have the following corollary.

Corollary 4.4. Let G be a K ′
s,t-free bipartite graph with bipartition A ∪ B, |B| = n, such

that G is K-almost-regular with minimum degree δ = ω(n1/2− 1
2s ). Then the number of light

edges in WG is at least
n(δ2)

4(s+t+1)3 .

Proof of Lemma 4.2. The proof proceeds by double counting the number of (s+1)-tuples
(x, u1, . . . , us) ∈ As+1 with the following properties:

(i) Each xui is a light edge in WG.

(ii) For any i 6= j, we have NG(x) ∩NG(ui) ∩NG(uj) = ∅.

In particular, ui and uj, i 6= j, are distinct, since otherwise (i) and (ii) contradict one another.
Note also that if these properties are satisfied, then x ∈ N ′

W (u1, . . . , us). In fact, the same
conclusion holds even if (i) does not require the edges to be light.

For any x ∈ A, let d1(x) be the number of light edges adjacent to x in WG. Then, by
Corollary 4.4, we have

∑

x∈A d1(x) = Ω(nδ2). The number of (s + 1)-tuples (x, u1, . . . , us)

satisfying (i) is
∑

x∈A d1(x)
s ≥ |A|

(∑
x∈A d1(x)

|A|

)s
= Ω(nδ2s). But, of all these (s + 1)-

tuples, there are at most s2 · 2n · (Kδ) · (Kδ)2 · (K2δ2)s−2 that do not satisfy (ii). This
is because, for a fixed i, j, at most 2n · (Kδ) · (Kδ)2 · (K2δ2)s−2 choices violate (ii), since
there are at most 2n ways to choose x, then at most Kδ ways to choose an element to be in
NG(x) ∩ NG(ui) ∩ NG(uj) and, given any such choice, there are at most (Kδ)2 choices for
ui and uj . Finally, there are at most (Kδ)2 choices for every other uk since the degree of x
in WG is at most (Kδ)2. Therefore, the total number of (s+ 1)-tuples satisfying (i) but not
(ii) is O(nδ2s−1), completing the proof.

We now derive some consequences of the graph being K ′
s,t-free.

Lemma 4.5. Let G be a K ′
s,t-free bipartite graph with bipartition A ∪ B. Suppose that for

some distinct u1, . . . , us ∈ A, d′W (u1, . . . , us) = ω(1). Then there exist b ∈ B, 1 ≤ k ≤ s and

a subset X ⊂ N ′
W (u1, . . . , us) consisting of at least

d′W (u1,...,us)

2s2t
elements such that X∪{uk} ⊂

NG(b).

Proof. Pick a maximal subset Y = {y1, . . . , yr} ⊂ N ′
W (u1, . . . , us) with the property that

there exist distinct cij ∈ B with cij ∈ NG(ui) ∩ NG(yj) for all 1 ≤ i ≤ s, 1 ≤ j ≤ r. Since
G is K ′

s,t-free, it follows that r < t. For any x ∈ N ′
W (u1, . . . , us) \ Y , there exist distinct

bi ∈ B for 1 ≤ i ≤ s such that bi ∈ NG(x) ∩ NG(ui). By the maximality of Y , there exist
some c(x) ∈ {cij : 1 ≤ i ≤ s, 1 ≤ j ≤ r} and 1 ≤ k(x) ≤ s such that bk(x) = c(x). By the
pigeonhole principle, there exist 1 ≤ k ≤ s and b ∈ {cij : 1 ≤ i ≤ s, 1 ≤ j ≤ r} such that for

at least
|N ′

W (u1,...,us)\Y |

s2r
choices of x ∈ N ′

W (u1, . . . , us) \ Y we have k(x) = k and bk(x) = b.
This choice for b and k satisfies the conclusion of the lemma.

In the next result, R(s, s+ t) denotes the usual Ramsey number.
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Corollary 4.6. Let G be a K ′
s,t-free bipartite graph with bipartition A ∪ B. Suppose that

for some distinct u1, . . . , us ∈ A, d′W (u1, . . . , us) = ω(1). Then there exist b ∈ B, 1 ≤ k ≤ s
and Ω(d′W (u1, . . . , us)

s) s-sets {x1, . . . , xs} ⊂ N ′
W (u1, . . . , us) such that {x1, . . . , xs}∪{uk} ⊂

NG(b) and no xixj is a heavy edge.

Proof. Choose b ∈ B, 1 ≤ k ≤ s andX ⊂ N ′
W (u1, . . . , us) as in the conclusion of Lemma 4.5.

Since G is K ′
s,t-free, there is no Ks+t in WG formed by heavy edges. Thus, in each subset of

size R(s, s+ t) in X, there exists an s-set which does not span any heavy edge. By averaging
over all subsets of X of size R(s, s + t), it follows that the number of s-sets in X which do
not span any heavy edge is at least

1
( |X|−s
R(s,s+t)−s

)

(

|X|

R(s, s+ t)

)

=
1

(R(s,s+t)
s

)
·

(

|X|

s

)

.

Since |X| ≥ d′W (u1, . . . , us)/2s
2t, the RHS above is Ω(d′W (u1, . . . , us)

s).

With these results in hand, we are ready to conclude the proof of Theorem 4.1.

Proof of Theorem 4.1. Suppose that G does not contain a copy of K ′
s,t.

Claim. There exist distinct x1, . . . , xs ∈ A such that no xixj is heavy and the number of
u ∈ A with NG(xi) ∩NG(u) 6= ∅ for all i is ω(δ).

Proof of Claim. Since δ = ω(n1/2− 1
2s ), it follows that nδ2s = ω(ns). Choose a sequence

f(n) = ω(1) with nδ2s = ω(nsf(n)). Then, by Lemma 4.2, we have
∑

d′W (u1, . . . , us) =
Ω(nδ2s), where the sum is over distinct u1, . . . , us ∈ A with d′W (u1, . . . , us) ≥ f(n). Now, by
Corollary 4.6, for each such u1, . . . , us, there exist b ∈ B, 1 ≤ k ≤ s and Ω(d′W (u1, . . . , us)

s)
s-sets {x1, . . . , xs} ⊂ N ′

W (u1, . . . , us) such that {x1, . . . , xs} ∪ {uk} ⊂ NG(b) and no xixj
is a heavy edge. It follows by Jensen’s inequality that there are Ω(ns(nδ

2s

ns )s) 2s-tuples
(x1, . . . , xs, u1, . . . , us) ∈ A2s with the following properties:

(i) All xi and uj are distinct.

(ii) There exist b ∈ B and k ∈ {1, . . . , s} such that {x1, . . . , xs} ∪ {uk} ⊂ NG(b).

(iii) For each i, j, NG(xi) ∩NG(uj) 6= ∅.

(iv) No xixj determines a heavy edge in WG.

Note that ns(nδ
2s

ns )s = ω(nδ2s), as s > 1. However, there are at most s · n · (Kδ)s+1 ways to
choose k, b, x1, . . . , xs, uk such that property (ii) holds. Thus, for at least one such choice,

there are ω( nδ2s

nδs+1 ) = ω(δs−1) ways to extend to a suitable 2s-tuple. The corresponding
x1, . . . , xs then satisfy the required conclusion.

Now take such x1, . . . , xs ∈ A. Since no xixj is heavy, we have |∪i<j (NG(xi)∩NG(xj))| =
O(1), so the number of u ∈ A such that there are 1 ≤ i < j ≤ s with NG(xi) ∩ NG(xj) ∩
NG(u) 6= ∅ is O(δ). Thus, by the claim, there is a set U ⊂ A of ω(δ) vertices, distinct from
x1, . . . , xs, such that for each u ∈ U , there are distinct b1, . . . , bs ∈ B with bi ∈ NG(xi)∩NG(u)
for all i. Take a maximal subset U ′ = {u1, . . . , ur} ⊂ U such that there exist distinct
cij ∈ NG(xi) ∩NG(uj) for all 1 ≤ i ≤ s, 1 ≤ j ≤ r. If r ≥ t, then there is a K ′

s,t in G, so we
have r < t. For any v ∈ U \U ′, there exist distinct bi ∈ NG(xi)∩NG(v). By the maximality
of U ′, we must have bi = cjk for some i, j, k. Therefore, v ∈ ∪1≤j≤s,1≤k≤rNG(cjk). So
U \U ′ ⊂ ∪1≤j≤s,1≤k≤rNG(cjk). But then |U | < t+ st ·Kδ, which contradicts |U | = ω(δ).

Given Theorem 1.8, it is not hard to deduce Corollary 1.9. Indeed, note that K ′
s,t is the

rooted t-blowup of K ′
s,1 with the roots being the s leaves. This rooted graph is balanced

and bipartite with ρ(K ′
s,1) =

2s
s+1 , so Lemma 2.4 gives that ex(n,K ′

s,t) = Ω(n2− s+1
2s ) when t

is sufficiently large compared to s. Combining this with Theorem 1.8, Corollary 1.9 follows.
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5 A short proof of a result of Kang, Kim and Liu

Recall that Hs,1(r) is the graph consisting of vertices xi (1 ≤ i ≤ r − 1), y, zj (1 ≤ j ≤ s)
and wj,k (1 ≤ j ≤ s, 1 ≤ k ≤ r − 1) and edges xiy for all i, yzj for all j and zjwj,k for all
j, k. Moreover, Hs,t(r) is the rooted t-blowup of Hs,1(r), with the roots being {xi : 1 ≤ i ≤
r − 1} ∪ {wj,k : 1 ≤ j ≤ s, 1 ≤ k ≤ r − 1}.

In this section, we prove Theorem 1.11. By Lemma 2.1, it suffices to prove the following.

Theorem 5.1. Let s, t ≥ 1 and r ≥ 2 be fixed integers and K ≥ 1 a constant. Suppose that

G is a K-almost-regular graph on n vertices with minimum degree δ = ω(n
1− s+1

r(s+1)−1 ). Then,

for n sufficiently large, G contains a copy of Hs,t(r).

In what follows, let s, t ≥ 1 and r ≥ 2 be fixed integers and let K ≥ 1 be a constant. Let
H = Hs,t(r). The constant L will be chosen suitably in terms of s, t, r and K, while n will
always be sufficiently large in terms of s, t, r, K and L. As a shorthand, we will now write
dG(S) for the size of the common neighbourhood NG(S) of a set S.

Definition 5.2. An r-set S ⊂ V (G) is called an r-edge if dG(S) > 0. The weight of S
is dG(S). S is called a light r-edge if 1 ≤ dG(S) ≤ L and a heavy r-edge if dG(S) > L.

Lemma 5.3. Let G be an H-free K-almost-regular graph on n vertices with minimum degree

δ = ω(n1− 1
r−1 ). Then the total weight on heavy r-edges is at most an fL-proportion of the

total weight of r-edges, where fL → 0 as L → ∞.

Proof. First note that for any r − 1 distinct vertices x1, . . . , xr−1, we cannot have m =
ms,t,r = t + s(r − 1) vertices in N(x1) ∩ · · · ∩ N(xr−1) such that any r of them form an
edge of weight at least c = cs,t,r = |V (H)|, since then we could find a copy of H. Indeed,
if there are vertices yi for 1 ≤ i ≤ t and wj,k for 1 ≤ j ≤ s, 1 ≤ k ≤ r − 1 such that
NG({yi, wj,1, . . . , wj,r−1}) contains at least c elements for every i, j, then we can choose an
element zi,j from each of these sets such that all the xi, yj, zk,ℓ and wa,b are distinct, yielding a
copy ofH. Thus, as long as |N(x1)∩· · ·∩N(xr−1)| ≥ m, we have that in N(x1)∩· · ·∩N(xr−1)
the proportion of those r-sets with weight at most c is at least η = ηs,t,r = 1/

(m
r

)

. Since each
r-set in NG({x1, . . . , xr−1}) is clearly an r-edge, it follows that the total number of r-edges
of weight at most c is at least

1
( c
r−1

) · η ·
∑

x1...xr−1∈(V (G)
r−1 )

dG(x1,...,xr−1)≥m

(

dG(x1, . . . , xr−1)

r

)

, (1)

where we used the fact that an r-tuple of weight at most c is in at most
( c
r−1

)

of the sets
NG({x1, . . . , xr−1}). Note now that

∑

x1...xr−1∈(V (G)
r−1 )

dG(x1, . . . , xr−1) ≥ n

(

δ

r − 1

)

= Ω(nδr−1).

Therefore, on average dG(x1, . . . , xr−1) is Ω(n(δ/n)r−1) = ω(1), so, by Jensen’s inequality,
we have

∑

x1...xr−1∈(V (G)
r−1 )

(

dG(x1, . . . , xr−1)

r

)

≥ 2

(

|V (G)|

r − 1

)(

m

r

)

≥ 2
∑

x1...xr−1∈(V (G)
r−1 )

dG(x1,...,xr−1)<m

(

dG(x1, . . . , xr−1)

r

)

.
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Thus, together with (1), the total number of r-edges of weight at most c (and, therefore, the
total weight of r-edges) is at least

1

2
·

1
( c
r−1

) · η ·
∑

x1...xr−1∈(V (G)
r−1 )

(

dG(x1, . . . , xr−1)

r

)

. (2)

On the other hand, the total weight on r-edges of weight at least L is at most

L
( L
r−1

) ·
∑

x1...xr−1∈(V (G)
r−1 )

(

dG(x1, . . . , xr−1)

r

)

, (3)

since an r-edge of weight w is in
(

w
r−1

)

of the sets NG({x1, . . . , xr−1}) and w/
(

w
r−1

)

is a non-

increasing function of w. If r ≥ 3, then L/
( L
r−1

)

→ 0 as L → ∞ and, hence, the proportion
of weight on heavy edges tends to 0 as L tends to infinity.

In the r = 2 case, (3) does not help us, so we take a slightly different approach. For a
constant ε > 0, let ξ = εη

2c . If N(x1) contains more than ξ
(

d(x1)
2

)

pairs of weight at least c,
then, for n sufficiently large, there exists a copy of H. Indeed, the vertex x1 together with a
copy of Ks,t in N(x1) formed by edges of weight at least c easily extend to a nondegenerate
copy of H. Thus, for large enough n and L = c, the total weight on edges of weight at least
L is at most

ξ ·
∑

x∈V (G)

(

dG(x)

2

)

,

which is at most ε times (2).

We remark that we in fact proved a slightly stronger statement than Lemma 5.3. Indeed,
the proof remains valid even if we replace H by the supergraph obtained by adding additional
edges between the xi’s and wj,k’s, since we embedded all wj,k into NG({x1, . . . , xr−1}).

The following definition and lemma contain the key idea in our proof. Note that we
continue to abuse notation slightly by referring to the vertices of Hs,t(r) and their embedded
images in another graph G by the same labels.

Definition 5.4. An embedding of Hs,1(r) in a graph G is good if the r-sets {x1, . . . , xr−1, zi}
and {y,wi,1, . . . , wi,r−1} are light in G for every 1 ≤ i ≤ s.

Lemma 5.5. Let G be an H-free K-almost-regular graph on n vertices with minimum de-

gree δ = ω(n1− 1
r−1 ). Then, for L sufficiently large, the number of good embeddings of Hs,1(r)

in G is at least 1
2nδ

sr+r−1.

Proof. The total weight on r-edges in G is equal to the number of r-stars, which is at most
n(Kδ)r as ∆(G) ≤ Kδ. Thus, Lemma 5.3 implies that the number of r-stars whose leaf set
is heavy is at most cLnδ

r, where cL → 0 as L → ∞.
Since Hs,1(r) is a tree on sr+r vertices and every vertex in G has degree at least δ, there

are at least (1−o(1))nδsr+r−1 copies ofHs,1(r) inG. By the first paragraph, {x1, . . . , xr−1, z1}
is heavy in at most rcLnδ

r(Kδ)sr−1 of them. Indeed, there are at most (Kδ)sr−1 ways to
extend a fixed choice of x1, . . . , xr−1, y, z1, since Hs,1(r) is connected and every vertex in G
has degree at most Kδ. The factor r accounts for the fact that knowing the vertex set
{x1, . . . , xr−1, y, z1} of the r-star leaves r possibilities for z1. The same holds for the other
r-sets {x1, . . . , xr−1, zi} and {y,wi,1, . . . , wi,r−1}, so the number of copies of Hs,1(r) which
are not suitable is at most 2s · rcLnδ

r(Kδ)sr−1 = 2rscLK
sr−1nδsr+r−1. Since cL → 0 as

L → ∞, the result follows.

We are now in a position to prove Theorem 5.1.
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Proof of Theorem 5.1. By Lemma 5.5 and averaging, for sufficiently large L there ex-
ist xi (1 ≤ i ≤ r − 1) and wj,k (1 ≤ j ≤ s, 1 ≤ k ≤ r − 1) which extend to at least
Ω(n1−(r−1)−s(r−1)δsr+r−1) = ω(1) good embeddings of Hs,1(r). Take a maximal set M of
such extensions which are vertex-disjoint apart from the roots. If M consists of at least t
copies of Hs,1(r), then their union forms a copy of Hs,t(r).

Suppose instead thatM consists of at most t−1 extensions. Then any other extension has
a non-root vertex which coincides with one of the non-root vertices of some M ∈ M. Since
there are O(1) non-root vertices in the graphs M ∈ M and O(1) vertices in Hs,1(r), there
must exist some non-root vertex of Hs,1(r) that is mapped to the same vertex in ω(1) of the
good embeddings of Hs,1(r) that extend xi (1 ≤ i ≤ r−1) and wj,k (1 ≤ j ≤ s, 1 ≤ k ≤ r−1).

Suppose first that y is mapped to the same vertex in the ω(1) good copies of Hs,1(r).
Since {y,wj,1, . . . , wj,r−1} is light for every j, this leaves at most O(1) possibilities for
each zj , which contradicts the fact that our choice of y, xi and wj,k extend to ω(1) copies
of Hs,1(r). Similarly, suppose that some zj is mapped to the same vertex in ω(1) copies.
Since {x1, . . . , xr−1, zj} is light, this allows only O(1) possibilities for y, which also leads to
a contradiction.

6 Longer subdivisions of Ks,t

Recall that Ls,t(k) is the (k−1)-subdivision of Ks,t with an extra vertex joined to all vertices
in the part of size t. This graph is the rooted t-blowup of Ls,1(k), where Ls,1(k) has vertices
u, v, wi,j (1 ≤ i ≤ k, 1 ≤ j ≤ s) and edges uv, vw1,j (1 ≤ j ≤ s), wi,jwi+1,j (1 ≤ i ≤ k − 1,
1 ≤ j ≤ s), with roots u,wk,1, . . . , wk,s.

In this section, we prove Theorem 1.12 and Corollary 1.13. By Lemma 2.1, Theorem 1.12
reduces to the following.

Theorem 6.1. Let s, t, k ≥ 1 be fixed integers and let K ≥ 1 be a constant. Suppose that G
is a K-almost-regular graph on n vertices with minimum degree δ = ω(n

s
sk+1 ). Then, for n

sufficiently large, G contains a copy of Ls,t(k).

In what follows, let s, t, k be fixed positive integers and let K ≥ 1 be a constant. Let
H = Ls,t(k). As before, L will be a constant to be determined in terms of s, t, k and K,
while n will be sufficiently large compared to s, t, k, K and L.

Definition 6.2. Let L be a positive integer. Define the function f(ℓ, L) for 1 ≤ ℓ ≤ k
recursively by setting f(1, L) = L and, for 2 ≤ ℓ ≤ k,

f(ℓ, L) = 1 + f(ℓ− 1, L)16(ℓ− 1)2 max
1≤i≤ℓ−1

f(i, L)f(ℓ− i, L).

Given this notation, we recursively define the notions of admissible and good paths of length

ℓ in a graph. Any path of length 1 is both admissible and good. For 2 ≤ ℓ ≤ k, we say a path
P = v0v1 . . . vℓ is admissible if every proper subpath of P is good, i.e., vivi+1 . . . vj is good
for every (i, j) 6= (0, ℓ). A path P is good if it is admissible and the number of admissible
paths of length ℓ between v0 and vℓ is at most f(ℓ, L). In particular, a good path of length 2
connects two end vertices with at most 1+L18 common neighbours, which essentially means
that the end vertices form a light edge in the sense of the definition given in Section 4 with
suitably chosen parameters.

The function f(ℓ, L) was defined so that the following lemma holds.

Lemma 6.3. If a path P = v0 . . . vℓ is admissible, but not good, then there exist at least

f(ℓ− 1, L)16 pairwise internally vertex-disjoint admissible paths of length ℓ from v0 to vℓ.
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Proof. Choose a maximal set of pairwise internally vertex-disjoint admissible paths of length
ℓ from v0 to vℓ. Call them Q1, . . . , Qr and assume that r < f(ℓ− 1, L)16. Every admissible
path of length ℓ from v0 to vℓ meets one of the paths Q1, . . . , Qr at some vertex other than
v0 and vℓ. But P is not good, so there are at least f(ℓ, L) such paths. By the pigeonhole
principle, it follows that there exist a vertex w and some 1 ≤ i ≤ ℓ − 1 such that there
are at least f(ℓ,L)

f(ℓ−1,L)16(ℓ−1)2
admissible paths x0x1 . . . xℓ with x0 = v0, xi = w, xℓ = vℓ. But

f(ℓ,L)
f(ℓ−1,L)16(ℓ−1)2 > f(i, L)f(ℓ−i, L), so either there are more than f(i, L) good paths of length

i from v0 to w or there are more than f(ℓ− i, L) good paths of length ℓ− i from w to vℓ. In
either case we contradict the definition of a good path.

Theorem 6.1 will follow fairly easily from the next lemma, which says that for large
enough L only a small proportion of all paths of length k are not good.

Lemma 6.4. Let G be an H-free K-almost-regular graph on n vertices with minimum degree

δ = ω(1). Then the number of paths of length k which are not good is at most cLnδ
k, where

cL → 0 as L → ∞.

Using this result, we may prove the analogue of Lemma 5.5 for this setting.

Lemma 6.5. Let G be an H-free K-almost-regular graph on n vertices with minimum degree

δ = ω(1). Then, for L sufficiently large, the number of copies of Ls,1(k) for which the paths

uvw1,j . . . wk−1,j and vw1,j . . . wk,j with 1 ≤ j ≤ s are all good is at least 1
2nδ

sk+1.

Proof. Since Ls,1(k) is a tree on sk + 2 vertices and every vertex in G has degree at
least δ, there are at least (1 − o(1))nδsk+1 copies of Ls,1(k) in G. By Lemma 6.4, at
most 2cLnδ

k(Kδ)(s−1)k+1 of them contain not good paths labelled by uvw1,1 . . . wk−1,1. In-
deed, there are at most (Kδ)(s−1)k+1 ways to extend a fixed choice of u, v, w1,1, . . . , wk−1,1,
since Ls,1(k) is connected and every vertex in G has degree at most Kδ. The factor 2
accounts for the fact that knowing the path uvw1,1 . . . , wk−1,1 leaves two possibilities for
(u, v, w1,1, . . . , wk−1,1). The same holds for the other paths, so the number of copies of
Ls,1(k) which are not suitable is at most 2s · 2cLnδ

k(Kδ)(s−1)k+1 = 4scLK
(s−1)k+1nδsk+1.

Since cL → 0 as L → ∞, the result follows.

Before proving Lemma 6.4, we show how to conclude the proof of Theorem 6.1.

Proof of Theorem 6.1. Suppose for contradiction that G is H-free. By Lemma 6.5, if L
is sufficiently large, then there are distinct vertices u,wk,1, . . . , wk,s such that the number of
ways to extend them to a copy of Ls,1(k) in G is at least 1

ns+1 · 1
2nδ

sk+1 = ω(1). Suppose
that no t of these are pairwise vertex-disjoint apart from the roots u,wk,1, . . . , wk,s. Then,
as in the proof of Theorem 5.1, either v or some wi,j (1 ≤ i ≤ k − 1, 1 ≤ j ≤ s) is mapped
to the same vertex at least ω(1) times.

Suppose first that it is v. Then, since vw1,j . . . wk,j is good for each j, it follows that in
these copies of Ls,1(k), each tuple (w1,j , . . . , wk−1,j) can take at most f(k, L) = O(1) values,
which contradicts the assumption that our choice of u, v and wk,j extend to ω(1) copies
of Ls,1(k). Suppose now that some wi,j (1 ≤ i ≤ k − 1, 1 ≤ j ≤ s) is mapped to the same
vertex ω(1) times. Then, since uvw1,j . . . wi,j is a good path, there are only O(1) possibilities
for v. However, as we have just seen, once u, v, wk,1, . . . , wk,s are fixed, there are only O(1)
ways to extend them to a copy of Ls,1(k). Hence, the fixed embedding of u, wk,1, . . . , wk,s

and wi,j only extends to O(1) copies of Ls,1(k), which is again a contradiction. Thus, there
must be at least t copies of Ls,1(k) extending u,wk,1, . . . , wk,s which are vertex-disjoint apart
from the roots. That is, G contains a copy of Ls,t(k).

It remains to prove Lemma 6.4. We will need the following definition.
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Definition 6.6. A pair of distinct vertices {x, y} in G is said to be ℓ-bad for some 2 ≤ ℓ ≤ k
if there are at least f(ℓ− 1, L)16 internally vertex-disjoint admissible paths of length ℓ from
x to y. In particular, Lemma 6.3 implies that if there is an admissible, but not good, path
of length ℓ from x to y, then {x, y} is ℓ-bad.

In what follows, for v ∈ V (G), we shall write Γi(v) for the set of vertices u ∈ V (G) for
which there exists a path of length i from v to u. The next lemma will be used to show
that in an H-free graph there cannot be many bad pairs between N(v) = Γ1(v) and Γℓ−1(v).
We will take a suitable X ⊂ N(v), Y = Γℓ−1(v) and repeatedly apply the lemma to obtain
subdivided t-stars. At the end, we piece these together to form a copy of H. To make sure
that this is nondegenerate, the set Z of vertices that we have already used will be avoided.

Lemma 6.7. Let 2 ≤ ℓ ≤ k and 1 ≤ i ≤ ℓ. Let G be a K-almost-regular graph on n
vertices with minimum degree δ = ω(1). Let X,Y,Z ⊂ V (G) be such that |X| = ω(1), |Z| ≤

L1/10, |Y | ≥ δℓ−1

f(ℓ−1,L)2
and, for any x ∈ X, the number of y ∈ Y such that (x, y) is ℓ-bad is as

at least
|Y |

f(ℓ−1,L)2
. Then, provided that L is sufficiently large compared to k, t and K, there

exist an (i− 1)-subdivided t-star in G, disjoint from Z, whose leaves form a set R ⊂ Y , and

a subset X ′ ⊂ X such that |X ′| = ω(1) and (x′, r) is ℓ-bad for every x′ ∈ X ′ and r ∈ R.

Proof. First note that we may assume X∩Z = ∅. Let Y ′ be the set of those y ∈ Y for which
the number of x ∈ X such that (x, y) is ℓ-bad is at least |X|

2f(ℓ−1,L)2
. Then |Y ′| ≥ |Y |

2f(ℓ−1,L)2
and

the number of (x, y) ∈ X×Y ′ which are ℓ-bad is at least |X||Y ′|
2f(ℓ−1,L)2

≥ |X||Y |
4f(ℓ−1,L)4

≥ |X|δℓ−1

4f(ℓ−1,L)6
.

Thus, there are at least |X|δℓ−1

4f(ℓ−1,L)6
· f(ℓ − 1, L)16 ≥ |X|f(ℓ − 1, L)9δℓ−1 paths of length ℓ

starting in X and ending in Y ′. In particular, there exists some x∗ ∈ X such that there are
at least f(ℓ− 1, L)9δℓ−1 paths starting at x∗ and ending in Y ′.

The number of such paths intersecting Z is at most |Z|ℓ(Kδ)ℓ−1. Indeed, there are at most
|Z| choices for the element of Z in the path, at most ℓ choices for its position in the path and,
given a fixed choice for these, at most (Kδ)ℓ−1 choices for the other ℓ−1 vertices in the path.
(Note that as X ∩Z = ∅, the vertex in Z is not x∗.) But |Z|ℓ(Kδ)ℓ−1 ≤ L1/10ℓKℓ−1δℓ−1, so,
for L sufficiently large, using the fact that f(ℓ− 1, L) ≥ L, there are at least f(ℓ− 1, L)8δℓ−1

paths of length ℓ starting at x∗ and ending in Y ′ that avoid Z. Moreover, there are at
most (Kδ)ℓ−i different initial segments of length ℓ− i for these paths, so, by the pigeonhole

principle, there exist f(ℓ−1,L)8δi−1

Kℓ−i of them which start with the same ℓ− i edges. It follows

that there exists some u ∈ Γℓ−i(x
∗) such that there are at least f(ℓ−1,L)8δi−1

Kℓ−i paths of length
i from u to Y ′, all disjoint from Z.

Take now a maximal set of such paths which are pairwise vertex-disjoint apart from at u.
We claim that there are at least f(ℓ − 1, L)7 such paths. Suppose otherwise. Then all the
f(ℓ−1,L)8δi−1

Kℓ−i paths of length i from u to Y ′ intersect a certain set of size at most if(ℓ−1, L)7

not containing u. But there are at most (if(ℓ − 1, L)7) · i · (Kδ)i−1 such paths, which is a
contradiction for L sufficiently large.

So we have r ≥ f(ℓ− 1, L)7 paths P1, . . . , Pr of length i from u to Y ′ which are pairwise
vertex-disjoint except at u and avoid Z. Let the endpoints of these paths be y1, . . . , yr.
Since yj ∈ Y ′ for all j, the number of pairs (x, yj) with x ∈ X which are ℓ-bad is at least

r|X|
2f(ℓ−1,L)2

. Therefore, by Jensen’s inequality, on average an x ∈ X has at least
(r/2f(ℓ−1,L)2

t

)

t-sets {yj1 , . . . , yjt} such that all (x, yjq) are ℓ-bad. Since
(

r/2f(ℓ−1,L)2

t

)

≥ ( 1
4f(ℓ−1,L)2

)t
(

r
t

)

,

there exists a t-set {yj1 , . . . , yjt} ⊂ {y1, . . . , yr} such that the set

X ′ = {x ∈ X : (x, yjq) is ℓ-bad for all 1 ≤ q ≤ t}

has size at least |X|/(4f(ℓ − 1, L)2)t = ω(1). We can now take R = {yj1 , . . . , yjt} and the
union of the paths Pj1 , . . . , Pjt is a suitable (i− 1)-subdivided t-star.
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We now iterate Lemma 6.7, as promised, to find a copy of H.

Lemma 6.8. Let G be an H-free K-almost-regular graph on n vertices with minimum de-

gree δ = ω(1). Then, provided that L is sufficiently large compared to s, t, k and K, for

any 2 ≤ ℓ ≤ k and any v ∈ V (G), the number of admissible, but not good, paths of the form

v0vv2v3 . . . vℓ is at most
2(Kδ)ℓ

f(ℓ−1,L) .

Proof. Suppose otherwise. Let Y = Γℓ−1(v). Suppose first that |Y | < δℓ−1

f(ℓ−1,L)2
. Note that

if the path v0vv2 . . . vℓ is admissible, then vv2 . . . vℓ is good, so the number of admissible paths
of length ℓ − 1 from v to vℓ is at most f(ℓ − 1, L). Hence, the number of admissible paths
uvv2 . . . vℓ is at most f(ℓ− 1, L) for any fixed u and vℓ. But then the number of admissible

paths of the form v0vv2 . . . vℓ is at most |N(v)||Y |f(ℓ − 1, L) < Kδ δℓ−1

f(ℓ−1,L)2
f(ℓ − 1, L) <

2(Kδ)ℓ

f(ℓ−1,L) , which contradicts our assumption.

We may therefore assume that |Y | ≥ δℓ−1

f(ℓ−1,L)2
. For any x ∈ N(v) and any y ∈ Y , the

number of admissible paths of the form xvv2 . . . vℓ−1y is again at most f(ℓ−1, L). Moreover,
by assumption, the number of pairs (x, y) ∈ N(v)× Y such that there is an admissible, but

not good, path of the form xvv2 . . . vℓ−1y is at least 2(Kδ)ℓ

f(ℓ−1,L)2 ≥ 2|N(v)||Y |
f(ℓ−1,L)2 . Recall that any

such pair (x, y) is ℓ-bad. Let X = {x ∈ N(v) : there are at least |Y |
f(ℓ−1,L)2

choices of y ∈

Y for which (x, y) is ℓ-bad}. Then |X| ≥ |N(v)|
f(ℓ−1,L)2

≥ δ
f(ℓ−1,L)2

= ω(1).

Our aim now is to find a copy of H in G, which will yield a contradiction. Consider first
the case ℓ = k. By Lemma 6.7 with Z = {v}, there exists a set X ′ ⊂ X of size ω(1) and
a set R1 ⊂ Y of size t such that v 6∈ R1 and (x, y) is ℓ-bad for any x ∈ X ′ and y ∈ R1.
Note that this uses Lemma 6.7 in a rather weak sense since we do not need the subdivided
star provided by the lemma, only its leaves. Now applying Lemma 6.7 with Z = R1 ∪ {v}
and with X ′ in place of X, we find a set X ′′ ⊂ X ′ of size ω(1) and a set R2 ⊂ Y of size t,
disjoint from R1 ∪ {v} such that (x, y) is ℓ-bad for any x ∈ X ′′ and y ∈ R2. Continuing like
this, with a total of ⌈st ⌉ applications of Lemma 6.7, we can find a set Xfinal ⊂ X of size ω(1)
and a set U = R1 ∪ R2 ∪ · · · ∪ R⌈s/t⌉ ⊂ Y with |U | ≥ s such that Xfinal and U are disjoint
and do not contain v and, moreover, (x, y) is ℓ-bad for any x ∈ Xfinal and y ∈ U . Choose
distinct vertices x1, . . . , xt ∈ Xfinal and y1, . . . , ys ∈ U . Since (xi, yj) is ℓ-bad for every i, j,
if L is sufficiently large, we can find pairwise internally vertex-disjoint paths of length ℓ = k
joining xi to yj for every i, j and we can insist that these paths do not contain v. The union
of these paths forms a copy of Kk−1

s,t . Together with the vertex v and the edges vx1, . . . , vxt,
we get a copy of H.

Now assume that ℓ < k. Write k = jℓ+ i with 1 ≤ i ≤ ℓ. Note that i < k. Assume first
that j is odd. As in the case ℓ = k, by repeated application of Lemma 6.7, we can find a
set Xfinal ⊂ X of size ω(1), (i− 1)-subdivided t-stars T1, . . . , Ts with leaf sets Y1, . . . , Ys ⊂ Y
and a set U ⊂ Y with |U | = |V (H)| such that the sets Xfinal, V (T1), . . . , V (Ts), U are
pairwise disjoint and do not contain v and, moreover, (x, y) is ℓ-bad for any x ∈ Xfinal and
y ∈ Y1 ∪ · · · ∪ Ys ∪ U .

At this point, we recall the definition of H. It is the t-blowup of the rooted tree Ls,1(k)
with vertices z, w0, w1,1, . . . , w1,s, w2,1, . . . , w2,s, . . . , wk,1, . . . , wk,s, roots z, wk,1, . . . , wk,s and
edges zw0, w0w1,b (1 ≤ b ≤ s) and wa,bwa+1,b (1 ≤ a ≤ k − 1, 1 ≤ b ≤ s). Let us see how
we can find H in G. The (i− 1)-subdivided t-star T1 will take the role of the blowup of the
path wk−i,1wk−i+1,1 . . . wk,1. More generally, Tb (1 ≤ b ≤ s) will take the role of the blowup
of the path wk−i,bwk−i+1,b . . . wk,b. Also, v will take the role of z. Furthermore, the roles of
the blown-up copies of waℓ,b for a odd (1 ≤ a < j, 1 ≤ b ≤ s) will be taken by vertices in
U in an arbitrary injective manner and the roles of the blown-up copies of w0 and waℓ,b for
a even (2 ≤ a < j, 1 ≤ b ≤ s) will be taken by vertices in Xfinal in an arbitrary injective
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Figure 2: The embedding of H = Ls,t(k) in the case s = 2, t = 3, k = 7, ℓ = 2. The graph
with the blue edges is Ls,1(k), which is blown up t times to give H.
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manner. It remains to define the vertices that correspond to the blown-up copies of wc,b with
1 ≤ c ≤ jℓ − 1, 1 ≤ b ≤ s and c not divisible by ℓ. For a vertex u in Ls,1(k), let up denote
the pth blownup copy of u. The vertices wp

aℓ,b, w
p
(a+1)ℓ,b (1 ≤ p ≤ t, 0 ≤ a ≤ j − 1, 1 ≤ b ≤ s,

where w0,b = w0) are embedded in G in a way that one is in Xfinal and the other is in
Y1 ∪ · · · ∪ Ys ∪ U , so the pair (wp

aℓ,b, w
p
(a+1)ℓ,b) is ℓ-bad in the embedding. Therefore, we

may join these pairs by paths of length ℓ, all disjoint from each other and from the previous
vertices, yielding a nondegenerate copy of H. See Figure 2, which illustrates the embedding
in the case s = 2, t = 3, k = 7, ℓ = 2.

The case where j is even is very similar. The only difference is that we also need a t-star
with leaf set Q ⊂ Y , which is disjoint from all other sets and such that (x, q) is ℓ-bad for all
x ∈ Xfinal, q ∈ Q. The existence of such a set again follows from Lemma 6.7. Then the role
of the blowup of the edge zw0 is taken by this t-star and the blown-up copies of waℓ,b are
chosen from Xfinal for 1 ≤ a < j odd and from U for 2 ≤ a < j even.

Corollary 6.9. Let G be an H-free K-almost-regular graph on n vertices with minimum

degree δ = ω(1). Then, provided that L is sufficiently large compared to s, t, k and K, for

any 2 ≤ ℓ ≤ k, the number of admissible, but not good, paths of length ℓ is at most n 2(Kδ)ℓ

f(ℓ−1,L) .

It is now easy to deduce Lemma 6.4.

Proof of Lemma 6.4. Suppose that the path u0u1 . . . uk is not good. Take 0 ≤ i < j ≤ k
with j − i minimal such that uiui+1 . . . uj is not good. Then ui . . . uj is admissible. For any

fixed i, j, by Corollary 6.9, the number of such paths is at most n 2(Kδ)j−i

f(j−i−1,L) · 2(Kδ)k−(j−i) =

4Kk

f(j−i−1,L)nδ
k ≤ 4Kk

L nδk. Using that i and j can take at most k + 1 values each, it follows

that the number of not good paths of length k is at most (k + 1)2 4Kk

L nδk ≤ cLnδ
k, where

cL → 0 as L → ∞.

Given Theorem 1.12, it is not hard to deduce Corollary 1.13. Recall that Ls,t(k) is the
rooted t-blowup of Ls,1(k) with the roots defined as before. This rooted graph is balanced and

bipartite with ρ(Ls,1(k)) = sk+1
s(k−1)+1 , so Lemma 2.4 gives that ex(n,Ls,t(k)) = Ω(n1+ s

sk+1 )
when t is sufficiently large in terms of s and k. Combining this with Theorem 1.12, Corollary
1.13 follows.

For Proposition 1.17, note that Kk−1
s,t is the rooted t-blowup of Kk−1

s,1 with the roots being

the leaves of Kk−1
s,1 . This rooted graph is balanced and bipartite with ρ(Kk−1

s,1 ) = sk
s(k−1)+1 .

Thus, Lemma 2.4 implies that ex(n,Kk−1
s,t ) = Ω(n1+ s−1

sk ) when t is sufficiently large in terms
of s and k, as required.

7 Concluding remarks

More realisable numbers. Following Kang, Kim and Liu [18], we say that a number
r ∈ (1, 2) is balancedly realisable by a graph F if there is a balanced connected rooted graph
F and a positive integer ℓ0 such that ρ(F ) = 1

2−r and, for every ℓ ≥ ℓ0, the rooted ℓ-blowup
of F has extremal number Θ(nr). In their paper, Kang, Kim and Liu applied an old result
of Erdős and Simonovits [9] to prove the following useful lemma.

Lemma 7.1 (Kang–Kim–Liu). If a and b are positive integers with b > a and 2 − a
b is

balancedly realisable, then 2− a
a+b is also balancedly realisable.

Repeated applications of this lemma starting from the result [4,10] that 1+ 1
a+1 = 2− a

a+1 is
balancedly realisable for all a then allowed them to show that 2− a

b is balancedly realisable
for all b ≡ 1 (mod a). Applying the same reasoning starting from our Corollary 1.13 easily
allows us to derive the following result.
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Corollary 7.2. For any integers s, k, p ≥ 1, the exponent 2− sk+1
p(sk+1)+s is balancedly realis-

able. In particular, taking the limit as s → ∞ implies that, for any positive integers b > a
with b ≡ 1 (mod a), the exponent 2− a

b is a limit point of the set of realisable numbers.

Subdivisions of complete bipartite graphs. Several interesting questions remain about
subdivisions of complete bipartite graphs. One that immediately arises from Theorem 1.8
and Corollary 1.9 is the following.

Problem 7.3. For any integer s ≥ 2, estimate the smallest t such that ex(n,K ′
s,t) =

Ω(n3/2− 1
2s ).

For the analogous question with Ks,t instead of K ′
s,t, it has been conjectured [22] that

ex(n,Ks,t) = Ω(n2− 1
s ) for all t ≥ s, though this is only known for s = 2 or 3 (see, for

instance, [13]). The s = 2 case of Problem 7.3 amounts to estimating the extremal number
of the theta graph θ4,t. Here it is known [23] that ex(n, θ4,3) = Ω(n1+1/4). Deriving a similar
bound for ex(n, θ4,2) is likely to be difficult, as it would solve the famous open problem of
estimating ex(n,C8). However, the next case, when s = 3, now seems an attractive candidate
for further exploration.

Another pressing question is to improve the bound for ex(n,Kk−1
s,t ) given in Theorem 1.16

so that it meets the lower bound given in Proposition 1.17. This seems to be a good test case
for developing methods that could help to resolve the full rational exponents conjecture.

Conjecture 7.4. For any integers s, t, k ≥ 1, ex(n,Kk−1
s,t ) = O(n1+ s−1

sk ).

Hypergraph subdivisions. Given a hypergraph H, its subdivision H′ is defined to be the
bipartite graph between V (H) and E(H) where we join v ∈ V (H) and e ∈ E(H) if and only
if v ∈ e. In this language, Theorem 1.4 may be rephrased as saying that the subdivision L′

of an r-uniform linear hypergraph L satisfies ex(n,L′) = o(n2−1/r). This is a special case of
the following conjecture, itself a rather weak variant of Conjecture 1.2.

Conjecture 7.5. For any r-uniform hypergraph H, ex(n,H′) = o(n2−1/r).

At present, we know this conjecture when H = K
(r)
r+1, when H is r-partite [5] and, now, when

H is linear. The methods of Section 3 also apply to some other hypergraphs for which the
analogue of Theorem 3.7 holds. However, in full generality, the conjecture seems to lie well
beyond our current methods, so any further progress would be extremely welcome.

Acknowledgements. We would like to thank the anonymous referees for their careful
reviews.
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