Mononuclear Fe(I) and Fe(II) Acetylene Adducts and Their Reductive Protonation to Terminal Fe(IV) and Fe(V) Carbynes

Cooper Citek, Paul H. Oyala, Jonas C. Peters*
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

Abstract

The activity of nitrogenase enzymes, which catalyze the conversion of atmospheric dinitrogen to bioavailable ammonia, is most commonly assayed by the reduction of acetylene gas to ethylene. Despite the practical importance of acetylene as a substrate, little is known concerning its binding or activation in the iron-rich active site. “Fischer–Tropsch” type coupling of non-native C\textsubscript{1} substrates to higher-order C\textsubscript{\geq 2} products is also known for nitrogenase, though potential metal–carbon multiply bonded intermediates remain underexplored. Here we report the activation of acetylene gas at a mononuclear tris(phosphino)-silyl-iron center, (SiP\textsubscript{3})Fe, to give Fe(I) and Fe(II) side-on adducts, including \(S = 1/2\) \(\text{Fe}^{III}(\eta^2\text{HCCH})\); the latter is characterized by pulse EPR spectroscopy and DFT calculations. Reductive protonation reactions with these compounds converge at stable examples of unusual, formally iron(IV) and iron(V) carbyne complexes, as in diamagnetic \((\text{SiP}_3)\text{Fe}≡\text{CCH}_3\) and the paramagnetic cation \(S = 1/2\) \([(\text{SiP}_3)\text{Fe}≡\text{CCH}_3]^+\). Both alkylcarbyne compounds possess short Fe–C triple bonds (approximately 1.7 Å) trans to the anchoring silane. Pulse EPR experiments, X-band ENDOR and HYSCORE, reveal delocalization of the iron-based spin onto the \(\alpha\)-carbyne nucleus in carbon p-orbitals. Furthermore, isotropic coupling of the distal \(\beta\)-CH\textsubscript{3} protons with iron indicates hyperconjugation with the spin/hole character on the Fe≡CCH\textsubscript{3} unit. The electronic structures of (SiP\textsubscript{3})Fe≡CCH\textsubscript{3} and \([(\text{SiP}_3)\text{Fe}≡\text{CCH}_3]^+\) are discussed in comparison to previously characterized, but heterosubstituted, iron carbynes, as well as a hypothetical nitride species, (SiP\textsubscript{3})Fe≡N. Such comparisons are germane to the consideration of formally high-valent, multiply bonded \(\text{Fe}≡\text{C}\) and/or \(\text{Fe}≡\text{N}\) intermediates in synthetic or biological catalysis by iron.

Graphical Abstract

*Corresponding Author: jpeters@caltech.edu.
The authors declare no competing financial interest.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b06987.
Procedures and characterization data (PDF)
X-ray data (CIF)
Computational models (TXT)

NOTE ADDED AFTER ASAP PUBLICATION
Due to a production error, Figures 4 and 9 were published incorrectly on September 9, 2019. The corrected version was reposted on September 10, 2019.
INTRODUCTION

Interest in nominally high valent iron nitrides (N3−) and imides (NR2−) has grown in the past 15–20 years,1 and has stemmed from a desire to explore their electronic structures and reactivity patterns, especially as they may pertain to important synthetic and biological transformations. For instance, the intermediacy of an Fe≡N species has been considered in the context of a distal pathway for biological nitrogen fixation by nitrogenase enzymes (Fe –N\textsubscript{2} + 3H+/e− → Fe≡N + NH\textsubscript{3}).2 Relatedly, such an intermediate nitride has been recently characterized within a synthetic iron system that catalyzes N\textsubscript{2}-to-NH\textsubscript{3} conversion.3

Nitrogenase enzymes reduce a range of non-native substrates as well, including azide (N3−), cyanide (CN−), CO, CO\textsubscript{2}, and acetylene (C\textsubscript{2}H\textsubscript{2}).4 Indeed, acetylene reduction to ethylene (C\textsubscript{2}H\textsubscript{4}) is the most convenient and hence most common assay for reductive “nitrogenase” activity.5–7 It is perhaps surprising, therefore, that acetylene complexes of iron, and their associated reactivity patterns, have not been well-studied to date. Noting this gap, we undertook a study of the reactivity of acetylene with an iron system supported by a tripodal phosphine ligand, in part for comparison with related studies we and others had undertaken in the context of N\textsubscript{2} chemistry. As a result, we uncovered an unexpectedly rich reactivity profile that links acetylene binding at iron(I) to the ultimate generation of nominally high-valent (+4 and +5) iron carbynes via reductive protonation steps. While these transformations do not appear to model the reactivity profile of acetylene reduction by nitrogenase, they are nevertheless fascinating.

Until recently, iron carbynes of any type had little synthetic precedent.8–12 Reductive activation of CO and CN− at iron recently led to examples of heteroatom-substituted (i.e., Fischer-type) iron carbynes.10,11 By contrast, the alkylcarbynes featured herein (FeIV≡CCH\textsubscript{3} and [FeV≡CCH\textsubscript{3}]+) are unique in that they are not substituted by heteroatoms. In a broader context, iron complexes featuring strong iron-to-carbon multiple bonds are of continuing interest, especially as they may pertain to intermediates in “Fischer–Tropsch” type C–C coupling pathways exhibited by nitrogenase enzymes in the presence of non-native CO, CO\textsubscript{2}, and CN− substrates.4

Herein, we describe the following:
The first well-characterized complexes featuring \(\text{C}_2\text{H}_2 \) bound to a single iron center are described, in the formal +1 and +2 oxidation states (i.e., Fe\(^{\text{I}(\text{C}_2\text{H}_2)} \) and Fe\(^{\text{II}(\text{C}_2\text{H}_2)+} \)); the iron(I) derivative is \(S = 1/2 \), and pulse EPR data confirm \(\eta_2 \) side-on coordination.

Well-characterized examples of Fe\(^{\text{IV}≡\text{CCH}_3} \) and Fe\(^{\text{V}≡\text{CCH}_3+} \) carbynes are presented, including their solid-state X-ray crystal structures and \(^{57}\text{Fe} \) Mössbauer spectra. The Fe\(^{\text{V}≡\text{CCH}_3+} \) species is \(S = 1/2 \) and pulse EPR spectroscopy is used to additionally map its electronic structure.

Mechanistic studies indicate the Fe\(^{\text{I}(\text{C}_2\text{H}_2)} \) species undergoes initial C–H activation, followed by bimolecular H\(_2\) loss, to generate a terminal Fe\(^{\text{II}≡\text{CH}} \), which can also be independently prepared. The Fe\(^{\text{V}≡\text{CCH}_3+} \) species is most conveniently accessed by reductive protonation steps from Fe\(^{\text{II}≡\text{CH}} \).

The EPR data provided for Fe\(^{\text{I}(\text{C}_2\text{H}_2)} \) and Fe\(^{\text{V}≡\text{CCH}_3+} \) could be of value to mechanistic studies employing related EPR techniques of nitrogenases with \(\text{C}_2\text{H}_2 \), \(^{13}\text{C}_2 \), or to studies of non-native C\(_1\) substrates that lead to Fischer–Tropsch type C–C couplings. 4

RESULTS AND DISCUSSION

Mononuclear Iron-Acetylene Adducts

Figure 1 outlines the entire reaction manifold discussed herein, where a tris(phosphino)silyl-iron subunit (abbreviated herein as “(SiP\(_3\))Fe” or “Fe”) is common to all of the complexes described. To test the affinity of acetylene for an iron(I) center, the previously reported complex (SiP\(_3\))Fe\(^{\text{I}N_2} \) (1) was exposed to acetylene gas. Displacement of N\(_2\) by 1.2 equiv of acetylene occurs slowly at room temperature in THF to give an unobserved acetylene adduct complex, (SiP\(_3\))Fe\(^{\text{I}∧\text{HCCH}} \) (2) (see below for further characterization at low T), that proceeds to the red, terminal acetylide complex (SiP\(_3\))-Fe\(^{\text{II}CCH} \) (3), along with liberation of 0.5 equiv of H\(_2\) (confirmed by GC).

The acetylide complex 3 can alternatively be prepared by stirring a sodium acetylide slurry with (SiP\(_3\))Fe\(^{\text{II}OTf} \) (4) in the presence of tetramethyl ethylenediamine (TMEDA) in 84% yield. The complex has been characterized in solution and the solid state (see Figure 2) as a trigonal bipyramidal \(S = 1 \) iron(II) species featuring the SiP\(_3\) ligand. Complex 3 exhibits a weak C≡C vibration (1902 cm\(^{-1}\)) and a terminal C–H stretch (3277 cm\(^{-1}\)); isotopic labeling with \(^{13}\text{C}_2\)-TMEDA-LiC≡CH (see SI for preparation details) gives \(^{13}\text{C}_2\) (\(\nu_{\text{C≡C}} = 1832 \text{ cm}^{-1} \)) and \(\nu_{\text{C–H}} = 3262 \text{ cm}^{-1} \); \(\Delta \text{C≡C} = 70 \text{ cm}^{-1} \); \(\Delta \text{C–H} = 15 \text{ cm}^{-1} \); Figure S23). Three other terminal iron-acetylide compounds have previously been crystallographically characterized. 14

A thermally stable adduct of acetylene is accessible at the iron(II) state. Accordingly, the light-blue cation [(SiP\(_3\))FeN\(_2\)]-BARF\(_{24}\) (5) 15 (BARF\(_{24}=\text{[B(3–5–(CF}_3\text{)_2-C_6\text{H}_3)_4]^–}\)) reacts with one equivalent of acetylene gas in fluorobenzene at 0 °C to afford green [(SiP\(_3\))Fe(\(\eta^2\)-HCCH)]BARF\(_{24}\) (6) (70% isolated yield). The solid-state X-ray structure of the \(S = 1 \) complex shows the \(\eta^2\)-HCCH ligand bound side-on in the axial position opposite to the silyl anchor (Figure 2). As stated in the introduction, complex 6 is to our knowledge the only

\textit{J Am Chem Soc. Author manuscript; available in PMC 2020 September 25.}
example (other than 2, vide infra) of a well-characterized mononuclear iron complex featuring C2H2 as a ligand.16 Mononuclear adducts of acetylene are highly uncommon for first row metals in general.17 Fe-to-acetylene backbonding in 6 is modest (C≡C bond length of 1.25 Å; cf. 1.20 Å in free acetylene18) and the Fe–P and Fe–Si bond are relatively long, in accord with its S = 1 ground state and side-on accommodation of the acetylene ligand.

Because the acetylene adduct Fe1(η2-HCCH) 2 cannot be observed upon addition of C2H2 to Fe1N2 1 at room temperature (owing to slow ligand substitution kinetics), we sought its characterization via the low temperature reduction of [FeII(η2-HCCH)]+ 6. Thus, addition of stoichiometric cobaltocene (Cp2Co) to an stirred solution of 6 in 2-MeTHF at −125 °C rapidly generates a new orange species that exhibits first order decay above −80 °C to generate the terminal acetylide FeII(CCH)3 (t1/2(−40 °C) ≈ 14 min; monitored by in situ UV–visible spectroscopy; Figure S54).

To more thoroughly characterize Fe1(η2-HCCH) 2, in particular to assess whether alternative “FeCCH2” or “FeIII(H)-(CCH)” isomers might be more appropriate, we undertook continuous wave (CW) and pulse EPR experiments of both the natural abundance and deuterium-labeled isotopologue Fe1(η2-DCCD) at X-band frequency, coupled with DFT studies. The X-band CW EPR spectrum, shown in Figure 3A and 3B, exhibits a g-tensor with rhombic symmetry (g = [2.114, 2.040, 2.007]) with coupling evident to three distinct phosphorus nuclei. Simulation of the data indicates that one of the P-donors is coupled more strongly than the other two (|A(31P)| = [183, 182, 214] MHz; Table 1). These simulated coupling values, and especially the asymmetry with respect to one donor, qualitatively agree with the DFT-predicted 31P hyperfine tensors calculated from an optimized structure of 2 (|A(31P)| = [201, 203, 242] MHz; TPSS/def2-TZVP/D3ZERO; see SI for details).

Complementary X-band electron nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopic data allow for further resolution of the coupling of the paramagnetic iron center with NMR active nuclei. Accordingly, hyperfine coupling of the acetylene 1H nuclei to the spin on iron can be extracted by comparison of the data for Fe1(η2-HCCH) with that for Fe1(η2-DCCD). Field-dependent HYSCORE (Figure 4) and 1H–2H ENDOR (Figure 5) spectra show weak 1H hyperfine couplings to two very similar acetylene-derived protons: 1H1 (|A(1H)| = [9.4, 20.2, 17.6] MHz), with Euler rotation angles [α, β, γ] = [33, 18, −5] relative to the g-tensor and 1H2(|A(1H)|= [8.2, 18.4, 16.8] MHz), with Euler rotation angles [α, β, γ] = [43, −22, 11]. These results are also corroborated by the appearance of 2H features in the HYSCORE data for Fe1(η2-DCCD), which are well simulated by scaling these hyperfine tensors by the ratio of the 1H/2H gyromagnetic ratios (γ1H/γ2H = 6.514) (Figures S33–35). These two protons exhibit extremely similar isotropic hyperfine couplings, with aiso(1H1) = 15.7 MHz and aiso(1H2) = 14.5 MHz, and are only differentiated by the respective orientations of their hyperfine tensors relative to the molecular g-tensor coordinate frame, which is resolved in the 1H–2H difference ENDOR data acquired near the low-field edge of the EPR spectrum (see Figure 5, top trace). This observation strongly disfavors assignment as the “FeIII(H)-(CCH)” isomer, as a hydride directly bound to an S = 1/2 iron center should exhibit much stronger coupling (a3s0 ≈ 45 MHz).19,20
To distinguish between the Fe(I)(η^2-HCCH) and “FeCCH₂” isomers, we prepared the ¹³C-enriched derivative ¹³C₂H₂-2. Consistent fits between the field-dependent ¹³C–¹²C difference HYSCORE (Figure 6) and ENDOR spectra (see SI) give two nearly identical, strongly coupled ¹³C nuclei ¹³C₁(|A(¹³C)| = [17, 24, 8.6]; δiso = 16.5 MHz; ¹³C₂(|A(¹³C)| = [24, 16.6, 10.2]; δiso = 16.9 MHz) (Table 1), which also disfavors the “FeCCH₂” isomer, as such a species would be anticipated to show highly inequivalent ¹³Cα and ¹³Cβ couplings, with coupling to Cα being much larger. Together, these EPR data are fully consistent with a structure for 2 formulated as an η^2-HCCH adduct of iron(I), akin to its one-electron oxidized precursor 6.

Several other side-on adducts of alkynes and alkenes at reduced Fe(I) centers have been reported by Holland and co-workers. These complexes exhibit high-spin S = 3/2 ground state electronic structures and were described with substantial π-backbonding from iron to the coordinated unsaturated ligand. In a study of an α−70Val mutant nitrogenase that is able to accommodate several substituted-acetylene substrates, the S = 3/2 resting state EPR signal is, by contrast, converted to an iron-localized rhombic S = 1/2 doublet in a freeze-quenched experiment using propargyl alcohol (HC≡CCH₂OH) as the substrate. This doublet signal closely matches that of a CO-bound/inhibited state. While ¹³C coupling to the doublet signal was measured, it was not possible to distinguish between possible binding modes of the propargyl alcohol.

The transformation of Fe(I)(η^2-HCCH) 2 to acetylide Fe(II)CCH 3 is interesting to consider further. The available data is insufficient to determine the fate of 2 after its first-order decay. However, two distinct paths seem most plausible to us. In one scenario, which we favor, C–H oxidative addition of the coordinated C₂H₂ ligand produces “Fe(III)(H)(CCH)”, one of the structural isomers considered above. This intermediate then loses half an equivalent of H₂ in a bimolecular step. Relatedly, we recently reported an example of bimolecular H₂ loss from a well-defined Fe(III)-hydride complex that features a sufficiently weak Fe–H bond. Additionally, the oxidative addition pathway (Figure 7) is well preceded for a number of previously characterized alkyne-hydride complexes of Co and Fe. Of note to the present study, we previously reported reversible activation of phenylacetylene in a structurally related trisphosphine-borane TPBFe system, likely by oxidative addition to a formally Fe(II)-alkyne-hydride/borohydride complex.

Alternatively, another reaction pathway could involve eventual rearrangement of Fe(I)(η^2-HCCH) 2 or an intermediate Fe(III)(H)(CCH) to the end-on “FeCCH₂” isomer, considered above, again followed by bimolecular H₂ loss. However, transformation by a unimolecular 1,2 hydrogen shift of an η^2-alkyne adduct to a terminal alkylidene/vinylidene is generally thought to have a high barrier and is therefore difficult without an exogenous acid/base catalysts or high temperature. Berke and co-workers have reported that chromatography on silylated silica accelerates the formation of terminally stable vinylidene complexes from mixtures of low-valent iron acetylene/alkyne and alkyne-hydride complexes. In the present Fe(I)(η^2-HCCH) 2 system, deprotonation by solvent (THF) to produce [FeCCH]−, followed by reprotozonation to produce FeCCH₂, seems highly unlikely considering the low acidity expected for 2 in THF. Finally, while we consider it to be unlikely, a bimolecular
reaction between Fe\(^{1}(\eta^2\text{-HCC})\) and itself, or with Fe\(^{III}\)\((\text{H})(\text{CCH})\), could in principle evolve \(\text{H}_2\).

Terminal Iron-Carbony Complexes

The addition of triflic acid (HOTf) to the terminal Fe-acetylide 3 in diethyl ether at \(-78\) °C precipitates [(SiP\(_3\))Fe≡CCH\(_3\)][OTf] (7) as a dark brown solid from solution (40% yield). Use of [H(Et\(_2\)O)\(_2\)][BARF\(_{24}\)] in place of HOTf affords [(SiP\(_3\))Fe≡CCH\(_3\)][BARF\(_{24}\)] (Figure 1). The alkylcarbyne cation 7 is a nominally iron(V) complex that, to our knowledge, is the only species of its type, formal or otherwise. The complex exhibits an \(S = 1/2\) ground state (vide infra) and is stable as a solid or in THF or acetonitrile solution at room temperature for extended periods. As stated above, there are a handful of previously characterized, terminal, heteroatom-substituted carbynes of iron.\(^8\)\(^{–}\)\(^{12}\) There are no prior examples of alkylcarbynes of iron, nor examples where the carbyne is substituted instead by H or aryl for that matter. Additionally, paramagnetic examples of carbyne/alkylidyne complexes are rare,\(^27\),\(^28\) and, for first row metals, the only others we know of relate to [(SiP\(_3\))FeCNH\(_2\)]\(^+\) and [(SiP\(_3\))FeCNMe\(_2\)]\(^+\).

The solid-state crystal structure of 7 is shown in Figure 2. As required for an \(S = 1/2\) system, the complex deviates slightly from 3-fold symmetry (\(\angle\text{P–Fe–P}\) angles 114, 117, 120°). Most noteworthy is a characteristically short Fe≡C—CH\(_3\) bond of 1.70 Å and a Fe≡C—CH\(_3\) single bond of 1.42 Å. The Fe–Si bond is long at 2.39 Å, consistent with its position trans to the carbyne ligand. The triflate counteranion exhibits close contacts with the (SiP\(_3\))-isopropyl and carbyne C–H positions.

The conversion of (SiP\(_3\))FeCCH to [(SiP\(_3\))FeCCH\(_3\)]\(^+\) is a net 2-H\(^+\)/1-e\(^-\) transformation, requiring sacrificial oxidation of half of the starting iron material, for a theoretical 50% yield. Analysis of recovered material shows primarily (SiP\(_3\))FeOTf 4, indicating the net reducing equivalent is likely derived from the acetylide moiety. The propensity for reaction intermediates to cannibalize themselves en route to 7 is consistent with the observed thermodynamic stability of the terminal product.

It is also noted that protonation of 3 by HOTf does not instead lead to its net oxidation (i.e., to form (SiP\(_3\))FeCCH\(^+\)) with concomitant loss of 0.5 equiv of \(\text{H}_2\) (eq 1), especially as the cationic [(SiP\(_3\))FeCCH]\(^+\) is electrochemically accessible (\(-0.78\) V vs Fc in THF; Figure S58).\(^29\)

\[
\text{FeCCH} + \text{HOTf} \rightarrow [\text{FeCCH}]^+ + 0.5\text{H}_2 \quad \text{(not observed)}
\]

(1)

Alternatively, protonation of acetylide 3 in ether by the weaker, insoluble acid, imidazolium triflate, to our surprise generates the neutral alkyl carbyne derivative, (SiP\(_3\))Fe≡CCH\(_3\) 8 (25% isolated yield), the product of a net 2 H\(^+\)/2 e\(^-\) reduction, again requiring some amount of sacrificial oxidation of starting material. The neutral carbyne 8 is thus more favorably

\[\text{FeCCH} + \text{imidazolium triflate} \rightarrow (\text{SiP}_3)\text{Fe}≡\text{CH}_3 \quad \text{(25\% isolated yield)}\]

\[\text{(2)}\]
synthesized in a heterogeneous mixture of triethylammonium chloride and excess sodium metal to balance the proton-coupled reduction (Figure 1). The Fe≡CCH$_3$$/Fe≡CCH_3$ redox couple between 7 and 8 occurs at −1.00 V vs Fe in THF (Figure S59); chemical oxidation of 8 by ferrocenium (Cp$_2$Fe$^+$) or a strong acid, like [H(Et$_2$O)$_2$][BArF$_{24}$], cleanly generates 7.

Carbyne 8 is diamagnetic with resolved coupling by 1H, 31P, and 13C NMR spectroscopy (Figures S10–S16). Isotopic labeling in 13C$_2$-8 reveals a very downfield 13C resonance for C_α at 348 ppm, with coupling to C_β (48 ppm; $J_{\text{C}(\alpha)–\text{C}(\beta)} = 18$ Hz) and three equivalent phosphines (31P 107.5 ppm; $J_{\text{C}(\alpha)–\text{P}} = 18$ Hz). By 1H NMR spectroscopy, the terminal carbyne CH$_3$ resonance at 2.12 ppm couples to C_α (11 Hz) and C_β (127 Hz). The primary ligation of 8 is contracted with respect to $S = 1/2$ [Fe≡CCH$_3$]$^+$, with a Fe≡C bond of 1.68 Å, a 2.33 Å Fe–Si bond, and Fe–P bonds between 2.24 and 2.26 Å (Figure 2), presumably consistent with increased backbonding upon reduction.

(SiP$_3$)Fe≡CCH$_3$ 8 is quite stable, even in solution at 130 °C over a 24 h time period. Its stability renders it a reaction sink in this system. Indeed, with its diagnostic NMR resonances in hand, it can be identified as a minor side-product of other reactions we have surveyed, including the aforementioned reaction between (SiP$_3$)FeOTf and excess sodium acetylide (Figure 1).

The terminal stability of both alkylidyne complexes inspired us to further explore their interconnection with the acetylene complexes, described above, by reductive protonation reactions (Figure 1). Interestingly, net hydrogen atom transfer (HAT) reactions can convert the acetylene adducts 2 and 6 to the carbynes 7 and 8. For example, mixing [Fe(η$_2$-HCCH)]$^+$ + 6 with TEMPO-H in 2-MeTHF generates Fe≡CCH$_3$+ 7. At −100 °C, a relatively stable orange intermediate 9 can be observed by UV–visible spectroscopy, which then decays to 7 on warming (Figure S55). Our tentative assignment of 9 as a cationic alkenyl complex [(SiP$_3$)Fe(CH=CH$_2$)]$^+$, if correct, would make it a structurally interesting one. Whereas there is precedent for related, substituted iron alkenyl derivatives, the Fe–CH=CH$_2$ subunit is still, to our knowledge, distinct.

Cationic carbyne 7 can also be generated by the addition of stoichiometric [H(Et$_2$O)$_2$][BArF$_{24}$] to a 2-MeTHF solution of (SiP$_3$)Fe(η$_2$-HCCH) 2 at −125 °C, presumably via 9 as an intermediate (Figure 1). Under similar conditions, the reaction of 2 with TEMPO-H generates the neutral carbyne 8, along with (SiP$_3$)FeCCH$_2$ as side product. There thus appears to be a rich reactivity landscape connecting the nascent acetylene adducts and terminal carbynes described herein.

Electronic Structure of Iron-Carbony Complexes

The Mössbauer parameters for carbynes 7 and 8 compare well with those of the previously reported and structurally characterized iron carbynes featuring the same (SiP$_3$)Fe subunit: (SiP$_3$)Fe-(COSiMe$_3$) and [(SiP$_3$)Fe(CNMe$_2$)]$^{0/+}$ (Table 2). The isomer shifts are relatively close to 0 mm s$^{-1}$ across the series, reflecting strong covalency in the short Fe–C triple bond, with Fe≡CCH$_3$+ 7 and Fe≡CCH$_3$ 8 having the smallest δ values. By comparison, [(SiP$_3$)FeCNMe$_2$]$^+$ has an isomer shift of 0.19 mm s$^{-1}$, indicating less Fe≡C covalency, possibly consistent with a [Fe≡C=NMe$_2$]$^+$ resonance form and its slightly longer
Fe–C bond (1.74 Å). The measured quadrupole splittings for this series of carbynes are rather narrow, especially by comparison to the very large ΔE_Q values reported for other formally high-valent oxide and nitride Fe complexes in C_3 symmetry.1–3,33,34 Frontier orbital manifolds whereby the electrons populate only orbitals of $d(xy)$ and $d(x^2−y^2)$ parentage, as for the d^4 and d^3 configurations described for the latter systems, is predicted to give large quadrupole splittings, >5 mm s$^{-1}$, due to the strongly asymmetric, equatorially disposed electric field gradient at Fe.32 By contrast, the comparatively small ΔE_Q values observed for the (SiP$_3$)Fe-carbyne series reflect the additional presence of substantial electron density along the z-axis (parallel to the Fe≡C–R vector). Inspection of the molecular orbitals of the carbyne series shows that the nominally high-lying Fe–C σ^*-antibonding orbital is highly stabilized by mixing with Si(σ),35 resulting in a heavily mixed orbital of a_1 symmetry energetically below the filled, primarily nonbonding orbitals of $d(xy)$ and $d(x^2−y^2)$ parentage (Figure 8). This observation bears relevance to a contributing resonance structure we have previously considered, with electron density being polarized between a cationic R_3Si^+ anchor and a nominally reduced Fe center (Figure 9).9,36

To further probe the electronic structure of paramagnetic [Fe≡CCH$_3$]$^+$ 7 we undertook CW and pulse EPR studies. The doublet ground state of 7 can only be observed by EPR at very low temperatures due to fast electronic relaxation and line broadening at 77 K. At 10 K, an axial EPR spectrum exhibiting significant anisotropy between g-parallel at 2.61 and g-perpendicular at 1.96–1.93 is resolved (Figure 10), consistent with a largely iron-centered spin. Electron spin inversion recovery experiments show a strong temperature dependence for T_1 spin relaxation (Figure S41). This behavior is likely consistent with a low-lying, thermally populated doublet excited state or efficient electronic relaxation through coupling of low-energy vibrations (<100 cm$^{-1}$) with the bath. If an Orbach mechanism of electronic relaxation from the excited state is assumed,37 a small energy difference (Δ) between the ground state and first excited state as low as $\Delta = 24$ cm$^{-1}$ can be roughly calculated from the temperature dependence of T_1.38

EPR analysis of a paramagnetic carbyne/alkylidyne has previously been limited to a tungsten methylidyne cation ([dmpe)$_2$(Cl)W$^\equiv$CH]$^+$; $g_{iso} = 2.026$; $|A(^{138}\text{W})| = 221$ MHz; $|A(^{31}\text{P})| = 149$ MHz; $|A(^{13}\text{C})| = 34$ MHz; dmpe = bis(dimethylphosphino)ethane) and to examples with the (SiP$_3$)Fe-system.27c,12 Interestingly, [(SiP$_3$)FeCNMe$_2$]$^+$ and [Fe≡CCH$_3$]$^+$ 7 both exhibit nearly identical EPR signatures.11 Löwdin spin population and spin density analysis of 7 by DFT (TPSS/def2-TZVP/D3ZERO) predicts the majority of unpaired spin on iron (0.99 e$^-$), with 0.07 e$^-$ of opposite spin polarization on C$_\alpha$ (Figure 8) (cf. [(SiP$_3$)FeCNMe$_2$]$^+$: 0.97 e$^-$ on Fe, oppositely polarized to 0.03 e$^-$ on C$_\alpha$ and 0.01 e$^-$ on N$_\beta$). This prediction is in agreement with the large anisotropy between g-parallel and g-perpendicular and the strong temperature dependence observed for T_1 (Figure S41).

This predicted spin delocalization compares very well with that for a terminal iron(V)-nitride reported by Smith and co-workers.33 A follow-up study on this system39 invoked a dynamic “pseudo-Jahn–Teller” distortion for a C_3-symmetric iron center. Related electronic structure descriptions have been offered for ostensibly low-valent $S = 1/2$ (SiP$_3$)Fe(H$_2$) and TPBCo(H$_2$) complexes.40 In Smith’s iron(V)-nitride complex, vibronic coupling to a partially filled, degenerate $d(x^2−y^2)/d(xy)$ pair gives rise to significant g-anisotropy, and
mixing with the unfilled \(d(xy)/d(x^2-y^2)\) pair—termed “e–e mixing”—yields some spin delocalization onto the terminal nitride p-orbitals.\(^{39}\) The electronic structure of [Fe≡CCH\(_3\)]\(^+\) 7 can likely be understood by a similar model: a nearly degenerate \(S = 1/2\) ground state leads to large \(g\)-anisotropy, and mixing of unoccupied \(d(xz)/d(yz)\) Fe–C \(\pi^*\)-bond orbitals with partially filled \(d(xy)/d(x^2-y^2)\) orbitals delocalizes modest spin onto C\(_\alpha\) of the paramagnetic carbyne (Figure 8).\(^{41}\)

As a direct probe of this hypothesis, pulse X-band HYSCORE and ENDOR spectroscopy of 7 was undertaken (Figures 11 and 12). From these complementary methods, comparison of data from \(^{13}\)C\(_2\)-7 and its natural abundance isotopologue shows hyperfine couplings for the \(^{13}\)C nuclei of C\(_\alpha\) and C\(_\beta\) with the spin on iron. Simulation of the data gives an anisotropic hyperfine tensor for \(^{13}\)C\(_\alpha\)|\(A^{(13}\)C)| = [18, 33, 47] MHz; \(a_{iso} = 32.7\) MHz; \(T = 14.5\) MHz (Table 3), indicative of strong coupling to the \(^{13}\)C\(_\alpha\) nuclear spin. Coupling to \(^{13}\)C\(_\beta\) is weaker and nearly isotropic (|\(A^{(13}\)C)| = [5.8, 5.0, 4.0] MHz; \(a_{iso} = 4.9\) MHz; \(T = 0.9\) MHz).

Following the analysis of Hoffman and co-workers,\(^{39}\) the \(^{13}\)C\(_\alpha\) hyperfine coupling tensor can be decomposed into isotropic and anisotropic terms; the anisotropic component allows estimation of spin density of approximately 0.06 electrons at C\(_\alpha\) in the 2p(x) and 2p(y) orbitals, orthogonal to the Fe–C–R bond vector. This estimate agrees well with the aforementioned Löwdin spin population analysis.

Interestingly, despite weak coupling to C\(_\beta\), proton hyperfine coupling to the −CH\(_3\) substituent of [Fe≡CCH\(_3\)]\(^+\) 7 is detected by both ENDOR and HYSCORE. Comparison of \(^2\)H-7 with its natural abundance isotopologue and simulation of the ENDOR difference spectrum (Figure 12) provides two hyperfine tensors for \(^1\)H\(_1\)(CH\(_3\)) (|\(A^{(1}\)H)| = [8.6, 12.5, 8.6] MHz; \(a_{iso} = 9.9\) MHz; \(T = 1.3\) MHz) and \(^1\)H\(_2\)(CH\(_3\)) (|\(A^{(1}\)H)| = [2.3, 6.3, 6.3] MHz; \(a_{iso} = 5.0\) MHz; \(T = 1.3\) MHz). Importantly, the isotropic coupling components for the carbyne −CH\(_3\) substituent to the unpaired spin are correlated with a “hyperconjugation” interaction between the methyl Hatoms and the spin active Fe and C\(_\alpha\) orbitals.\(^{42-44}\)

A hyperconjugation effect indicates, to some extent, delocalization of spin/hole or cationic character on Fe≡C\(_\alpha\) to the hydrogen s-orbitals on the terminal methyl (see Figure 9 for this and other chemical depictions). This exaggerated resonance description is thus juxtaposed with the electronic structures typically invoked in heteroatom-substituted carbyne complexes, like our previously reported (SiP\(_3\))FeCOSiMe\(_3\), (DPB)Fe(COSiMe\(_3\))\(_2\), ([SiP\(_3\))FeCNMe\(_2\)]\(^0+/+\), and ([SiP\(_3\))-FeCNH\(_2\)]\(^+\). In each of these cases, the Fe–C and C–O/N bonding is qualified by the free “lone pair” on the distal atom, capable of delocalizing bonding across the Fe–C–O/N unit and decreasing the formal valency at iron. The CNR\(_2\) moiety of the amino carbynes are even planar (\(\Sigma\angle \approx 360°\)), consistent with conjugation between nitrogen and the Fe–C \(\pi\)-bond. However, hyperconjugation and delocalization in ([SiP\(_3\))FeCCH\(_3\)]\(^+\) should be appreciated as a subtle effect, as the spectroscopic data and DFT calculations determine a majority of unpaired spin to be located on iron (Fe: +0.99 e\(^−\) vs C\(_\alpha\): −0.07 e\(^−\)). Furthermore, the strong similarity between the EPR data for ([SiP\(_3\))FeCNMe\(_2\)]\(^+\) and ([SiP\(_3\))FeCCH\(_3\)]\(^+\), the comparably modest calculated spin density across the amino carbyne (Fe: +0.97 e\(^−\) vs C\(_\alpha\): −0.03 e\(^−\) and N\(_\beta\): −0.01 e\(^−\)), and the close congruence between the Mössbauer parameters for all of the (SiP\(_3\))Fe carbynes, both alkyl- and heteroatom-substituted, suggests that a “Fischer-like” resonance description (the L-type carbyne donor
resonance forms in Figure 9) may in fact be of limited importance to the structural and electronic stabilities of this series of Fe≡C triply bonded species.

The latter point speaks to the potential relevance of other hypothetical iron-ligand multiply bonded species in the (SiP₃)Fe platform, namely terminal Fe≡C(H) carbide/methylidyne or Fe≡N nitride complexes (Figure 9, bottom), the latter possibly arising during the limited nitrogen reduction catalysis mediated by (SiP₃)FeN₂;⁴⁵ the former have yet to be directly evidenced from cleavage of CO, CN⁻, or C₂H₂ at iron. We have extensively explored the reactivity and thermochemistry of the early stages of reductive protonation on FeN₂ compounds. In the trisphosphine-borane TPBFeN₂, the N–N bond is cleaved to yield NH₃ and a spectroscopically characterized [(TPB)FeIV≡N]⁺ nitride cation.³ Observation of an iron-N₂H₄ hydrazine cation⁴⁶ derived from (SiP₃)FeN₂ questions the accessibility of any (SiP₃)Fe≡N species through functionalization of dinitrogen. However, the stable bonding in the [(SiP₃)FeCCH₃]⁺/0 complexes, and the aforementioned implication for the electronic structures of the heteroatom-substituted relatives, support the potential viability of highvalent, multiply bonded Fe≡C or Fe≡N intermediates in the chemistry of this system, and structurally related synthetic or biological iron sites.

CONCLUSION

To close, we have described the activation of acetylene gas at a mononuclear iron site, along with reductive protonation reactions that converge at stable and structurally unusual Fe(IV) and Fe(V) alkylcarbyne complexes. X-ray crystallography, pulse X-band EPR, and other spectroscopies have allowed us to characterize the first Fe(I) and Fe(II) adducts of acetylene, and to discriminate their side-on binding forms from alternative structural isomers (e.g., Fe=CCH₂). Characterization of their electronic structures, through Mössbauer, DFT, and pulse EPR experiments, reveal strong covalency in the Fe≡C triple bonds of the carbyne species and moderate spin delocalization in the cationic S = 1/2 congeners. Congruence between the structural, spectroscopic, and computed parameters of the heteroatom-substituted iron carbynes with those of the newly explored alkylcarbynes described here establishes the viability of a highly covalent Fe-to-C triple bond in trigonal symmetry without a requirement for heteroatom resonance stabilization. More generally, the complexes and spectroscopic signatures reported here may guide the ongoing investigation of reactive nitrogenase intermediates with non-native substrates, particularly acetylenic adduct species, or possible carbyne intermediates of Fischer–Tropsch type C–C couplings with C₁ substrates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health (General Medical Sciences, grant GM070757). C.C. acknowledges the NIH Ruth L. Kirschstein National Service Fellowship for financial support. Additional support has been provided by the Caltech EPR Facility, supported via NSF-1531940, and the Dow Next Generation Educator Fund. We also acknowledge the Beckman Institute for use of the its X-ray facility and thank Larry M. Henling and Dr. David G. VanderVelde for technical assistance with X-ray and NMR experiments, respectively.

J Am Chem Soc. Author manuscript; available in PMC 2020 September 25.
REFERENCES

J Am Chem Soc. Author manuscript; available in PMC 2020 September 25.

(13). Benton PMC; Laryukhin M; Mayer SM; Hoffman BM; Dean DR; Seefeldt LC Localization of a Substrate Binding Site on the FeMo-Cofactor in Nitrogenase: Trapping Propargyl Alcohol with an α-70-Substituted MoFe Protein. Biochemistry 2003, 42, 9102–9109. [PubMed: 12885243]

(22). (a)Bianchini C; Peruzzini M; Vacca A; Zanobini F Metal-Hydride AlkynylàMetal-Vinylidene Rearrangements Occurring in Both Solid State and Solution. Role of the 1-Alkene Substituent in Determining the Relative Stability of π-Alkynes, Hydride Alkynyl, and Vinylidene Forms at Cobalt. Organometallics 1991, 10, 3697–3707. (b)Bianchini C; Masi D; Meli A; Peruzzini M; Ramirez JA; Vacca A; Zanobini F Activation of 1-Alkynes at 16-Electron Rhodium Fragments.

(23). Fong H; Moret M-E; Lee Y; Peters JC Heterolytic H

(28). Paramagnetic carbenes are well known. See, for example Dzik WI; Zhang XP; de Bruin B Redox

(29). It appears that \([\text{FeCCH}]\)

(26). Gauss C; Veghini D; Berke H Acetylene/Vinylidene Rearrangements of \(\text{Fe(CO)}_2\text{L}_2\text{C}(\text{silylacetylene})\text{Complexes (L = Phosphorus Donor). Chem. Ber. 1997, 130, 183–194.}

(28). Paramagnetic carbenes are well known. See, for example Dzik WI; Zhang XP; de Bruin B Redox Noninnocence of Carbene Ligands: Carbene Radicals in (Catalytic) C-C Bond Formation. Inorg. Chem. 2011, 50, 9896–9903 and references therein. [PubMed: 21520926]

(29). It appears that \([\text{FeCCH}]^+\) can be generated via oxidation of \(\text{3} \rightarrow [\text{Cp}_2\text{Fe}][\text{BF}_4]^+\); preliminary characterization data for \([\text{SiP}_3]^+\text{FeCCH}]^+\) is available in the Supporting Information.

J Am Chem Soc. Author manuscript; available in PMC 2020 September 25.

(34). de Oliveira FT; Chanda A; Banerjee D; Shan X; Mondal S; Que L; Bominara EL; Munck E; Collins TJ Chemical and Spectroscopic Evidence for an FeV-Oxo Complex. Science 2007, 315, 835–838. [PubMed: 17185561]

(41). (a)Kropp H; King AE; Khusniyarov MM; Heinemann FW; Lancaster KM; DeBeer S; Bill E; Meyer K Manganese Nitride Complexes in Oxidation States III, IV, and V: Synthesis and Electronic Structure. J. Am. Chem. Soc. 2012, 134, 15538–15544. We also note that a distortion in [Fe≡CCH3]+7 is reflected in the bonding metrics of the P3Fe plane, while the Si–Fe–C vector remains approximately linear; in the aforementioned Fe(V)–nitride complex, the rigid tris(carbene) ligand cannot undergo such a distortion and instead manifests a nonlinear B–Fe–N vector. For related discussions of Mn systems, see: [PubMed: 22920682] (b)Ding M; Cutsail GE III; Aravena D; Amoza M; Rouziéres M; Dechembenoit P; Losovyy Y; Pink M; Ruiz E; Cérac R; Smith JM A Low Spin Manganese(IV) Nitridé Single Molecule Magnet. Chem. Sci. 2016, 7, 6132–6140. [PubMed: 27746891]

(44). A through-space mechanism of spin delocalization is reflected by the anisotropic coupling components.

Figure 1.
Scheme depicting the reaction chemistry discussed herein, along with labeled formal oxidation states and compound numbers.
Figure 2.
Solid-state crystal structures of 3, 6, 7, and 8, with thermal ellipsoids displayed at 50% probability. The hydrogen atoms of (SiP₃) and the counter-anions present in the structures for 6 and 7 have been omitted for clarity. A DFT-minimized structure of (SiP₃)Fe¹(η²-C₂H₂) 2 is also shown, with bond metrics, along with the calculated SOMO orbital and Löwdin spin densities in the primary ligation sphere.
Figure 3.
(A) X-band CW-EPR spectra of (SiP$_3$)Fe(η$_2$-HCCH) prepared in 2-MeTHF with natural abundance (top), 13C-enriched (middle), and 2H-enriched acetylene (bottom) with simulations using parameters in Table 1 overlaid in red. (B) Derivative spectra of X-band CW-EPR for each isotopologue with simulations overlaid in red. Acquisition parameters: temperature = 77 K; MW frequency = 9.375 GHz; MW power = 2 mW; modulation frequency = 100 kHz; modulation amplitude = 0.1 mT; conversion time = 41 ms.
Figure 4.
(Top) X-band HYSCORE spectrum of natural abundance (SiP$_3$)Fe(η^2-HCCH) acquired at 338.6 mT (g = 2.058). (Bottom) Monochromatic representation of the HYSCORE data with simulations using parameters in Table 1 overlaid: (red) 1H-1, (blue) 1H-2, (green) 31P-3.
Acquisition parameters: temperature = 20 K; microwave frequency = 9.751 GHz; MW pulse length ($\pi/2, \pi$) = 8 ns, 16 ns; τ = 138 ns, $\tau_1 = \tau_2 = 100$ ns; $\Delta t_1 = \Delta t_2 = 16$ ns; shot repetition time (srt) = 1 ms.)
Figure 5.
Field-dependent X-band 1H and 2H Davies ENDOR difference spectra of (SiP$_3$)Fe(η^2-HCCH) (black) with simulations using parameters in Table 1 overlaid: (red) total 1H simulation, (blue) 1H-1, (green) 1H-2. Acquisition parameters: temperature = 15 K; MW frequency = 9.751 GHz; MW pulse length ($\pi/2$, π) = 40 ns, 80 ns; τ = 260 ns; RF pulse length = 15 μs; T_{RF} = 2 μs; shot repetition time = 5 ms.
Figure 6. (Top) X-band $^{13}\text{C} - ^{12}\text{C}$ difference HYSCORE spectrum of $(\text{SiP}_3)\text{Fe}(\eta^2\text{-HCCH})$ acquired at 338.6 mT ($g = 2.058$). (Bottom) Monochromatic representation of the HYSCORE data with ^{13}C simulations using parameters in Table 1 overlaid: (blue) $^{13}\text{C}_1$, (red) $^{13}\text{C}_2$. Acquisition parameters: temperature = 20 K; microwave frequency = 9.751 GHz; MW pulse length ($\pi/2$, π) = 8 ns, 16 ns; $\tau = 138$ ns, $t_1 = t_2 = 100$ ns; $\Delta t_1 = \Delta t_2 = 16$ ns; shot repetition time (srt) = 1 ms.
Figure 7.
A qualitative reaction coordinate for the proposed slow substitution of acetylene for N$_2$ at (SiP$_3$)FeN$_2$, 1, leading to intermediate (SiP$_3$)Fe(η^2-HCCH) 2, which subsequently undergoes sp(C–H)-activation and H$_2$ release to generate isolable (SiP$_3$)Fe-(CCH), 3. We presume the H$_2$ elimination step occurs in a bimolecular fashion via two Fe(III)-hydride species. See text for a discussion of other possible pathways.
Figure 8.
Simplified molecular orbital diagram for the metal–ligand bonding of a (SiP$_3$)Fe≡CR carbyne in C$_3$ symmetry. Approximate orbital energies and compositions shown for (SiP$_3$)FeCCH$_3$ (TPSS/Def2-TZVP/D3ZERO). (Inset) DFT-predicted spin density map for [(SiP$_3$)FeCCH$_3$]$^+$ (isovalue: 0.005 e$^-$/Å3).
Figure 9.
(Top) Representative chemical depictions of the related amino- and alkylcarbynes (SiP$_3$)Fe(CNMe$_2$)$^+$ and (SiP$_3$)Fe(CCH$_3$)$_3^+$, along with formal iron valence assignments. The true relative state of oxidation at iron is presumed to vary little due to strong covalency. The primary bonding of the carbyne to iron is indicated as x_3, x_2, or L, with backbonds from iron into empty p-orbitals on carbon indicated by the green arrows. Note that the formal oxidation states indicated have not been adjusted for the backbonds. A half arrow is used to indicate hyperconjugation stabilization for the C-centered radical Fe(IV) form of (SiP$_3$)Fe(IV)(N). (Bottom) DFT-optimized structure of the hypothetical molecule (SiP$_3$)Fe(IV)(N), with a simplified MO diagram and lobal representations for the Si–Fe–N bonding in C$_3$ symmetry.
Figure 10.
X-band CW-EPR spectrum of [(SiP$_3$)FeCCH$_3$]OTf prepared in 7:1 2-MeTHF/MeCN. Acquisition parameters: temperature = 10 K; MW frequency = 9.637 GHz; MW power = 200 μW; modulation frequency = 100 kHz; modulation amplitude = 0.4 mT; conversion time = 82 ms.
Figure 11.
(top) X-band HYSCORE spectrum of 13C$_2$-[(SiP$_3$)$_3$-FeCCH$_3$]OTf measured at 280 mT ($g = 2.48$). (Bottom) Monochromatic representation of the HYSCORE data with simulations of hyperfine couplings overlaid using simulations parameters in Table 3: (green) 31P, (red) 13C$_\alpha$, (blue) 13C$_\beta$. Acquisition parameters: temperature = 6.5 K; microwave frequency = 9.715 GHz; MW pulse length ($\pi/2$, π) = 8 ns, 16 ns; $\tau = 168$ ns, $t_1 = t_2 = 100$ ns; $\Delta t_1 = \Delta t_2 = 16$ ns; shot repetition time (srt) = 1 ms.
Figure 12.
(A) (black) X-band 13C–12C difference ENDOR spectra of (13C$_2$-7) and (12C$_2$-7); (red) 13C$_a$ simulated fit; (blue) 13C$_b$ simulated fit. (B) (black) X-band 1H–2H difference ENDOR spectra of (1H$_3$C-7) and (2H$_3$C-7); (red) 1H$_3$C simulated fit 1; (blue) 1H$_3$C simulated fit 2.
Acquisition parameters: temperature = 6.5 K; MW frequency = 9.715 GHz; MW pulse length ($\pi/2, \pi$) = 40 ns, 80 ns; τ = 190 ns; RF pulse length = 15 μs; T_{RF} = 2 μs; shot repetition time = 5 ms.
Table 1.

Hyperfine Coupling Constants in MHz Determined for (SiP$_3$)Fe(η2-HCCH)

<table>
<thead>
<tr>
<th>nucleus</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>a_{iso}</th>
<th>Euler angles $[\alpha, \beta, \chi]^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{31}\text{P}_1$</td>
<td>183</td>
<td>183</td>
<td>214</td>
<td>193.3</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>$^{31}\text{P}_2$</td>
<td>30</td>
<td>28</td>
<td>40</td>
<td>32.7</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>$^{31}\text{P}_3$</td>
<td>12</td>
<td>0.5</td>
<td>17</td>
<td>9.8</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>$^1\text{H}_1$</td>
<td>9.4</td>
<td>20.2</td>
<td>17.6</td>
<td>15.7</td>
<td>[33, 18, −5]</td>
</tr>
<tr>
<td>$^1\text{H}_2$</td>
<td>8.2</td>
<td>18.4</td>
<td>16.8</td>
<td>14.5</td>
<td>[43, −22, 11]</td>
</tr>
<tr>
<td>$^{13}\text{C}_1$</td>
<td>17</td>
<td>24</td>
<td>8.6</td>
<td>16.5</td>
<td>[0, 30, 0]</td>
</tr>
<tr>
<td>$^{13}\text{C}_2$</td>
<td>24</td>
<td>16.6</td>
<td>10.2</td>
<td>16.9</td>
<td>[0, −30, 0]</td>
</tr>
</tbody>
</table>
Table 2.

Mössbauer Parameters of (SiP₃)Fe Carbynes

<table>
<thead>
<tr>
<th></th>
<th>OsMe₃d</th>
<th>NMe₂e</th>
<th>NMe₂f</th>
<th>CH₃</th>
<th>CH₃+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe≡C</td>
<td>1.67</td>
<td>1.71</td>
<td>1.74</td>
<td>1.68</td>
<td>1.70</td>
</tr>
<tr>
<td>Fe—Si</td>
<td>2.30</td>
<td>2.31</td>
<td>2.35</td>
<td>2.33</td>
<td>2.39</td>
</tr>
<tr>
<td>δb</td>
<td>0.061</td>
<td>0.058</td>
<td>0.19</td>
<td>−0.029</td>
<td>0.0097</td>
</tr>
<tr>
<td>ΔE₀b</td>
<td>1.12</td>
<td>1.12</td>
<td>1.51</td>
<td>0.72</td>
<td>1.33</td>
</tr>
<tr>
<td>¹³Cαc</td>
<td>250.3</td>
<td>279.6</td>
<td>−</td>
<td>348.4</td>
<td>−</td>
</tr>
</tbody>
</table>

a Approximate measurements in Å.
b Measured in mm s⁻¹.
c Measured in ppm in C₆D₆.
d Ref 9.
e Ref 10.
Table 3.

Hyperfine Coupling Constants in MHz Determined for [(SiP₃)FeCCH₃]⁺ and Computed Spin Densities

<table>
<thead>
<tr>
<th>nucleus</th>
<th>A<sub>1</sub></th>
<th>A<sub>2</sub></th>
<th>A<sub>3</sub></th>
<th>α<sub>iso</sub></th>
<th>spin density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>31P</td>
<td>18</td>
<td>14</td>
<td>25</td>
<td>19.0</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.015</td>
</tr>
<tr>
<td>13C<sub>a</sub></td>
<td>18</td>
<td>33</td>
<td>47</td>
<td>32.7</td>
<td>−0.067</td>
</tr>
<tr>
<td>13C<sub>β</sub></td>
<td>5.8</td>
<td>5.0</td>
<td>4.0</td>
<td>4.9</td>
<td>−0.006</td>
</tr>
<tr>
<td>1H<sub>C</sub></td>
<td>8.6</td>
<td>12.5</td>
<td>8.6</td>
<td>9.9</td>
<td>−0.004</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>6.3</td>
<td>6.3</td>
<td>5.0</td>
<td>−0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−0.0002</td>
</tr>
</tbody>
</table>