A Caltech Library Service

Biophotonic nanostructured translational implants for remote intraocular pressure sensing (Conference Presentation)

Siddique, Radwanul H. and Narasimhan, Vinayak and Lee, Jeong Oen and Kumar, Shailabh and Choo, Hyuck (2019) Biophotonic nanostructured translational implants for remote intraocular pressure sensing (Conference Presentation). In: Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI. Proceedings of SPIE. No.10891. Society of Photo-optical Instrumentation Engineers (SPIE) , Bellingham, WA, Art. No. 108910D. ISBN 9781510624245.

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item:


While numerous multifunctional antifouling nanostructures on insect wings have been previously studied and replicated, their potential incorporation into implantable medical devices remains unexplored. We have demonstrated the use of multifunctional bioinspired nanostructured membrane inspired by transparent butterfly wings for intraocular pressure (IOP) sensing in vivo. [1]. We investigated the multifunctional properties of the biophotonic nanostructures found on the wings of the longtail glasswing (C. faunus) butterfly. The AFM, SEM, optical, and biological characterizations have revealed that two groups of dome-shaped nanostructures with different periodicity co-exist on the transparent wings of the C. faunus: (1) angle-independent anti-reflective nanostructures with periods of 140-180 nm in the postdiscal areas; (2) angle- independent transmissive light-scattering nanostructures with periods of 200-300 nm in the basal areas. In vitro testing has revealed both regions displayed antifouling properties based on physically-induced cell lysis. We have (1) adapted the coherence-preserving angle-independent transmissive light-scattering property of the basal nanostructures that could make optical sensors such as Fabry Perot (FP) resonators more angle-independent; and (2) by further engineering the basal nanostructures, created bioinspired nanostructures (BINS) that would prevent biofouling without inducing cell lysis and suppress inflammation. To produce BINS with periods of 385-505 nm on a Si3N4-membrane, we used a polymer-phase separation process following the nature’s way of forming nanostructures [2,3]. Angle- resolved transmission spectroscopy showed that the light transmission of the BINS-integrated membrane was twice more angle-independent than a flat Si3N4-membrane. In a series of in vitro studies the BINS-integrated Si3N4 surface displayed remarkable anti-biofouling properties against proteins (albumin and streptavidin, ***P ≤ 0.001), prokaryotes (E. coli, **P ≤ 0.01), and eukaryotes (HeLa cells, ***P ≤ 0.001) when compared to flat Si3N4 and control (glass) surfaces. Finally, we integrated BINS onto the FP-resonator-based IOP sensor that was recently developed in our lab [4]. However, its practical applications were limited by its narrow readout angle inherent to FP-resonators and infrequent but severe biofouling observed after long-term implantation. The BINS integration onto the IOP sensor led to a 2.5-fold improvement in readout angle allowing easy handheld monitoring and in a one-month in vivo study conducted in rabbits, showed a 3-fold reduction in IOP error and 12-fold reduction in tissue encapsulation and inflammation, compared to an IOP sensor without BINS.

Item Type:Book Section
Related URLs:
URLURL TypeDescription
Siddique, Radwanul H.0000-0001-7494-5857
Narasimhan, Vinayak0000-0003-4165-402X
Lee, Jeong Oen0000-0001-5060-8370
Kumar, Shailabh0000-0001-5383-3282
Choo, Hyuck0000-0002-8903-7939
Additional Information:© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE).
Series Name:Proceedings of SPIE
Issue or Number:10891
Record Number:CaltechAUTHORS:20190822-134052039
Persistent URL:
Official Citation:Radwanul H. Siddique, Vinayak Narasimhan, Jeong Oen Lee, Shailabh Kumar, and Hyuck Choo "Biophotonic nanostructured translational implants for remote intraocular pressure sensing (Conference Presentation)", Proc. SPIE 10891, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI, 108910D (4 March 2019);
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:98121
Deposited By: George Porter
Deposited On:22 Aug 2019 21:50
Last Modified:16 Nov 2021 17:36

Repository Staff Only: item control page