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Abstract

Numerous brain regions have been identified as contributing to addiction-like behaviors, but
unclear is the way in which these brain regions as a whole lead to addiction. The search for a
final common brain pathway that is involved in addiction remains elusive. To address this
question, we used male C57BL/6J mice and performed single-cell whole-brain imaging of neural
activity during withdrawal from cocaine, methamphetamine, and nicotine. We used hierarchical
clustering and graph theory to identify similarities and differences in brain functional
architecture. Although methamphetamine and cocaine shared some network similarities, the
main common neuroadaptation between these psychostimulant drugs was a dramatic decrease in
modularity, with a shift from a cortical- to subcortical-driven network, including a decrease in
total hub brain regions. These results demonstrate that psychostimulant withdrawal produces the
drug-dependent remodeling of functional architecture of the brain and suggest that the decreased
modularity of brain functional networks and not a specific set of brain regions may represent the

final common pathway that leads to addiction.

Significance Statement

A key aspect of treating drug abuse is understanding similarities and differences of how drugs of
abuse affect the brain. In the present study we examined how the brain is altered during withdrawal
from psychostimulants. We found that each drug produced a unique pattern of activity in the brain,
but that brains in withdrawal from cocaine and methamphetamine shared similar features.
Interestingly, we found the major common link between withdrawal from all psychostimulants,

when compared to controls, was a shift in the broad organization of the brain in the form of reduced
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modularity. Reduced modularity has been shown in several brain disorders, including traumatic

brain injury, and dementia, and may be the common link between drugs of abuse.
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Introduction

Psychostimulants are a class of highly addictive and commonly abused drugs that includes
cocaine, nicotine, and methamphetamine [1, 2]. A large number of brain regions have been
implicated in dependence and addiction-like behaviors that are associated with psychostimulant
use [3-9]. However, the complete neural network that is associated with psychostimulant
withdrawal remains understudied, and the search for a common brain pathway that is responsible
for psychostimulant withdrawal remains elusive. Common features of dependence may not be
found at the brain region level but rather at the network level.

The identification of changes in neural network structure that are caused by
psychostimulant withdrawal may be critical to understanding the ways in which these drugs affect
the brain in a common way. Previous studies identified changes in network function after
psychostimulant use [10-13], but these analyses focused on macroscale changes and not the
mesoscale level, or they focused on preselected regions of interest.

The present study sought to identify the ways in which withdrawal from different
commonly abused psychostimulants alters functional architecture of the brain. We hypothesized
that withdrawal from psychostimulants would result in major changes in functional neural
networks and decrease modular structuring of the brain. We further hypothesized that each
psychostimulant that was examined herein (i.e., methamphetamine, nicotine, and cocaine) would
have a unique neural network that is associated with withdrawal. We measured single-cell whole-
brain activity using Fos as a marker for neuronal activation in mice that underwent withdrawal
from chronic psychostimulant (cocaine, methamphetamine, and nicotine) administration. The
psychostimulant doses were chosen based on previous studies that reported rewarding effects

during use and observed withdrawal-like symptoms after the cessation of chronic exposure for
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91 eachdrug [14-20]. We then used single-cell whole-brain activity to identify coactivation patterns

92  of brain regions in the network that was associated with each treatment using hierarchical

93  clustering. The coactivation patterns were used to determine the modular structuring of each

94  network. Graph theory was then used to further characterize each network to determine the brain

95  regions that are responsible for intra- and intermodular connectivity.

96

97  Results

98  Psychostimulant withdrawal induces massive restructuring of the brain

99 We examined the ways in which withdrawal from different psychostimulants alters neural
100  coactivation and modular structuring of the brain. For an overview of the experimental design, see
101 Fig. 1A. For all of the drugs tested, acute withdrawal produced widespread increases in the
102  coactivation of brain regions compared with saline controls (Fig. 1C-F). Importantly, modular
103  structuring of the brain decreased in response to withdrawal from each psychostimulant compared
104  with controls. When using a threshold of 50% of tree height, saline control mice exhibited a
105 modular structure of the brain that contained seven modules, whereas cocaine mice had four
106  modules, methamphetamine mice had three modules, and nicotine mice had five modules and one
107  isolated brain region that was not grouped with any other region (i.e., interanterodorsal nucleus of
108 the thalamus; Fig. 1B-F). Notably, the decrease in the number of modules during withdrawal was
109 independent of the clustering thresholds that were used (Fig. 1B). These data indicate that
110  psychostimulant withdrawal decreases modularity of the brain functional network compared with
111  controls.
112

113  Characterization of individual network features
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114 To further characterize the features of each individual network, we used a graph theory
115  approach to identify potential hub brain regions with the most intramodular and intermodular
116  connectivity, which may drive activity within the network and thus be critical for neuronal

117  function in the withdrawal state. We examined positive connectivity (thresholded to a Pearson
118  correlation coefficient > 0.75 [0.75R] for inclusion as a network connection) for the network for
119  each treatment and used the modular organization that was identified by hierarchical clustering
120  to partition the regions of the networks. The 0.75R threshold was chosen because all of the brain
121  regions in each network showed connections to other regions at this threshold. Previous animal
122 model studies used various thresholds, ranging from 0.3R to 0.85R [21, 22], to examine

123 connectivity. Negative network connectivity was not examined herein because the precise

124  meaning of such connectivity is controversial and thus is not often examined in network-based
125  approaches [23-26].

126 We determined the participation coefficient (PC; i.e., a measure of importance for

127  intermodular connectivity) and the within-module degree Z-score (WMDz; i.e., a measure of
128  importance for intramodular connectivity) [27] for all brain regions in the networks. A high PC
129  was considered > 0.30, and a high WMDz was considered > 0.80. Overall, the control and

130  nicotine networks showed much greater intermodular connectivity (high PC) and a great number
131  of regions with both high intermodular and intramodular connectivity (high PC and WMDz). The
132 cocaine and methamphetamine networks showed higher levels of intramodular connectivity

133  (high WMDz) and a low number of regions with intermodular connectivity (Fig. 2A-C). We
134 named each module in each network based on the group of brain regions with the highest WMDz
135  score in the module and considered these regions to be drivers of activity within individual

136  modules (see Fig. 3-6 for names).

137
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138  The control network is driven by sensory-motor regions

139 The saline control network had 3,176 total connections and consisted of seven modules,
140  many of which were heavily driven by sensory-motor brain regions. Of these seven modules, five
141  contained several sensory or motor brain regions that were ranked in the top five for intramodular
142  connectivity (high WMDz). In most cases, a separate set of thalamic brain regions was responsible
143  for intermodular connectivity (high PC; see Table 2 for a full list of values for the network).
144 Overall, the control network had more brain regions with high WMDz, high PC, or both in
145  individual modules compared with other networks. This indicates a more interconnected network
146  with more hub regions (Fig. 2, 3).

147

148  The cocaine withdrawal network is driven by cortico-thalamo-hypothalamic regions

149 The cocaine network had 7,127 total connections and consisted of four modules, one with
150 the majority of all brain regions and three others with a small subset of regions. In the large module
151  (module 1; 144 brain regions), nearly one-third (32%) of the total brain regions within the module
152  (i.e., a mixed set of midbrain-cortico-thalamic-hypothalamic-amygdalar brain regions) had high
153  WMDz. The brain regions that drive intramodular connectivity (high WMD2z) in this module did
154  not have any intermodular connectivity (PC). Interestingly, only three brain regions in this module
155  (subparaventricular zone, lateral posterior nucleus of the thalamus, and frontal pole cerebral
156  cortex) reached the criterion (PC > 0.30) for a high level of intermodular connectivity, suggesting
157  sparse communication with other modules.

158 One of the smaller modules, a septal (triangular nucleus of the septum) and cortical (e.g.,
159  secondary motor area and dorsal anterior cingulate area) module (module 3) had a different set of

160  thalamic brain regions that had high PC. The other two smaller modules, a prefrontal-habenular
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161  module (module 4; dorsal peduncular area [DP], induseum griseum, and lateral habenula) and a
162  thalamic (parafascicular nucleus, mediodorsal nucleus of the thalamus, and ventral medial nucleus
163  of the thalamus), midbrain (nucleus of the posterior commissure), and striatal (bed nucleus of the
164  accessory olfactory tract) module (module 2) contained regions with both a high WMDz and high
165  PC, suggesting that these regions may be potential hubs within the network. Overall, the cocaine
166  network contained the highest number of connections in any network but had minimal
167  interconnection between modules (Fig. 2, 4; see Table 3 for a full list of values for the network).
168

169  The methamphetamine withdrawal network is driven by thalamic regions

170 The methamphetamine network had 3,182 connections and consisted of three modules, one
171  with the majority of all brain regions and two others with a small subset of regions. In the large
172 module (module 1), a group of thalamic (e.g., intermediodorsal nucleus of the thalamus,
173  paraventricular nucleus of the thalamus, intergeniculate leaflet of the lateral geniculate complex,
174  and ventral part of the lateral geniculate complex) and amygdalar (intercalated amygdala, central
175 amygdala, and lateral amygdala) regions had high WMDz, but these brain regions did not have
176 any intermodular connectivity (PC), and a separate set of hypothalamic, cortical, and
177  mid/hindbrain regions was responsible for intermodular connectivity.

178 The second module (module 2) had several hypothalamic (e.g., mammillary body,
179  ventrolateral preoptic nucleus, and tuberal nucleus) and pallidal (globus pallidus and internal
180  segment) brain regions with high WMDz and a separate set of cortical regions (e.g., DP and orbital
181  area, ventral part) and midbrain regions (e.g., posterior pretectal nucleus, nucleus of the posterior
182  commissure, and nucleus of darkschewitsch) that had high interconnectivity with other modules

183  (high PC).
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184 The third module (module 3), a thalamic module, had several thalamic regions with high
185 WMDz (e.g., ventral medial nucleus of the thalamus, posterior complex of the thalamus,
186  parafascicular nucleus, and lateral dorsal nucleus of the thalamus). Interestingly, within this
187 module, a separate set of thalamic regions (e.g., paracentral nucleus, ventral anterior-lateral
188  complex of the thalamus, ventral posterior complex of the thalamus, and anterodorsal nucleus) had
189  high PC, indicating that this module is internally directed by thalamic regions and also externally
190 communicates through these regions. Overall, the methamphetamine network had a similar
191  number of total connections to the control network, but it had minimal interconnections between
192  modules (Fig. 2, 5; see Table 4 for a full list of values for the network).

193

194  The nicotine withdrawal network is driven by cortical and extended amygdalar regions

195 The nicotine network had 4,957 connections, the second most of all conditions, and
196  consisted of five modules and one brain region (interanterodorsal nucleus of the thalamus) that
197 was disconnected from the entire network. Overall, the nicotine network was relatively
198 interconnected between modules and had two large modules and three medium modules.

199 One of the large modules (module 1) contained midbrain (e.g., pedunculopontine nucleus
200 and periaqueductal gray), hindbrain (e.g., pons and pontine reticular nucleus), cortical (e.g.,
201  perirhinal area, posterior auditory area, ventral anterior cingulate temporal association areas, and
202  visceral area), and subcortical (claustrum) brain regions that had high WMDz. A separate set of
203  cortical (e.g., postsubiculum, lateral visual area, and gustatory areas), thalamic (e.g., anteroventral
204  nucleus of the thalamus and peripeduncular nucleus), hypothalamic (e.g., posterior periventricular

205  nucleus, supramammillary nucleus, and periventricular zone), and midbrain (e.g., midbrain
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206  reticular nucleus, ventral tegmental area, and medial pretectal area) brain regions and a few others
207  that included the central amygdala and vestibular nuclei had high PC.

208 In the second large module (module 4), a set of sensory/cortical (e.g., primary
209  somatosensory area, lower limb, ventral agranular insular area [Alv], and primary motor area) and
210 hypothalamic (e.g., parastriatal nucleus, retrochiasmatic area, lateral preoptic area, medial preoptic
211 area, and zona incerta) brain regions had high WMDz. All of the same sensory/cortical and
212 hypothalamic regions had high PC and a number of other thalamic and sensory regions.
213  Additionally, the anterior amygdalar area (AAA) also showed both high WMDz and high PC.
214 One of the smaller modules (module 2) consisted of hippocampal (dentate gyrus) and
215  sensory/cortical (e.g., posterolateral visual area, anteromedial visual area, and subiculum [SUB])
216  regions, along with the nucleus of reuniens (RE) with high WMDz. The SUB and RE also had
217  high PC, along with other thalamic, hypothalamic, and midbrain regions.

218 In another smaller module (module 3), the precommissural nucleus (PRC), medial
219  habenula, and intergeniculate leaflet of the lateral geniculate complex (IGL) had high WMDz and
220  high PC. Other midbrain and thalamic regions also had high PC.

221 In the last small module (module 5), no regions reached the criterion for high WMDz, but
222  the orbitofrontal cortex (lateral and ventrolateral orbital area), bed nucleus of the stria terminalis,
223  and medial amygdalar nucleus were all in the top five values (WMDz = 0.64-0.67). However,
224  every region in this module, with the exception of the bed nucleus of the accessory olfactory tract,
225  reached the criterion for high PC (Fig. 2, 6; see Table 5 for a full list of values for the network).
226

227  Discussion
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228 The present study used unbiased single-cell whole-brain imaging to identify changes in
229  brain functional architecture after withdrawal from chronic exposure to psychostimulants.

230  Withdrawal from psychostimulants resulted in a massive increase in neural coactivation that was
231  associated with a decrease in modularity with varying degrees of severity, depending on the

232 drug, compared with control mice. This decreased modularity resulted in the emergence of new
233 network architecture and organization of the brain. Using graph theory, we identified brain

234 regions that are most responsible for inter- and intramodular communication within each

235  network. Withdrawal from all of the psychostimulants that were tested in the present study

236  resulted in different network organization than the control network. The methamphetamine and
237  cocaine withdrawal networks closely resembled each other in structural organization, primarily
238  through thalamic motifs, whereas the nicotine withdrawal network shared some similarities with
239  the control network. These unbiased whole-brain analyses demonstrate that psychostimulant

240  withdrawal produces the drug-dependent remodeling of functional architecture of the brain and
241  suggest that decreased modularity of the brain functional network may be a central feature of
242  addiction.

243 We found that cocaine, methamphetamine, and nicotine withdrawal produced major
244  increases in coordinated activity throughout the brain compared with control mice. We further
245  found that withdrawal resulted in a decrease in modular structuring of the brain compared with
246  control mice (seven modules). The decrease in modularity was most evident for methamphetamine
247  withdrawal (three modules) and cocaine withdrawal (four modules), whereas nicotine withdrawal
248  showed a smaller reduction of modularity (five modules). Such reductions of modularity are found
249  in humans who suffer from dementia and traumatic brain injury and are associated with cognitive

250  deficits [28-33]. Changes in network structure/functional connectivity [10-13] and cognitive


http://dx.doi.org/10.1101/743799

bioRxiv preprint first posted online Aug. 22, 2019; doi: http://dx.doi.org/10.1101/743799. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Kimbrough et al. 13

251  function [34-36] have been observed after chronic drug use and withdrawal, suggesting that similar
252 mechanisms may be active between these different neural disorders.

253 We examined the components of individual modules within each network and found that
254  the control network was heavily driven by sensory and motor brain regions. This result confers
255  validity to our single-cell whole-brain network analysis approach for characterizing network
256  features because it fits with what might be expected from a normal, awake, behaving animal that
257  explores the environment and relies heavily on sensory/motor systems. Furthermore, the control
258  network was more interconnected between modules overall and contained several regions that
259  could be classified as hubs of each module that are critical for network function, based on high
260 intra- and intermodular connectivity. This suggests that the control brain may be more resilient to
261 the disruption of function because additional hub regions may compensate more easily in

262  response to such disruptions.

263 In the networks that were associated with withdrawal from psychostimulants, a shift was
264  observed from sensory/motor regions to more subcortical (e.g., amygdalar, thalamic,

265  hypothalamic, and midbrain) regions that drive the network. A similar effect was seen in

266  nonhuman primates after cocaine abstinence [37], and alterations of connectivity of the

267  somatosensory cortex are associated with smokers [38]. This may represent a shift from top-
268  down cortical network control [39] to bottom-up subcortical network control and may reflect the
269  greater influence of internal drives that are associated with negative affect during withdrawal in
270  controlling the whole-brain network [40]. This shift may be a major reason why drugs are so
271  addictive because higher cortical connectivity in humans may protect against relapse [41].

272 Given the modular organization of the different networks, both the control network and

273  nicotine network had a much higher incidence of intermodular connectivity, whereas the
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274  methamphetamine and cocaine networks had only a small subset of brain regions that were
275  connected between different modules. Similar changes in neural activity, combined with

276  decreases in interconnectivity and network efficiency, have been observed in humans after
277  psychostimulant use [42-44]. The nicotine network was different from the methamphetamine and
278  cocaine networks and somewhat resembled a slightly altered control network. Similarities and
279  differences in network properties of the three different drugs are likely to be caused by

280  differences in receptor mechanisms and locations where each drug acts throughout the brain.
281  Indeed, both cocaine and methamphetamine target the same dopamine transporter, whereas
282  nicotine acts on nicotinic receptors [45-48]. These results suggest that single-cell whole-brain
283  imaging may be used as a fingerprint or “brainprint” to characterize novel compounds by

284  comparing whole-brain network changes to existing compounds.

285 The interanterodorsal nucleus of the thalamus was disconnected from the nicotine

286  network, suggesting that it may not be involved in controlling the withdrawal network, although
287  we cannot exclude the possibility that its disconnection may instead be a critical feature of
288  nicotine withdrawal. One of the larger modules in the nicotine network was driven by several
289  brain regions, two of which included the AAA and Alv, which have been suggested to be

290  associated with nicotine withdrawal in humans [49, 50]. The methamphetamine and cocaine
291  networks, although having distinctly different features, shared an overall motif of lower

292  modularity and being heavily driven by thalamic brain regions. This suggests that, in a

293  destabilized and less structured neural network, the thalamus becomes more critical to

294  controlling the whole-brain network. The thalamus is thought to play a major role in relaying
295 information, and the reliance of these networks on this group of regions suggests that the

296  thalamus is not simply a relay station but has greater importance in cognitive and emotional
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297  function [51, 52]. Substantial evidence corroborates the importance of the thalamus in

298  psychostimulant addiction and withdrawal. In a rat model of cocaine self-administration, the
299 thalamus was found to be heavily involved in network function during acute abstinence, but
300 changes in the network disappeared after 2 weeks [22]. Interestingly, the thalamus in humans has
301 been shown to be hypoactive in cocaine abusers [53], and thalamic connectivity is predictive of
302  cocaine dependence [54] and altered in infants who are exposed to cocaine [55]. Although

303 network changes that are induced by acute withdrawal are reversed over time [22], prolonged use
304 may lead to more permanent restructuring of the brain, and major differences between the

305 nicotine and methamphetamine/cocaine networks may account for differences in the severity of
306  eachdrug after long-term use [35, 45, 56].

307 In the past 40 years, the addiction field has made tremendous progress by identifying
308 numerous brain regions that are dysregulated after psychostimulant exposure and contribute to
309 addiction-like behaviors [3-9]. Despite this vast knowledge, however, still unclear are the ways
310 inwhich these neuroadaptations, as a whole, lead to addiction. The identification of a final

311 common brain pathway that is responsible for addiction remains elusive. The present results
312  confirm that a substantial number of brain regions are affected by psychostimulant exposure and
313  suggest that the final common pathway that is responsible for addiction may not reside at the
314 level of brain regions or even single neural circuits. Instead, these results suggest that the main
315 common phenomenon that is observed among all three of these psychostimulants is decreased
316  modularity of whole-brain functional architecture, suggesting that the final common pathway
317  may reside at the whole-network level. This interpretation is consistent with the literature on the
318  modularity of complex systems, including the brain and mind, showing that lower modularity

319  reduces the capacity of the system to adapt to its environment [57]. Such a reduction of the
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320  capacity to adapt to the environment is reminiscent of one cardinal symptom of addiction,

321  namely continued drug use despite adverse consequences.

322 In summary, the present study showed that withdrawal from psychostimulants results in
323  changes in neural network structure, including increases in coactivation among brain regions and
324  decreases in modularity. Psychostimulant withdrawal resulted in a shift from a sensory/motor-
325  driven network to a network that is highly driven by subcortical regions. We also found that
326  different psychostimulants do not produce the same neural networks, although methamphetamine
327 and cocaine shared similar properties. These findings shed light on alterations of brain function
328 thatare caused by drug exposure and identify potential brain regions that warrant future study. The
329  present study demonstrates that psychostimulant withdrawal produces drug-dependent remodeling
330 of the functional architecture of the brain and suggests that decreased modularity of the brain
331 functional networks and not a specific set of brain regions may represent the final common
332  pathway that leads to addiction. These findings may prove critical to designing future treatment
333  approaches for drug abuse.

334

335 Materials and Methods

336  Animals

337 Male C57BL/6J mice were bred at The Scripps Research Institute. They were 20-30 g and
338 60 days old at the start of the experiment. The mice were maintained on a 12 h/12 h light/dark
339  cycle with ad libitum access to food and water. All of the procedures were conducted in strict
340 adherence to the National Institutes of Health Guide for the Care and Use of Laboratory Animals
341 and approved by The Scripps Research Institute Institutional Animal Care and Use Committee.

342
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343 Drugs

344 The doses were 4 mg/kg/day for methamphetamine, 24 mg/kg/day for nicotine, and 60
345 mg/kg/day for cocaine. These doses were chosen based on previous studies that indicated
346  rewarding effects during use, resulting in withdrawal-like symptoms after the cessation of chronic
347  use [14-20]. Each drug was dissolved in saline, and the pH was adjusted to 7.4. The drugs were
348 loaded into osmotic minipumps (Alzet; model no. 1002). The minipumps sat overnight in saline
349  before insertion to ensure that drug delivery would begin immediately.

350

351  Minipump implantation and removal

352 The mice were split into four groups for the experiment: methamphetamine withdrawal
353  group (n = 5), nicotine withdrawal group (n = 5), cocaine withdrawal group (n = 5), and saline
354  control group (n = 4). Each mouse was surgically implanted with an osmotic minipump for
355  methamphetamine, nicotine, cocaine, and saline based on group assignment. The minipumps were
356  implanted in the lower back of each mouse under anesthesia. After brief recovery, the mice were
357  returned to their home cages. The mice remained in their home cages for 1 week to allow for
358  chronic infusion of the drug.

359 After 1 week, the minipumps were surgically removed under anesthesia to allow for drug
360  washout and withdrawal to begin. Mice in the nicotine, cocaine, and saline groups were perfused
361 8 hafter removal of the minipumps. Mice in the methamphetamine group were perfused 12 h after
362  removal of the minipumps. These time points were chosen to represent an acute withdrawal period
363  fromeach drug (e.g., aminimum of 4 h without the drug present) and based on the half-life of each
364  drug in mice [58-62].

365
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366  Tissue collection

367 The mice were deeply anesthetized and perfused with 15 ml of phosphate-buffered saline
368 (PBS) followed by 50 ml of 4% formaldehyde. The brains were postfixed in formaldehyde

369 overnight. The next day, the brains were washed for 30 min three times with PBS and transferred

370 toaPBS/0.1% azide solution at 4°C for 2-3 days before processing via iDISCO+.

371

372 iDISCO+

373 The IDISCO+ procedure was performed as reported by Renier et al. [63, 64].
374

375  Immunostaining

376 Fixed samples were washed in 20% methanol (in double-distilled H20) for 1 h, 40%
377  methanol for 1 h, 60% methanol for 1 h, 80% methanol for 1 h, and 100% methanol for 1 h
378  twice. The samples were then precleared with overnight incubation in 33% methanol/66%

379  dichloromethane (DCM; Sigma, catalog no. 270997-12X100ML). The next day, the samples
380  were bleached with 5% H202 (1 volume of 30% H20: for 5 volumes of methanol, ice cold) at
381  4°C overnight. After bleaching, the samples were slowly re-equilibrated at room temperature and
382  rehydrated in 80% methanol in double-distilled H20 for 1 h, 60% methanol for 1 h, 40%

383  methanol for 1 h, 20% methanol for 1 h, PBS for 1 h, and PBS/0.2% TritonX-100 for 1 h twice.
384  The samples were then incubated in PBS/0.2% TritonX-100/20% dimethylsulfoxide

385 (DMSO0)/0.3 M glycine at 37°C for 2 days and then blocked in PBS/0.2% TritonX-100/10%
386 DMSO/6% donkey serum at 37°C for 2 days. The samples were then incubated in rabbit anti c-
387  fos (1:2000; Synaptic Systems catalog number 226 003) in PBS-0.2% Tween with 10 pg/ml

388  heparin (PTwH)/5% DMSO/3% donkey serum at 37°C for 7 days. The samples were then
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389  washed in PTwH for 24 h (five changes of the PTwH solution over that time) and incubated in
390 donkey anti-rabbit Alexa647 (1:500; Invitrogen, catalog no. A31573) in PTwH/3% donkey
391  serum at 37°C for 7 days. The samples were finally washed in PTwH for 1 day before clearing
392  and imaging.

393

394  Sample clearing

395 Immunolabeled brains were cleared using the procedure of Reiner et al. (2016) [63]. The
396  samples were dehydrated in 20% methanol in double-distilled H20 for 1 h, 40% methanol for 1
397 h, 60% methanol for 1 h, 80% methanol for 1 h, 100% methanol for 1 h, and 100% methanol
398 again overnight. The next day, the samples were incubated for 3 h in 33% methanol/66% DCM
399 until they sank to the bottom of the incubation tube. The methanol was then washed for 20 min
400 twice in 100% DCM. Finally, the samples were incubated in dibenzyl ether (DBE; Sigma,

401 catalog no. 108014-1KG) until clear and then stored in DBE at room temperature until imaged.
402

403  Image acquisition

404 Left hemispheres of cleared samples were imaged in the sagittal orientation (right lateral
405  side up) on a light-sheet microscope (Ultramicroscope I1, LaVision Biotec) equipped with an
406 sCMOS camera (Andor Neo) and 2x/0.5 objective lens (MVPLAPO 2x) equipped with a 6 mm
407  working distance dipping cap. Imspector Microscope controller v144 software was used. The
408  microscope was equipped with an NKT Photonics SuperK EXTREME EXW-12 white light laser
409  with three fixed light sheet generating lenses on each side. Scans were made at 0.8x

410  magnification (1.6x effective magnification) with a light sheet numerical aperture of 0.148.

411 Excitation filters of 480/30, 560/40, and 630/30 nm were used. Emission filters of 525/50,
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412 595/40, and 680/30 nm were used. The samples were scanned with a step size of 3 um using
413  dynamic horizontal scanning from one side (the right) for the 560 and 630 nm channels (20
414  acquisitions per plane with 240 ms exposure, combined into one image using the horizontal
415  adaptive algorithm) and without horizontal scanning for the 480 nm channel using two-sided
416 illumination (100 ms exposure for each side, combined into one image using the blending

417  algorithm). To accelerate acquisition, both channels where acquired in two separate scans. To
418  account for micro-movements of the samples that may occur between scans, three-dimensional
419  image affine registration was performed to align both channels using ClearMap [63].

420

421  Data analysis

422 Identification of activated brain regions. Images that were acquired from the light-sheet
423 microscope were analyzed from the end of the olfactory bulbs (the olfactory bulbs were not
424  included in the analysis) to the beginning of the hindbrain and cerebellum. Counts of Fos-

425  positive nuclei from each sample were identified for each brain region using ClearMap [63].
426  ClearMap uses autofluorescence that is acquired in the 488 nm channel to align the brain to the
427  Allen Mouse Brain Atlas [65] and then registers Fos counts to regions that are annotated by the
428  atlas. The data were normalized to a logio value to reduce variability and bring brain regions with
429  high numbers (e.g., thousands) and low numbers (e.g., tens to hundreds) of Fos counts to a
430  similar scale.

431 Identification of co-activation within individual networks. Separate inter-regional Pearson
432  correlations were then calculated using Statistica software (Tibco) across animals in the saline,

433  cocaine, methamphetamine, and nicotine groups to compare the logio Fos data from each brain
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434  region to each of the other brain regions. See Table 1 for a list of brain regions, their

435  abbreviations, and their Allen atlas grouping.

436

437  Hierarchical clustering

438 Previous rat and mouse studies that examined functional connectivity used 5-8 animals
439  [21, 22]. The number of samples that are examined in functional connectivity studies is the
440  number of potential connections (i.e., 178 total brain regions all connecting with each other for
441  each treatment). Furthermore, hierarchical clustering organizes brain regions into modules by
442  grouping regions that show a similar coactivation profile across all other brain regions. Thus,
443  more total connections minimize the effect that an inaccurate brain region-to-brain region

444  connection has on network organization and overall network structure.

445 Inter-regional Fos correlations were then used to calculate complete Euclidean distances
446  between each pair of brain regions in each group of mice. The distance matrices were then
447  hierarchically clustered using R Studio software by both row and column using the complete
448  method to identify modules of coactivation within each treatment group. The hierarchical cluster
449  dendrograms were trimmed at half the height of each given tree to split the dendrogram into
450  specific modules. The result of a decrease in modularity that is attributable to psychostimulant
451  use was consistent across multiple tree-cutting thresholds (Fig. 1B).

452

453  Graph theory identification of functional networks

454 We used a graph theory-based approach to identify the functional neural networks that
455  were associated with each treatment condition. Graph theory is a branch of mathematics that is

456  used to analyze complex networks, such as social, financial, protein, and neural networks [21,
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457  66-77]. Using graph theory, functional networks can be delineated, and key brain regions of the
458  network can be identified [21, 69, 78, 79].

459 Previous studies of regional connectivity profiles in Fos coactivation networks have
460  focused on global measures of connectivity (e.g., degree) [21]. However, in correlation-based
461  networks, these measures can be strongly influenced by the size of the subnetwork (module) in
462  which a node participates [80]. For the graph theory analyses, we were interested in regional
463  properties and not module size per se. Thus, module structure needs to be considered when
464  examining the role that each region plays in the network. To accomplish this, we utilized two
465  widely used centrality metrics that were designed for application to modular systems. The

466  WMDz indexes the relative importance of a region within its own module (e.g., intramodule
467  connectivity), and the PC indexes the extent to which a region connects diversely to multiple
468  modules (e.g., intermodule connectivity) [27].

469 We used the Pearson correlation values that were calculated for the brain regions from
470  each treatment. Prior to plotting and calculating regional connectivity metrics, the network was
471  thresholded to remove any edges that were weaker than R = 0.75. As such, visualization and
472  graph theory analyses were performed using only edges with positive weights. Regional

473  connectivity metrics (PC and WMDz) were calculated as originally defined by Guimera and
474  Amaral (2005) [27], modified for application to networks with weighted edges. PC and WMDz
475  were calculated using a customized version of the bctpy Python package

476  (https://github.com/aestrivex/bctpy), which is derived from the MATLAB implementation of

477  Brain Connectivity Toolbox [78].

478 For WMDz, let k; (within-module degree) be the summed weight of all edges between

479  region i and other regions in module s;. Then, I?Si is the average within-module degree of all
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480  regions in module s;, and gy _ is the standard deviation of those values. The Z-scored version of

481  within-module degree (WMDz) is then defined as:

i~ fs;

482 WMDz =

O'ksi
483  This provides a measure of the extent to which each region is connected to other regions in the
484  same module.

485 For PC, let k;, (between-module degree) be the summed weight of all edges between

486  region i and regions in module s, and let k; (total degree) be the summed weight of all edges

487  between region i and all other regions in the network. The PC of each region is then defined as:

Nm
kis\”
488 Pp=1- Z (i)
k;
s=1

489  This provides a measure of the extent to which the connections of a region are distributed mostly
490  within its own module (PC approaching 0) or distributed evenly among all modules (PC

491  approaching 1).

492 A high PC was considered > 0.30, and a high WMDz was considered > 0.80. Previous
493  studies have used ranges of > 0.30-0.80 for high PC and > 1.5-2.5 for high WMDz [27, 77].
494  Because of differences in the sizes/types of networks that were examined and the methods that
495  were used (e.g., Fos vs. functional magnetic resonance imaging), we adjusted the range for
496  consideration as having high PC and WMDz accordingly.

497 Network visualization was performed using a combination of Gephi 0.9.2 software [81]
498  and Adobe Illustrator software. Nodes were positioned using the Force Atlas 2 algorithm [82]
499  with a handful of nodes that were repositioned manually for better visual organization.

500
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692 Figure Legends

693

694  Figure 1. A. Experimental design. Mice were surgically implanted with an osmotic minipump that
695 contained either saline or a psychostimulant (60 mg/kg/day cocaine, 4 mg/kg/day
696  methamphetamine, or 24 mg/kg/day nicotine). They were then returned to their home cage for 1
697  week. After 1 week, the minipumps were surgically removed, and the mice were returned to their
698 home cage until brain tissue was collected 8 h later (saline, cocaine, nicotine) or 12 h later
699  (methamphetamine). Brains were then processed for whole-brain Fos immunohistochemistry and
700  clearing via iDISCO+ and then imaged on a light-sheet microscope. Fos values were detected and
701  registered to the Allen Brain Atlas using ClearMap [63]. Pearson correlations were then calculated
702  to determine functional coactivation among brain regions. Brain regions were then grouped into
703  modules based on their coactivation patterns through hierarchical clustering. Graph theory
704  analyses was then performed to identify brain regions that are heavily involved in intra- and
705 intermodular connectivity. B-F. Hierarchical clustering of complete Euclidean distance matrices
706  for each treatment. Modules were determined by cutting each dendrogram at half of the maximal
707  tree height. B. Number of modules in each treatment condition after cutting the hierarchical
708  clustered dendrogram at different percentages of tree height. In all cases (except at extreme cutoff
709  values; e.g., 90-100%), the psychostimulant networks showed lower modularity compared with
710 the control network. C. Relative distance of each brain region relative to the others that were
711  examined in control mice. In control mice, seven distinct modules of coactivation were identified.
712  D. Relative distance of each brain region relative to the others that were examined in cocaine mice.
713  Incocaine mice, four distinct modules of coactivation were identified. E. Relative distance of each

714  Dbrain region relative to the others that were examined in methamphetamine mice. In
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715  methamphetamine mice, three distinct modules of coactivation were identified. F. Relative
716  distance of each brain region relative to the others that were examined in nicotine mice. In nicotine
717  mice, five distinct modules of coactivation were identified. For all distance matrices, each module
718 s boxed in purple. For the individual brain regions that are listed in panels C-F, see Table 6.

719

720  Figure 2. Intramodular (WMDz) and intermodular (PC) network features of each treatment. A
721  high PC was considered > 0.30, and a high WMDz was considered > 0.80. A. Highlights of several
722  regions with high PC in each module of each network network (see Table 1 for names of
723  abbreviations). B. Highlights of several regions with high WMDz (red = higher, blue = lower) in
724  each module of each network. Note that the WMDz color intensity is only relative to the other
725  regions within the same network and not other networks (see Table 1 for names of abbreviations).
726  C. Total number of brain regions that accounted for high PC, high WMDz, or both in each network.
727  The control and nicotine networks showed much greater intermodular connectivity and a greater
728  number of regions with both high intermodular and intramodular connectivity. The cocaine and
729  methamphetamine networks showed higher levels of intramodular connectivity and a low number
730  of regions with intermodular connectivity.

731

732 Figure 3. Neural network of control mice thresholded to 0.75R. Nodes/brain regions of the
733 network are represented by circles. The size of the node represents the participation coefficient
734  (smaller = lower PC; larger = higher PC). The internal color of each circle represents the within-
735  module degree Z-score (dark blue = lowest; dark red = highest). The color of the modules that are
736  identified in Fig. 1C are represented by different colored edges. See figure key for examples of

737  each representative component of the figure.
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738

739  Figure 4. Neural network of cocaine mice during withdrawal thresholded to 0.75R. Nodes/brain
740  regions of the network are represented by circles. The size of the node represents the participation
741  coefficient (smaller = lower PC; larger = higher PC). The internal color of each circle represents
742  the within-module degree Z-score (dark blue = lowest; dark red = highest). The color of the
743  modules that are identified in Fig. 1D are represented by different colored edges. See figure key
744  for examples of each representative component of the figure.

745

746  Figure 5. Neural network of methamphetamine mice during withdrawal thresholded to 0.75R.
747  Nodes/brain regions of the network are represented by circles. The size of the node represents the
748  participation coefficient (smaller = lower PC; larger = higher PC). The internal color of each circle
749  represents the within-module degree Z-score (dark blue = lowest; dark red = highest). The color
750  of the modules that are identified in Fig. 1E are represented by different colored edges. See figure
751  key for examples of each representative component of the figure.

752

753  Figure 6. Neural network of nicotine mice during withdrawal thresholded to 0.75R. Nodes/brain
754  regions of the network are represented by circles. The size of the node represents the participation
755  coefficient (smaller = lower PC; larger = higher PC). The internal color of each circle represents
756  the within-module degree Z-score (dark blue = lowest; dark red = highest). The color of the
757  modules that are identified in Fig. 1F are represented by different colored edges. See figure key
758  for examples of each representative component of the figure.

759
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