Supplement to “On standardizing kilonovae and their use as standard candles to measure the Hubble constant”

Michael W. Coughlin,¹,² Tim Dietrich,³ Jack Heinzel,⁴,⁵ Nandita Khetan,⁶ Sarah Antier,⁷ Mattia Bulla,⁸ Nelson Christensen,⁴,⁵ David A. Coulter,⁹ and Ryan J. Foley⁹

¹School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
²California Institute of Technology, 1200 East California Blvd, MC 249-17, Pasadena, CA 91125, USA
³Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands
⁴Artemis, Université Côte d’Azur, Observatoire Côte d’Azur, CNRS, CS 34229, F-06304 Nice Cedex 4, France
⁵Carleton College, Northfield, MN 55057, USA
⁶Gran Sasso Science Institute (GSSI), I-67100 L’Aquila, Italy
⁷APC, UMR 7164, 10 rue Alice Domon et Lonie Duquet, 75205 Paris, France
⁸Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
⁹Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA

PACS numbers:

I. GAUSSIAN PROCESS REGRESSION FITS
FIG. 1: The fit of Eqs. (??) and (??) and to the color-magnitude diagram shown in Figure ?? for the models in Ref. [? ], varying the available lanthanide fractions and ejecta velocities of the employed simulation set. The black points are the fits (with the measured error bar from the chi-squared) while the blue points are computed directly from the models in Ref. [? ].