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We study the connections between three quantities that can be used as diagnostics for quantum
chaos, i.e., the out-of-time-order correlator (OTOC), Loschmidt echo (LE), and complexity. We
generalize the connection between OTOC and LE for infinite dimensions and extend it for higher-
order OTOCs and multi-fold LEs. Novel applications of this intrinsic relation are proposed. We also
propose a relationship between a specific circuit complexity and LE by using the inverted oscillator
model. These relationships signal a deeper connection between these three probes of quantum chaos.
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I. INTRODUCTION

The quest of a quantum version for a classical chaos
has gained too much momentum over the last few years.
Interested readers are to referred to [I] and the references
therein. The reason is that the sought-after formulation of
quantum chaos has appeared to be versatile entering many
branches in theoretical and experimental physics. De
facto, quantum chaos has found applications and received
considerable attention across physical disciplines such as
condensed matter physics, quantum information theory
and high energy physics, in particular, in the context of
black hole and holography [2]. Several diagnostic tools
have been proposed to quantify these diverse aspects.

Over the time, the endeavors to improve the current
diagnostic gadgets and develop new ones have gone a
long way. The out-of-time-order correlator OTOC [3], [4]
has been intensively utilized to examine chaotic phenom-
ena leading to a significant and profound understand-
ing for long-standing problems. Loschmidt Echo (LE),
introduced as another powerful toolkit [5] [6], has also
played a pivotal role in demystifying the deep structure
of (quantum) chaos. Very recently, the notion of quan-
tum/computational complexity has joined the club of
quantum chaos diagnostics [7HI0]. In [I1], the authors
shown that a particular type of complexity, namely circuit
complexity[1Z, [13], can capture equivalent information as
the OTOC.

There are serious indications that the proposed chaos
quantifiers are related. For instance, there had been a
strong belief that OTOC and LE are somehow connected
due to the intrinsic echo nature of the OTOC. Indeed, in
[T4] a major step has been taken to establish such a link
at all time scales. It is worth mentioning that, previously
there had been several attempts [I5] [16] to achieve the
same goal, but all of them are resorted to some variants
of the OTOC or specific choice of operators.

Our actual work can be regarded as the starter of the
program that targets toward a complete web of quantum
chaos diagnostics. The aim of this paper is two-fold;
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i) first, generalize the OTOC-LE connection of [14] for
infinite dimensional system and extend it to k¥ multi-fold
and provide examples, ii) second, understand the triangle
of relations between, OTOCs, LE and complexity.

It is worth emphasizing that we have only examined the
LE-complexity relation in the context of single inverted
oscillator and a specific LE. In the discussion section we
shall comment and speculate on the possible ways to go
beyond this example and highlight future directions.

II. LOSCHMIDT ECHO AND OTOC

We first start with an introduction to the Loschmidt
echo and the regular 4-point OTOC. We will then discuss
the general properties of these two quantities, as well as
the intrinsic connection between them. Our first result is
to generalize the link between the regular OTOC and LE
to higher-order OTOCSs and a echo quantity with multiple
loops. This leads to a range of novel applications.

A. 4-point OTOC and Loschmidt Echo

1. Loschmidt Echo
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FIG. 1. LE as an echo quantity measures how much a quantum
state is recovered by an imperfect time reversal.

The LE is formally defined as [6]
M(t) = (ol e2re™ 1" i) ,

where [)p) is the initial state of a quantum system, H; and
Ho are two slightly different Hamiltonian, e.g., H1 = Hg
is the unperturbed Hamiltonian, and Ho = Ho+V with V'
a small perturbation. In the literature, the LE could also
refer to the square of the magnitude of the above quantity
to remove the phase which is typically not essential.

There are two ways to interpret the LE. The first is to
think of it as an “echo” process; it qualifies how much
of the complex system is recovered upon applying an
imperfect time-reversal, as sketched in Fig.

The other way is to interpret it as the overlap (the
“distance”) between two wavefunctions (“trajectories”)
evolving under slightly different dynamics. This in anal-
ogy to the classical notion of chaos, though in the latter
case perturbations are applied to the initial condition in
the classical phase space, while in the quantum case the
perturbations are applied to the Hamiltonian. (Due to the
fundamental unitary dynamics in quantum systems, any

small perturbations on the initial wavefunctions remain
unchanged during time evolution.) In this sense, the LE
is related to the butterfly effect, so one can consider it as
a type of diagnostic tools for chaos.

2. 4-point OTOC

The regular 4-point OTOC is formally defined as
Fa(t) = (WHOVI )W (6)V(0)) 5,

Here the average is taken over a thermal state at inverse
temperature 8. W and V are two local operators on
distinct local subsystems. W(t) = e "Wt is the
Heisenberg evolution of operator W. The OTOC has
been extensively studied in various context and different
variants of it has been proposed. For instance, taking
average over pure states, or choosing global operators
[17, [18].

We note the following universal features of the OTOC:

e When W and V are both Hermitian and unitary,
the OTOC is related to the squared commutator

Two local operator W and V commute at t = 0. The
Heisenberg evolution converts W (t) into a global
operator; the commutator hence fails to vanish and
induces decay of the OTOC. For chaotic dynamics
the OTOCs exhibits fast decays.

e The OTOC has several decay regimes. At early
stage before the Ehrenfest time scale (scrambling
regime), the decay of OTOC is manifested as an
exponential growth, 1 — deM, where § < 1. This
type of decay certainly does not converge, and will
switch to a pure exponential decay before satura-
tion. In the asymptotic regime the OTOC typically
shows model-dependent power law behaviors. In
the scrambling regime, the exponential growth rate
is conjectured to be bounded by the temperature,
i.e.,, A <27/ from holography [19].

e Different choices of operators of W and V share
common features of their OTOCs. For complex
enough systems, the OTOC is not sensitive to the
particular form of the operators, as long as they
are generic, e.g., random operators. This makes
it possible to extract the universal properties of
the OTOC by averaging over all operators of given
subsystems. In the following sections we explore
the consequences of this averaging procedure.



8. Bridging out the 4-point OTOC and the Loschmidt Echo

©

A B

FIG. 2. Local structure of the total system and the choice of
subsystems in the OTOC.

As noted in the previous section, the insensitivity to
the choice of operators allows one to extract the universal
features of OTOC by taking the average over a given set
of operators. The average procedure has been considered
for different variants of the OTOCs. When restricted
to the original form with local operators, there exists
a strong relation between the Loschmidt echo and the
4-point OTOC which is the resemblance of the latter to
the thermal average of the Loschmidt echo signal.

Without losing the local structure of a many-body
system, the supports of two operators W and V are
chosen as two distinct subsystems A and B, where A is a
small subsystem, while B is the complement of A to the
total system, as illustrated in Fig. 2] We then take the
average of the two operators over the set of all unitaries on
the two fixed subsystems with the “largest randomness”,
i.e., with respect to the Haar measure.

It has been demonstrated in Ref. ([I4]) that the OTOC
and LE are ultimately related as

/ AWV (W) VIW (6)V) s=0

Haar

~ <6i?-l5 ~ efi(H5+V)t>ﬂ=0

Here the Hamiltonian of the larger subsystem B plays the
role as the unperturbed Hamiltonian; and the perturba-
tion V naturally emerges from the interaction between the
two subsystems. For proper regularization of the thermal
state, this relation generalizes to finite temperature as
well [14].

In the following section, we will attempt to general-
ize this work and bridge 2k-point OTOC to the k-fold
Loschmidt echo.

B. 2k-OTOC and 2(k-1)-fold Echo

In this section, we will generalize the link between the
4-point OTOC and LE to higher order OTOCs and multi-
fold LE. We first give a formal definition of the 2k-point

OTOC. We then demonstrate that it is linked to a LE
with 2(k — 1) forward and backward loops.
The regular 4-point OTOC,

WiV o)w(t)v(0),

probes the spreading of the local operator W over the
entire system. The work of Refs. [20] 2I] suggests the
study of the generalized 2k-OTOC, defined as

WIVHOWV(0)) = (W] (t1).. W] (te—1)
VHO)Wi— 1 (tr—1)... W1 (t1)V(0)), (1)

where W = Wiy_1(tx—1)...Wi(t1) indicates the ordering
of the operators in the correlator.

There are other types of generalized definitions of the
2k-OTOC, such as the ones used to probe k-designs in Ref.
[20], or the one connected to the spectral form factors
in Ref. [22]. The operators in the correlator could be
interpreted as either global (e.g., as in Refs. [20} 22]) or
local operators (e.g., as in Ref. [21]) for different purposes.

At the moment, we first focus on the most restricted
sense, i.e., the operator Wy’s are all local operators ap-
plying on distinct local (and small) subsystems, such that
the 2k-OTOC probes the scrambling of multiple lo-
cal perturbations. We choose V' as an operator on the
complement of the k — 1 local subsystems.

We denote

Wk(tk) = UngUk = Wk,

where Uy = eft* represents (local) Hamiltonian evolu-
tion.

Consider the averaged 2k-OTOC with respect to the
Haar integral at infinite temperature,

/ AW, ...dWy_1dV (Wi W VT
Haar

kal-nWlV),B:O

1 . -
= ETT/ dW1..-de—ldV(WfLmW/I—lVT
Haar
Wi_1..W1V)

The particular ordering of operators in the integrand al-
lows us to perform the integral one-by-one, e.g., the inner-
most integral for the Wy_; operators can be computed
first (See Appendix A for Haar average over subsystems.):

[awics (Wf...W,jlvfm_l..le),
:/dW,H (VT/{..WQQU,IIWQI

UklvTU,j_lwklUk1WH..W1V),

1
di—1

wi.wi ol Ty <Uk_1VTU,1_1>

U 1 Wiy_o.. W1V,



where T'ri_1 represents the partial trace over the subsys-
tem k — 1.
Performing the integral for all the W operators gives

1 S
ST / dWl...de_ldV<Wf...W,11VT

Haar
Wkl...le>
1 1 : T
:ngT av. UlTr(Uy..U;_,

Try_s <Uk_2U,i_1Trk_1 (U,HVTU,I_1> U,HU,I_2>

Uk_2...U1T>U1V

1
—Tr / dv Try {Ul...U,IQTrkg [U“U,jl
dy-di

SHE

A

Try_1 <Uk_1VTU,jl> U,HU,12] Uk_z...Uf} U,vVUi

A

Using the same trick provided in the 4-point OTOC,
[14], the partial traces in piece-A can be evaluated one-
by-one (see Appendix A). For instance, the inner-most
partial trace is

Triy (U VIO, ) = Trpy (e 0o vttt

~dp_1X

E e*i(HV“l’Pk—l)tk—lVTei(HVJFPk—l)tk—l.

1
Ny
k-l P 1
Denote Ni_1 the number of different P,_1 operators,
which serve as the perturbations. The summation range
over all of them. These noisy operators emerge from the
interaction between the k — 1’s subsystem with the rest
of the total system (See Appendix A for details).

Note 1: The LHS of the above equation, after trac-
ing over the (k — 1)’th subsystem, is an operator that
involves not only the subsystem-V, but also subsystems
1,2,...,k — 2. However, we assume that it only evolves
(under noises) in subsystem-V and it does not “leak” to
other subsystems.

Note 2:

Uk,QU]I L = e—thkfzethkfl _ e_iH(tk72—tk71)7
the above procedure for partial tracing can be repeated
to all partial traces, which give the expression for A:

6*i(Hv+P1)(t1*t2)m

1
A=dy.. . djp 1
di-.dy "N N, 2

Py, Pr1 D
e~ HHv+Pr_2)(ty—2—tk—1) o —i(Hv +Pp—1)(tk-1-0) /T DT

D

Finally,
11
——T dV AB
ddy..dpy T/ v
11
. tpt t
lemeilTr/dV > DpviDU VU]

Py,...,Pr_1

As has been discussed before, U1VU1T is a global op-
erator, while DVD' is an operator with support on
system-V only. Thus the trace in the above equation
can be evaluated with two partial traces Tr = TryTry,
namely, Tr[(My ® Iy )Nyv] = Try [MyTry(Nyy)]. De-
note dj...dx—1 = dy, which is the dimension of the Hilbert
space of the subsystem complementary to subsystem-V.
The above equation continues as

1 1
Lt Try | [avDVIDITr (U VUT)]’
le...Nkfl P, ,Z};C—l V|: ) 1 |

1 11
R Tr / v DVD!
Ni..Ng_1 dy dy P, .;31@71 V|:

1 ) .
—i(Hy+Po)t i(Hy+Po)t
<N0 E e vtPo)tiyi(Hv+Fo 1):|

Py

1 1 ,

=—— Tr / dV DViDTemiHv+FPoh
No-.Nj_1dy , > V(

053 Pr—1

Vei(Hv+P0)t1) ,

1 1
= & Z
Ng...Np_1 dV Po,...,Px_1

1 1
No..Np_1 dy; Po,...,Pi_1

e*i(HV+P1)(t1*t2)'..e*i(HV+Pk—2)(tk—2*tk—l)

2
Tr(ei(HV+P0)t1D)

Tr |:ei(Hv+Po)t1

2
ei(HV+Pk—1)tk—1:|

Py, ..., P,_q are perturbations emerge from the tracing
our the subsystems -1,...,k — 1; and they have, respec-
tively. P, emerges from tracing out the subsystem V.
For complex systems, the structure of these perturbation
operators are not essential. Hence, we can eliminate the
average over all the perturbations and treat each P; as a
constant perturbation instead of a variable. The above



equation finally turns out to be

— dT TT, |:ei(HV+P0)tle—i(Hv+P1)t1 ei(HV+P1)t2
\%4

2

)

e WHv+Py_2)ty—2 Ji(Hv +Py—2)ty 1 e_i(HV"l‘Pkl)tkl:l

_ ‘ < |:e73(Hv+Po)t1 e~ {(Hy+P1)t1 ji(Hy +P1)ts

'.'e*i(HV+Pk—2)tk—2ei(HV+Pk—2)tk—1

ei(Hv+Pk—1)tk—1:| >B:O

This is the expected Loschmidt echo with 2(k — 1) loops.

C. Infinite dimensional generalization

The previous discussions focus on finite dimensional
Hilbert spaces H In this section we argue that the
OTOC-LE connection can be generalized to infinite di-
mension. The key ingredient is the Haar integral for
unitary operators U on an infinite dimensional Hilbert
space, [ du(U) UTOU, where O is a trace-class operator
and p is the Haar measure.

Here we consider the right Haar measure, which, by
definition, is invariant under transformation U — UV,
ie., w(UV) = pu(U) for any unitary operator V, which
implies

/d,u(U) utou = vt (/ du(U) UTOU) V.

This means that the Haar-averaged operator is propor-
tional to the identity operator I.
In finite dimensions, its trace can be computed as

Tr/d,u(U) Utou :/du(U) Tr(0).

Haar measure is unique up-to a constant multiplication
factor; and the unitary groups on finite dimensional
Hilbert spaces have finite measures. This allows us to
normalize the Haar measure by choosing [du = 1. Under
this convention, the averaged operator has the represen-
tation

1
/ du(U) UTOU = ST (0)1,
where d is the dimension of the Hilbert space.

1 For 2pt OTOC, a possible generalization for infinite dimensional
Hilbert spaces has been studied in [23].

For infinite dimensions, the Haar measure is not normal-
izable, and hence the averaged operator is not trace-class
anymore. However, we are interested in the case where
the averaged operator is still bounded (the OTOC takes
finite values). In this case, the Haar averaged operator
can be fixed as a constant multiplied by the identity,
¢(O)I. The functional ¢ must be linear and invariant
under unitary transformation, i.e., ¢(O) = ¢(UTOU). By
Riesz representation theorem, it is determined, up-to a
multiplication factor, to be the trace, i.e., ¢(O) < Tr(O).
We have the freedom to remove the pre-factor by absorb-
ing it into the definition of the Haar measure. Under
this convention, the desired integral for the Haar average
matches precisely with the one in finite dimensions. Once
this infinite dimensional Haar integral is evaluated, the
OTOC-LE connection follows in the same manner as in
the finite dimensional case.

If we average the OTOC over a given group of unitaries
{Uyq}, rather than performing the average over all unitary
operators with respect to Haar measure, we can firmly say
that the OTOC-LE connection holds as well, as long as
the group average, up-to a constant multiplication factor
which can be removed by re-scaling the measure, gives
the same result as the Haar average, namely,

/ dU,UIOU, / dpttaar (U)UTOU = T (0) 1.

In other words, the group {U,} is an analog of the unitary
1-design in finite dimensions.

As an example, consider the Heisenberg group
{U(q1,q2) = e@®+a2P)} where 4 and p are the canoni-
cal position and momentum operator, ¢; and go are real
numbers.

To show that the Heisenberg group is a unitary 1-design,
we will need to prove, for any trace-class operator O,

d
D= / Qiﬂl /d‘hUT(Qh(Iz)OU(QMQQ) =Tr(0)1.

This is equivalent to showing that the above operator D
in the position representation has elements

@Dl = [ 52 [ das(olU @1,02)0U (01,00
:/dxl/dxg/%/dqg
(@07 a1, o)) (1 O alU s )

:/d:cl /dmgé(x — 2")6(z1 — 22)(z1|O|x2)
=Tr(0)6(z — ).

D. Application I: Robust Witness of Scrambling

The OTOC is designed as a diagnostic for chaos. For
chaotic systems the OTOC decays rapidly and converges
to a persistent small value. In contrast, for regular sys-
tems the OTOC typically exhibits oscillatory behaviors,



with a finite recurrent time. OTOC has been experi-
mentally detected in various platforms [24H26]. However,
realistic experiments suffers from decoherence caused by
errors and couplings to the environments. As a conse-
quence, integrable systems also display rapid decaying
OTOC, and hence hinders us from distinguishing regular
and chaotic dynamics. Several protocols have been pro-
posed to robustly detect of the OTOC decay in realistic,
decoherent experiments. For example, interested readers
are referred to [27] and the citations and references of it.
Here, as the first novel application of the higher-order
OTOC-LE connection, we propose to use the 2k-point
OTOC to probe the chaotic signature of a system.
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FIG. 3. Time evolution of the multi-fold LE
for inverted (upper) and regular (lower) oscillator
(m = 1,2 = 0.1 (regular), 5 (inverted),oA =
0.1 (regular),0.001 (inverted)). Inset shows the early
exponential growth of the LE of the inverted oscillator. Blue,
red and green curves correspond to the LE with 2, 4, and 6
loops.

The argument is straightforward. Due to the connection
to multi-fold LE, the decay rate of the 2k-point OTOC is
roughly proportional to the number of loops in the LE.
For chaotic systems the observed decay of the OTOC
is much sharpened when we add more loops into the
evolution. However, for regular systems, after each pair
of forward and backward loop, the LE goes back to the
initial state at the recurrent time. Adding more loops
would not change the recurrence of the LE. Thus, even
with the presence of decoherence, the time scale of regular
systems will not be altered by adding multiple loops.

To demonstrate this fact, we study the multi-fold LE
evolution of a simple model problem, namely, a single
harmonic oscillator

2

H = 1p2 + Q—xQ, where Q% =m? — \.

2 2
The oscillator can be tuned to the regular and chaotic
regime by changing the value of A, i.e., for A < m? the
oscillator is simple, while for A > m? the oscillator is
inverted and chaotic. In each loop of the LE, we add a
small perturbation to the frequency, ' = Q + 6. The
initial state of the oscillator is prepared as a Gaussian

state, ¥(z,t = 0) = /\fexp(f‘*”;”2 ), where w, = m, and
N is the normalization factor. Following the procedure
n [II, the LE can be computed exactly. In Fig. 1 we
show the evolution of the LE for both regular and chaotic
regime. For the inverted oscillator, the LE exhibits clear
early-time exponential growth. The growth rate is roughly
proportional to the number of loops. For the oscillator in
the integrable regime, the recurrent time does not show
dramatic changes when adding more loops to the LE.

E. Application II: Shockwave and Loshmidt Echo

We further illustrate the relation OTOC-LE with a
brief application from AdS/CFT correspondence. We
shall examine this for an AdS eternal black hole Fig[]
This subsection is primarily based on the following work
[28435] and references therein. We shall also shed some
light into the possible link that may exist between OTOCs,
LE and quantum complexity which we will elaborate on
in the next section.

1. Echo evolution, Precursors and black holes

Let’s consider two entangled black holes connected by
an Einstein-Rosen bridge, aka wormhole Fig[5] The holo-
graphic description of the wormwhole volume is quantified
by the complexity of the quantum state of the dual pair
of CFTs at time t. For a given thermofield double state,
we can evolve, for instance, the left side back in time
for a time Aty = —t,, and then apply a simple localized
precursor perturbation Wi, that adds a thermal quantum;
a localized packet of energy in the left side. Then, we
evolve this state forward in time, Aty = t,, (see Fig@.
Due to the fact that the quantum state loses its memory,
the left target state has to differ from the left initial state.

In AdS spacetime, this energy source starts to warp the
spacetime near the horizon by creating a gravitational
shockwave which expands away from the source, and
remains highly energetic for most of its worldline. This
kick changes the geometry and leads to a larger wormhole
compared to the initial one. More precisely, the wormhole
owes its growth to the gravitaional back-reaction on the
shape of the geometry (or alternatively to the hop and
displacement of the trajectories crossing the shockwave
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FIG. 5. The dark red surfaces are the maximal spacelike slices
foliating the diagram behind the horizon and representing the
wormbhole.

Fig. This corresponds, on the CFT side, to a greater
decay for the correlation between the two different sides
of the thermofield-double state. Consequently, one infers
that there exists a correspondence between the amount
of energy the shockwaves produce and the rate of decay
of the correlations. In what follows, we shall provide a
rough picture as to how this might play out.

2. Single Shock

Let us apply the echo evolution e *7rtw W etfrte to
the thermofield-double state:

|w) = e~ Lty tHrte | TFD) (2)
= Wi (tw) |TFD) (3)

where for any single sided operator (precursor) W, Wi, =
W ®I and Wr = 1@ W. The operator Wi (t,) is a
Schr’/odinger picture operator acting at time ¢ = 0. The
effect of Wy (t,,) amounts to adding at ¢, a thermal quan-
tum to the left side. Note that despite the fact that the
thermal quantum, being localized low energy perturba-

tion, created by Wi (), feeds a tiny bit of energy to the
black hole, for most of its worldline it is astronomically
energetic shockwave.

The two-sided correlator is found to be (see for instance
[35])

| Vi ®© VE |uw)

TFD|e~Hetowleifitoy, @ V¥ e tHiteyy, ¢itlite |TFD) |

TFD| (W] (~tu) ©1) (Vo @ VF) (Wi(~tw) 8 T) [TFD),

(
=
=(TFD|W](~t,)VL ® VAW, (~t,) |TFD),
=
— (TFD| W} (—t)ViWp(~t.) © VI [TFD).
The transpose ”T” is in the energy basis. The state is
subject to the so-called operator pushing property by
which we mean

Wg |maz) = WE |mazx) (4)
with |maz) being a maximally entangled state. Using
(), one can push V7 from the right to the left. One

therefore can convert the two-sided correlator to a one-
sided correlator, i.e.,

(| Vi ® ViT |w) g_g = (W} (=) VEWL(—tw) Vi) 5_g

correlation between the

4-point OTOC at
2 sides after perturbation

time=—1t,,
1
= on To(W] (—tu) VEWE (—tu) Vi),
(5)

The negative time is not profoundly significant. Evolving
the system according to negative time is expected to have
the same behaviour as evolving it with positive time. As a
matter of fact, the behaviour of the OTOC can be generic
for different local operators. In this case for any thermal
state the aforementioned argument may be extracted from
(WH(—tu)VW (=t)V) 5 = (WIV )WV (#)) 5. The gen-
eralization of the previous claim to general temperature,
for which the obtained OTOCs are thermally regulated,
is straightforward [35].

8. Multiple Shocks

The lesson one can draw out from the previous single
shock case is that the more shockwaves (energy) you
feed the black hole with, the greater the decay of the
OTOCs becomes. To create two shockwaves one needs to
consecutively repeat the process introduced above twice,
that is,

|’LU1’2> — e—iHLt2W2eiHLtze—iHLt1Wle’iHLtl |TFD> ,
= WQ(_tQ)Wl(—tl) |TFD>
= Whui(tz, t1) [TFD) .



FIG. 6. The operator Wy, creates an infalling quantum at
[tw| >> t«, where t, is the scrambling time. It undergoes a
huge blue shift as it moves at the speed of light toward the
horizon.

t=20 t=20
twl B
FIG. 7. In the absence of the shockwave the size of the

maximal spacelike slice formed behind the horizon is null (it

goes through the intersection point of the bifurcate horizon).

Adding the shockwave allows the maximal slice to acquire a
considerable volume as indicated by the red surfaces.

from which one can derive

<w172| VL ® Vg |w172>

correlation between 2
sides after perturbing
twice

= (W (—t1) W] (—t2) VL Wa(—ta) Wi (—t1) VL) .

6-point OTOC

Notice that we can get rid of the negative time because
of the same previously mentioned reasons. This makes
our claim true for the case of two shockwaves. Upon the
application of multiple (k — 1) operators W (¢) on |TF D)
(pictorially presented in Fig, One can write

w2, k—1) = Winuiti(tk—1,- -+ ,t1) [TFD),  (6)

Ws
e
We 1
----- -b--F-F-14-1-1--r-----t=0
Wa
Y
A T A
Wo Wi
Wy Ui

FIG. 8. Multifold echo with 2(k — 1) loops. Each green
insertion represents a tiny perturbation. The arrows point
toward the order in which the precursors W;’s apply.

from which one ought to obtain 2k-OTOC where k£ > 1,
ie.,

(w12, k=1|VL ® 173 lwig, k1) =

correlation between 2 sides
after perturbing (k-1) times

(W (=t1). W (—ti) Ve Wi (—tg) ... Wi (1) VL) -

2k-point OTOC

4. The triangle links

As claimed above the shockwave has a large effect on
the geometry. Without the shockwaves the volume of the
maximal slice behind the horizon at ¢ = 0 is null (it goes
through the bifurcate horizon). Upon the creation of the
shockwaves the spatial maximal slice, representing the
wormhole connecting the two-sided entangled black holes,
gains a significant volume. Roughly speaking, one can
anticipate that the correlation exponentially decays with
the size (length) L(¢) of the wormhole. Thus EI,

L(t)

(| VL @ Vg [w)g_g ~ e Tass.

Using , it yields

(7)

L(t)

(W () VEWL (—t)Vi) g ~ € Taar. (8)

From the OTOC-LE connection, we have

/ AW dV (W (OVIWL (VL) g0

Haar

~ |<eiHLtefi(HL+A)t>|2.

2 We assume that the perturbations separately and successively
act such that effect of W; fills out the entire system before W;41
kicks in.



This implies, roughly,

2 2

’ (TFD|efrteywy e~iHete ' TFD) | = ‘ (TFD|w)
We find that
2
‘(TFD|w> - / AW Vet D/ aas,

Haar

It has been conjectured by Susskind and companies that
quantum complexity C (precisely introduced in section IIT)
is related to the size (length/volume) V of the wormhole

connecting the two entangled black holes; i.e., C = ﬁ
Combined all these together we end up with
e~ Hrteyyetrte ITF DY = |w) (9)

= (TFD|efrtve=He+V)tw \ TP D) = (TFD|w),
= | <TFD| eiHLtwefi(HLJrV)tw TFD> |27
= (TFD|w)|* ~ LE ~ e~ L®)/laas _ ,—C (10)

This derivation involves only one single shockwave. How-
ever, one can incorporate multitude of shocks for which
the one-fold LE is superseded by multi-fold LE and com-
plexity associated with one localized precursor replaced
by C[Wmulti (tk—la s ,tl] such that
RAGN
2k-OTOC ~ elaas (11)
2k-OTOC = LE, 14 ~ € Cmuti, (12)

where L(t) is the stretched length of the ERB (wormhole)
behind the horizon.

5. Perspectives from infinite dimensional continuous
variable systems

It has been established in [36] a relation between an
operator’s distribution in phase space and OTOCs in
continuous variable (CV) system. Consider an operator
that spreads in phase space having width/volume V. The
OTOC was found to be [36]

Ca(€1,62:), ~ e Vil (13)

This OTOC-volume relation nourishes our belief in the
previous claim that a large phase space volume, which
can somehow be related to the real space wormhole vol-
ume/complexity, implies a greater decay of the OTOC.
To derive we shall introduce a few definitions and
quantities. We begin by defining the displacement opera-
tor, the analog of the Pauli operator in discrete variables,
for a simple harmonic oscillator (single mode CV system)

D(&,6) = eli62a—&1p)] (14)

Such shifts operators, being e.g., elements of the Heisen-
berg group, form a complete basis and act on a coherent
state in phase space. For N-mode CV system they read

with £ = (g1, ¢2,- -+ ,qn, pn) being the vector of quadra-
ture operators. These N-mode displacement operators
satisfy

Te(D(€)D(E) = Vo€ +¢),  (16)
= / d*NED(E)AD' () = Te(A)I. (17)

The CV OTOC is defined to be

Ca(€1,€2:t), = Tr [pD' (&1; t)DT(&)D(fl;t)D(fz)]( )
18
where the so-called displacement operator takes the fol-
lowing form

Disit) = 7 / PN Ey (€2 D(EL )] D(~Es) (19)
D(&1:t) = U(t) DENU (). (20)

From the above decomposition, which is allowed by the
the completeness of displacement operators, one can infer
that scrambling in the CV system is featured by the
growth of the Wigner characteristic x[€2; D(€1;t)] given
by

x(§; A) = Te[AD(£)], (21)
X[€2; D(€150)] = 76 (€2 + £1). (22)

Now, given
X6 D(Ens )] ~ 5 (23)

and making use of the formulae presented above leads to
. This proves that the decay of the OTOCs probes the
increase in operator volume V characteristic of scrambling.
One should be able to directly relate the increase of the
operator volume in the phase space with the size of the
wormhole in the two entangled black holes model studied
above rendering the connection between OTOC-LE and
complexity more rigorous. This correspondence may be
achieved by matching the norm of the displacement vector
with the AdS radius, i.e., [£] ~ 1/lags (cf. eq.(§)).

It is worth emphasising that averaging the OTOCs
over ensembles of displacement operators may enable
us to measure a coarse-grained spread of a time-evolved
operator in phase space. This may allow one to gain better
understanding into the link between various diagnostics.
For more about using the average OTOCs as probes for
finer-grained aspects of operator distribution, we refer the
reader to [36]. In section III we shall pursue a slightly
different path to establish such a connection between the
three diagnostics.



III. LOSCHMIDT ECHO AND COMPLEXITY
A. Introducing Complexity

Recently complexity has been demonstrated as an
equally powerful and computationally simpler quantity
in some cases than OTOC to diagnose the chaotic be-
haviour of a quantum system [IT], [I8]. Since all three
of these quantities-LE, OTOC and Complexity—are pro-
viding similar information about the chaotic system, it
is natural to anticipate that these three quantities are
related to each other. In the previous sections we have
established that the sub-system LE and averaged OTOC
are the same. Therefore, to establish the relationship
between the three quantities, we only need to explore the
connection between LE and complexity.

To make progress in this direction, we will use the
complexity for a particular quantum circuit from the
inverted oscillator model as discussed in section In
[11], it was shown that the appropriate quantum circuit
in this regard is the one where the target state |1)9) is
obtained by evolving a reference state |ig) forward in
time by Hamiltonian H and then backward in time with
slightly different Hamiltonian H 4+ dH as follows

o) = e (ATt L ) (24)

For the inverted harmonic oscillator model the authors in
[11] showed that the complexity evaluated by using the
covariance matrix method [37} [38] for the above mentioned
target state with respect to the reference state |1)) is given

by
C= % [cosh_l (%)] ; (25)

where @(¢) is the frequency of the doubly evolved Gaussian
target state which has the following form

Yo(z,t) = N(t) exp {;a(t)xﬂ , (26)
and
A Iy , , Q/2
wlt) = |8 et () + e O (w() 710 cot(Q’t))}
(27)

In the last expression, ' = v/m?2 — )X is the frequency
associated with the perturbed/slightly different Hamil-
tonian H' = %pz + %2:52 and N = \ + 0\ with d\ very
small. We make this perturbation by hand.

Note that the quantum circuit involving two time-
evolutions with slightly different Hamiltonians is crucial
for extracting the chaotic nature of the quantum system.
Complexity for any target state will not capture similar
information as OTOC. For example, the complexity of
a target state which is forward evolved only once will
not capture the scrambling time for the chaotic system
as illustrated in Fig[0] However, there is an alternative

10

quantum circuit that will have the same complexity when
evaluated by the covariance matrix method. In that cir-
cuit both the reference and target states are basically
evolved states but with slightly different Hamiltonians
from some other state. Once again this particular circuit
also involves two evolutions.

Com ple xity

FIG. 9. Complexity of Single time evolved target state for
Inverted Oscillator (m = 1, A = 20).

B. LE-Complexity connection

It was shown in [I1] that complexity of the above men-
tioned target state can capture equivalent information
such as scrambling time and Lyapunov exponent as the
OTOC for an inverted oscillator. In this paper, we want
to make this statement more precise by using the fact that
averaged OTOC is the same as (very close to) the sub-
system LE. In section [[TD] of this paper, we have proved
this for the Heisenberg group. In the current section, we
will use an explicit example from the Heisenberg group,
namely the inverted oscillator to demonstrate that LE for
the full system and complexity are very close quantities.

Complexity / = log [LE]

15 |

10 F
}

= Complexity
— — log [LE]

time
0.5 1.0 1.5 20 2.5 3.0

FIG. 10. Time evolution of negative logarithm of LE and
Complexity for Inverted Oscillator (m = 1, A = 20,0A = 0.001)



It is noteworthy that the construction procedure of this
quantum circuit is conceptually similar to the LE, where
one basically computes the overlap between these above
mentioned states. Complexity simply offers us a different
measure for the distance which is a more powerful measure
for understanding various properties of quantum systems
[39-42].

As shown in Fig 3] the time evolution of LE has a flat
portion for a while, which is followed by an exponential
decay. On the other hand it takes a certain amount of time
for complexity to pick up and then grow exponentially.
These growth patterns are suggestive of the following
relationship between LE and complexity for the above
mentioned quantum circuit

C = —log [LE]. (28)
To confirm our findings we plot the time evolution of
Complexity and the —log [LE] as shown in Fig.
As predicted, these two quantities are remarkably close.
They have exactly the same Lyapunov exponent (slope
of the linear growth portion) and almost equal pick up
time (scrambling time). This surprising equality is an
indication of deeper physics surrounding these quantities
and also provides a geometric meaning to the problem of
quantum chaos.

Multi-Fold Evolutions

Complexity / = log [LE]

140 |
120
100

80 -

60 [ -

el il i i L

time

FIG. 11. Time evolution of negative of logarithm of Higher
fold LE and Complexity for Inverted Oscillator (m =1,A =5
(Green), 10 (Blue), 20 (Red), 6\ = 0.001). The solid line is
complexity and the dashed line is — log [LE].

We can easily generalize this particular construction
of quantum circuit to relate it with 2(k — 1)-fold LEs.
The trick is to insert a pair of evolutions (forward and
followed by a backward) for each fold of the echo. For
example, for the 4-fold LE the quantum circuit we need
to construct has the following form for the target state

a) = Gi(H+8)t ,—iH't UHHOt o—iHE |y

(29)

2nd pair of evolutions 1st pair of evolutions

In figure [11{ we show a few of the higher fold-LE (— log
[LE], to be precise) and the corresponding generalization
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of complexities. For each pair we see a clear match be-
tween complexity and the —log [LE]. We do not have a
concrete algebraic proof to establish the relationship at
this point; we leave it for a future work.

Note that the sub-system LE that we have used in
the previous sections can be quite close to full system
LE, when the sub-system associated with the LE is much
larger that the other one. We will conclude this sec-
tion by making the assertion that these three diagnos-
tics of chaos—averaged OTOC, LE and a particular type
of complexity—are not only carrying similar information
about the underlying quantum system, but also have some
direct connection with each other.

IV. DISCUSSION

In this paper we have extended the proof that the
averaged (Haar average over unitaries) OTOC is the same
as the LE (for a sub-system) as in [I4] to higher point
averaged OTOC and LE for finite dimensional system.
Moreover, we have also generalized the proof for Haar
average to infinite dimensional case. We have shown that
the OTOC-LE relation holds in other averaging scenarios
as well, e.g., the Heisenberg group average, as long as
the given group is a unitary 1-design. We argue that if
the sub-system for this LE is much larger than the other
sub-system, this LE would be essentially the same as the
LE of the full system.

Furthermore, for an explicit example in the Heisenberg
group we showed graphically that LE for the full system
and Complexity for some special type of quantum circuit
is the same. Finally, we have extended this result for multi-
fold LE and corresponding extensions of the complexity.
These different results suggest that these three diagnostics
of a chaotic quantum system, namely averaged OTOC,
LE and complexity are secretly the same. However, we do
not have a concrete proof at this point. Tying complexity
as an alternative probe to OTOC or LE also provides a
geometric meaning to the chaotic behaviour of a quantum
system.

To give a proof-of-principle argument for the similarity
between complexity and LE, we have used the inverted
oscillator as a toy model. This is, however, a rather special
example and not a realistic chaotic system. Also, we used
graphical techniques to establish our result. To claim that
our particular complexity and LE (and hence averaged
OTOC) are basically the same probe for understanding a
quantum chaos will require a rigorous algebraic proof by
using more realistic systems like the maximally chaotic
SYK model and its many variants (see, for example, [43l-
45] and references therein).

Another possible extension of our work is to explore sub-
system complexity in a system with N-inverted oscillators.
This would help us make the connection between these
quantities more rigorously.
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Appendix A: Mathematical Gear Oils

Here we define the mathematical tools that will be
handy in the derivations to be performed. Those tools
include

1. In Section II of the main text, a formula for the
Haar average of a given trace-class operator O has
been discussed. At finite dimension

/ dU(UHoU = éTr(O)I,

Haar

where I is the identity operator. The Hilbert space
dimension d appears here because of the Haar mea-
sure is normalized by convension, [dU = 1. At
infinite dimension, a similar relation holds as well:

/ dU(UNOU = Tr(0)I,

Haar

Here we present the formula for the Haar average of
unitary operators restricted to a subsystem, which
has been derived in Ref. ([I4]). We only consider
the finite dimensional case. For infinite dimensions
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similar relations can be treated in the same manner.

/ dUA(U © 1504504 © Ip)
Haar

we use (A® B)(C ® D) = (AC) ® (BD), to get

= /dUA(UI;@IB)(ZOf@OiB)(UA®IB)
= Z/dUA(ULO;“UA ® OP)

1 A B
- Z Tr(OMI4 ® O]

using k(A® B)=A® (kB) =kA® B;

with k being scalar we obtain that
1 A\HB
= Z Ir ® Tr(0M0!
Finally, we reach the intended form which is

1
= —I,®Tra0ap.
da

2. Reduced dynamics for local operators [14]:

Given a total system Hamiltonian
H=H,®Ip+14® Hp+ Hy,

where A denotes a small local subsystem S4. B
denotes the compliment of S4 to the total system,
which is much larger compared to the local sys-
tem S4. We are interested in strongly coupled
systems, where the energy scales admits a hierarchy
H4 <« H; <« Hpg. For instance, in a N-particle
system with all-to-all two-body interactions, when
the subsystem S4 refers to a single particle, the
energy scales of S4, Sp, and the coupling between
them, are on the order of 1, N? and N, respectively.
The interaction can be decomposed as

%
Hr=\» VieVi

=1

Here we are free to chose the operators {V} Her-
mitian and orthnormal, with respect to the Hilbert-
Schmidt inner product, i.e.,

The operators V};, on Sp are also Hermitian, but
their (Hilbert-Schmidt) norms are fixed as equal to
the norms of Hg. Thus, the parameter \ qualifies
the relative strength of the coupling compared to
Hp.

We are interested in the reduced dynamics of an
operator B on the subsystem Sp, after the trace-out
procedure, namely,

B(t)=Tra (ethIA ® Be_th) .



This can be thought of as a decoherence process, i.e.,
the total system is prepared in an initial product
state [ 4 ® B, where the subsystem Sp has a “density
matrix” B, and the subsystem S4, up-to normaliza-
tion, is in a thermal state with infinite temperature.
The “quantum state” B will become “mixed” with
time evolution due to the presence of the couplings
to subsystem S,. When A < 1, the above evolution
of B(t) can be expanded to the second order of A.
This corresponds to the Born-Markov approxima-
tion, which leads the effective master equation for
B(t) to a Lindblad form. It is known that in this
case the effective master equation can be simulated
with the evolution of B under Hp without coupling
to other systems, but subjects to a stochastic field

AF(t) = A L)V,

with the correlations given by

<L L@t —7)>

=Tr(VieHaTy) e iHaT)

13

The approximation in the last step is due to the large
energy hierarchy: the time scale of the dynamics
of the subsystem S4 is much larger than that of
B(t) under consideration. Alternatively, this can be
thought of as taking the zeroth order the H 4. As
a consequence, the noise field /;(¢) can be taken as
random constant valued, +1, at equal probability.
The reduced dynamics of the B operator is then
given by

B(t) =dy < e—i(HB-‘r)\]:)tBei(HB-‘r)\]:)t >,

averaged over the stochastic field. Note that the
pre-factor d4 appears from the normalization of I4.
As the noise field are random =41, each realization
of the stochastic field F in the above solution of
B(t) always appears as random combination of V},’s.
Suppose that are totally N realizations, the noisy
evolution of B(t) is then

N
B(t) ~ dy x % 3 i HE AR R HE AT
ij=1

zéz«,j.
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