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A NOTE CONCERNING A GYROELECTRIC MEDIUM

Abstract

The fact that a homogeneous electron gas when immersed in a 

uniform magnetostatic field becomes electrically anisotropic, i.e., 

gyroelectric, is placed in evidence. The permeability of the gas 

remains equal to that of free space, but its dielectric constant is 

transformed to a dyadic or tensor upon application of the magneto­

static field. The properties of the dielectric tensor are such that 

a plane electromagnetic wave propagating through such a medium under- 

goes a Faraday rotation. This rotation is the dual of the Faraday 

rotation produced by gyromagnetic media.

The dielectric tensor of the electron gas is deduced and the 

Faraday rotation constant is calculated.

Introduction

It is well known that an idealized electron gas has a permea- 

bility μ and a dielectric constant ℇ = ℇo(1 -ωo2∕ω2) where μo 

and ℇo are the permeability and dielectric constant of free space, 

ωo is the plasma frequency, and ω is the frequency of the wave 
propagating through the gas.(1)

However, when a uniform magnetostatic field is applied, the gas 

becomes electrically anisotropic. This anisotropy is due to the fact 

that when an electromagnetic wave propagates through such a medium the

convection current of electrons has not the same direction as the
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electric vector of the wave. Consequently in such a medium B = μo H and 

D = (ℇ) ∙ E where (ℇ) is the dielectric tensor.

The calculation of the components of the dielectric tensor con- 

sists of first calculating the velocity of the electrons in terms of the 

electric vector E of the wave propagating through the medium, and then, 

from a knowledge of this velocity, deducing the convection current of the 

electrons. By adding to this convection current the free space displace­

ment current of the wave, the total current density is obtained. The total 

current density is thought of as a displacement current in an anisotropic 

dielectric, and thus the components of (ℇ) are calculated.

And from the components of (ℇ) expressed in terms of ω, ωo, and 

ωg where ωg is the gyrofrequency, in a straightforward manner the

properties of a plane electromagnetic wave traveling through such a medium 

in an arbitrary direction with respect to the magnetostatic field are de­

termined.(2)

The direction of propagation of importance to microwave applica- 

tions is the one in which the wave travels parallel to the applied 

magnetostatic field because it is in this direction that the gas produces 

a Faraday rotation of the traveling wave. The Faraday rotation factor is 

easily determined from the fact that the two waves which travel in this 

parallel direction are circularly polarized in opposite senses and have 

unequal velocities. And hence a superposition of the two yields a "linearly" 

polarized wave which rotates about the direction of the applied magneto- 

static field.

And, of course, for propagation perpendicular to the direction 
of the applied magnetostatic field the Cotton-Mouton effect(3) is exhibited.
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Dielectric Tensor of an Electron Gas with Applied Magnetostatic field.

We deduce the dielectric tensor of a medium consisting of a homo­

geneous electron gas immersed in a magnetostatic field Bo. When a plane 

electromagnetic wave whose electric and magnetic vectors are respectively 

E and H travels through the medium, each electron is subjected to a 

force F which depends on the electronic charge q and the electronic 

velocity y according to the well-known relation of Lorentz:

wherein μo is the permeability of free space. Applying Newton's law to 

each electron of mass m and neglecting the second term on the right side 

of (1) we obtain

(2)

In this equation v and E are real vector functions of space and time, 

and Bo is spatially uniform and independent of time.

Our first task is to solve (2) for the velocity v. To do this 

we differentiate (2) with respect to time,

(3)

and then postmultiply vectorially by Bo,

Since an electron gas with applied magnetic field produces

Faraday rotation, it can be used as a nonreciprocal microwave circuit com­

ponent.(4) This aspect of the problem will be discussed elsewhere in

detail.

(1)
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(4)

Multiplying (4) by q/m2 and using a well-known vector identity to trans- 

form the right side, we get

Multiplying (2) scalarly by Bo we get

from which it follows after multiplication by Bo q2∕m3 that

(6)

(7)

(8)

We note that the second term on the right side of (8) is identical to the 

term on the left side of (5). And the second term on the right side of 

(5) is identical to the left side of (7). With these observations it is 

clear that (5), (7), and (8) yield

Since no term in (9) contains a product of time-dependent functions, we are 

free to restrict the time dependence to e-iωt by replacing ∂/∂t by -iω, 

etc. Thus (9) becomes

(5)

And operating on (2) with we get

(9)
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(10)

The term

(11)

(12)

where N is the number of electrons per unit volume, and ℇo is the 

dielectric constant of vacuum, we can write (10) in the following form:

(13)

Nq v is the convection current and to it we must add the displacement cur- 

rent -iω ℇo E in order to obtain the total current J, i.e., 

(14)

The x, y, and z components of J are easily obtained from (13) and (14). 

They are

Without loss of generality we introduce a rectangular coordinate

system so oriented that Bo lies along the z-axis. If we denote the unit

vectors along the coordinates axis by ax, ay, and az, we can write 

Bo = az Bo, E ∙ Bo = Ez Bo, and E x Bo = ax Ey Bo - ay Ex Bo, And if 

we define the plasma frequency ωo by

is a scalar and equal to the square of the gyrofrequency

ωg, i.e.,
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(15)

It is suggestive to 'write (15) in the following manner:

(16)

where

(17)

We can express (16) as a tensor equation:

where (ℇ) is the dielectric tensor whose matrix is

(18)
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(19)

It is important to note that ℇxx = ℇyy and ℇxy = - ℇyx and that

the diagonal components are purely real whereas the off-diagonal components 

are purely imaginary. To place this in evidence we let

(20)

where ℇxy' and ℇyx' are purely real. Consequently (19) becomes

(21)

where

(22)

When the applied magnetostatic field vanishes (Bo → 0) we see that

ℇxy' → 0, ℇyx' → 0, and the diagonal terms become equal to

ℇo(1 - ωo2∕ω2). The electron gas is isotropic when Bo = 0. 

Wave Propagation in Tensor Dielectric Medium

Now we investigate the propagation of a plane electromagnetic wave 

through a medium whose permeability is μo and whose dielectric constant
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is (ℇ) . As shown in Figure 1, n denotes a unit vector in the direction 

of wave propagation. We let k 

denote the vector propagation constant,

and hence k = n ω/v where v is the

phase velocity. Also we let r be a

position vector, i.e.,

r = axx + ayy + azz. The electric 

vector of a plane wave traveling in

the direction n has the form

(23)

Fig. 1. Arbitrary direction n 
of wave propagation in electron 
gas with applied magnetic field 
Bo.

where Eo is a constant. To determine the equation that E must satisfy,  
we note that the two curl equations of Maxwell are

(24)

and
(25)

where (ℇ) is the dielectric tensor and the product (ℇ) ∙ E is the 

displacement vector, i.e., D = (ℇ) ∙ E or

(26)
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(27)

(28)

(29)

(30)

Since these three simultaneous equations are homogeneous, for them to yield 

a non-trivial solution it is necessary that the determinant Δ of the co- 

efficients vanish:

It follows from (24) and (25) that

Since

we obtain upon substituting (23) into (27)

Canceling out the exponential factor, recalling that k = n ω∕v,

, and n ∙ n = 1, we obtain

Without loss of generality we rotate the coordinate system about the z-axis

so that θ = π∕2 and n lies in the yz plane. Therefore, in (29)

n = ay sin 0 ̸+ az cos 0̸, n ∙ E = Eoy sin 0 ̸+ Eoz cos 0̸, and the 

x, y, z components of the vector equation (29) are



10.

In expanding this determinant we find it convenient to introduce ℇ1, ℇ2,

and ℇ3 defined by

(31)

(32)

With a little algebraic manipulation (31) leads to

(33)

This equation is of the second degree in

(34)

and always has two real roots.

When 0 ̸= 0 propagation is along the z-axis and it follows from 

(17), (32), and (33) that
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(35)

and

Therefore, the two propagation constants for waves traveling parallel to

Bo are given by the following two expressions·

(36)

and

(37)

Moreover, when the propagation is along the y-axis, i.e., perpendicular to 

Bo, 0 ̸is equal to π∕2 and in this case we have

(38)

and

(39)

The corresponding two propagation factors are

and
(40)

(41)
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Up to now we have deduced a formula (33) which allows us to 

compute the phase velocity of a wave propagating in an arbitrary direc- 

tion with respect to the applied magnetostatic field. We shall con­

tinue by finding the components of E and H and thus determine the 

polarization properties of the medium.

Equations (30) for 0 ̸= 0 reduce to

Parallel Propagation

Wo have seen that when the direction of propagation is parallel

to the applied magnetostatic field two independent waves are possible;

one has a propagation constant ko' and the other has a propagation 

constant ko'', as given by (36) and (37). The two waves have no longi- 

tudinal electric field, i.e., Eoz = 0, as can be seen from the third 

of equations (30) upon setting 0 ̸= 0. Nor do they have a longitudinal 

component of the magnetic field, i.e., Hz = 0, as can be verified by 

using (25) and recalling the fact that Ex and Ey are independent of 

x and y. Therefore, the two waves are purely TEM.

One of the waves is left-circularly polarized and the other is 

right-circularly polarized. Because they have different velocities, a 

superposition of the two yields a "linearly" polarized wave whose polari­

zation direction rotates about the z-axis. This rotation is like the 

Faraday rotation of optically active substances.
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(42)

where the two values of v2∕c2 are given by (34) and (35). The third of 

these equations shows us that Eoz = 0. When v2∕c2 is given by (34), 

the first equation of (42) yields

(43)

If we had used the second equation of (42) we would have obtained the same 

result. The corresponding propagation factor ko' is given by (36). When

v2∕c2 is given by (35), we get in a similar way

(44)

Here the propagation factor is ko" as given by (37).

Therefore, the electric components of the two TEM waves propagating parallel

to Bo are 

and

(45)
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(46)

where A and C are amplitude constants. The corresponding magnetic 

field components are easily obtained by applying (25) to (45) and (46) 

thus

and

(47)

(48)

These two waves (primed and double-primed) when cast into vector form are

and

(49)

It is clear that these are two plane circularly polarized TEM waves. Their 

sum is

(53)

(50)

(51)

(52)
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(54)

We see that E ∙ H = 0 and hence E and H are perpendicular, as are 

E', H' and E", H". To study the polarization of the composite wave we 

consider the ratio Ey/Εx. From (53) we know that

(55)

If we choose the amplitudes A and C to be equal, we get

(56)

Therefore, the rotation of the resultant vector E about the z-axis per 

unit length of travel is equal to (ko' - ko")∕2. This rotation is called 

Faraday rotation and we denote it by τ, i.e.,

(57)

The rotation is either clockwise or counterclockwise depending on whether 

ko' > ko" or ko' < ko". Substituting (36) and (37) into (57) we get the 

Faraday rotation as a function of frequency:

(58)
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Perpendicular Propagation

When the direction of propagation is along any direction in z = 0

plane, two independent waves are possible. One has a propagation constant

k'π/2, and the other, k"π/2. However, in contradistinction to the

case of parallel propagation, only one of the waves is TEM while the other 

is TM.

The TEM wave has an electric field component parallel to Bo and 

a magnetic field component perpendicular to Bo and n. The propagation 

factor k'π/2, of this wave is independent of Bo and hence is the same as 

that of a wave traveling through an electron gas without any applied mag­

netostatic field.

The TM wave has a magnetic component parallel to Bo. Its 

propagation factor k"π/2 does depend on Bo.

The TEM wave is linearly polarized parallel to Bo. However, a 

superposition of the TEM wave and the TM yields a composite wave which is 

elliptically polarized. By this case wherein the rotation is due to a 

perpendicular magnetic field the reader will be reminded of the Cotton- 

Mouton effect of optically active substances.
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