Measurement of B_s^0 meson production in pp and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

The CMS Collaboration

Abstract

The production cross sections of B_s^0 mesons and charge conjugates are measured in proton-proton (pp) and PbPb collisions via the exclusive decay channel $B_s^0 \rightarrow \psi K_s \rightarrow \mu^+ \mu^- K^+ K^-$ at a center-of-mass energy of 5.02 TeV per nucleon pair and within the rapidity range $|y| < 2.4$ using the CMS detector at the LHC. The pp measurement is performed as a function of transverse momentum (p_T) of the B_s^0 mesons in the range of 7 to 50 GeV/c and is compared to the predictions of perturbative QCD calculations. The B_s^0 production yield in PbPb collisions is measured in two p_T intervals, 7 to 15 and 15 to 50 GeV/c, and compared to the yield in pp collisions in the same kinematic region. The nuclear modification factor (R_{AA}) is found to be 1.5 ± 0.6 (stat) ± 0.5 (syst) for 7–15 GeV/c, and 0.87 ± 0.30 (stat) ± 0.17 (syst) for 15–50 GeV/c, respectively. Within current uncertainties, the B_s^0 results are consistent with models of strangeness enhancement, and suppression by parton energy loss, as observed for the B^+ mesons.

1 Introduction

Relativistic heavy ion collisions allow the study of quantum chromodynamics (QCD) at high energy density and temperature. Under such extreme conditions, a state consisting of deconfined quarks and gluons, the quark-gluon plasma (QGP) \cite{1,2}, is predicted by lattice QCD calculations \cite{3}. The study of the phenomenon in which the outgoing partons interact strongly with the QGP and lose energy by means of elastic collisions and medium-induced gluon radiation \cite{4–8} can provide insights into the energy density and diffusion properties of the QGP. Heavy quarks are effective probes to study these properties of the medium. Charm and beauty quarks that are primarily produced in hard scatterings at the early stages of the collision are expected to carry the full evolution history of the QGP formation \cite{8}. On the other hand it is expected \cite{9} that, via the process $gg \rightarrow ss$, an enhancement of strangeness in a thermally and chemically equilibrated QGP should occur if its temperature is above the strange quark mass. Measurements at the BNL RHIC of the production of strange baryons and mesons, using different collision systems and beam energies, provide systematic support for this expectation \cite{10–14}. Because of the interplay between the predicted enhancement of strange quark production and the quenching mechanism of beauty quarks, the measurement of strange beauty particles is important for studying the mechanisms of beauty hadronization in heavy ion collisions.

In the presence of a medium with increased strangeness content \cite{15,16}, the relative yield of B^0_s mesons with respect to nonstrange beauty mesons at transverse momentum (p_T) below $\sim 15\text{ GeV}/c$ \cite{8,17} can be enhanced in nucleus-nucleus collisions compared to proton-proton (pp) interactions. This can happen if recombination is a significant factor of beauty hadronization in the QGP \cite{18–20}. The recombination processes, which are considered markers for the presence of a deconfined medium, were most recently tested in the open charm sector by the ALICE Collaboration \cite{21}. A possible hint for an enhancement in the relative yield of D^+_s mesons with respect to nonstrange charmed mesons for $p_T < 8\text{ GeV}/c$ in central PbPb collisions at a center-of-mass energy of $\sqrt{s_{NN}} = 5.02\text{ TeV}$ per nucleon pair was observed.

The production of B^0_s mesons was previously measured at the CERN LHC by the CMS Collaboration in pp collisions at a center-of-mass energy of $\sqrt{s} = 7\text{ TeV}$ \cite{22} and in proton-lead (pPb) collisions at $\sqrt{s_{NN}} = 5.02\text{ TeV}$ \cite{23}. In this letter, we report the first measurement of exclusive B^0_s meson decays ever performed in nucleus-nucleus collisions and in pp collisions at 5.02 TeV. The pp measurement is performed as a function of p_T and compared to the predictions of fixed-order plus next-to-leading order logarithmic (FONLL) perturbative QCD calculations \cite{24–26}. The nuclear modification factor (R_{AA}) of B^0_s mesons, which is defined as the ratio of the yield in PbPb collisions with respect to that in pp collisions scaled by the corresponding number of binary nucleon-nucleon (NN) collisions, is shown. The comparison between the R_{AA} of B^0_s mesons and that of B^+ mesons measured by CMS at the same energy \cite{27} is also presented.

The B^0_s meson and its charge conjugate are measured in the rapidity range $|y| < 2.4$ via the reconstruction of the decay channel $B^0_s \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- k^+ k^-$, which has the branching fraction $B = (3.12 \pm 0.24) \times 10^{-5}$ \cite{28}. The pp measurement is performed as a function of the B^0_s p_T in three intervals, 7–15, 15–20, and 20–50 GeV/c. The PbPb production yield and the R_{AA} measurement are performed in two p_T intervals, 7–15 and 15–50 GeV/c, inclusively for all events (i.e., 0–100% centrality, the degree of overlap of the two colliding nuclei). Throughout the letter, unless otherwise specified, the y and p_T variables given are those of the B^0_s mesons. This analysis does not distinguish between the charge conjugates.
2 Experimental apparatus and data sample

The central feature of the CMS detector is a superconducting solenoid, which provides a magnetic field of 3.8 T. Within the solenoid volume are a silicon tracker that measures charged particles in the pseudorapidity range $|\eta| < 2.5$, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. For charged particles of $1 < p_T < 10$ GeV/c and $|\eta| < 1.4$, the track resolutions are typically 1.5% in p_T and 25–90 (45–150) μm in the transverse (longitudinal) impact parameter [29]. Muons are measured in the range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The muon reconstruction algorithm starts by finding tracks in the muon detectors, which are then fitted together with tracks reconstructed in the silicon tracker to form "global muons". Matching muons to tracks measured in the silicon tracker results in a relative p_T resolution for muons with $20 < p_T < 100$ GeV/c of 1.3–2.0% in the barrel ($|\eta| < 1.2$) and better than 6% in the endcaps ($1.6 < |\eta| < 2.4$). For muons with higher p_T up to 1 TeV/c, the p_T resolution in the barrel is better than 10% [30]. The hadron forward (HF) calorimeter uses steel as an absorber and quartz fibers as the sensitive material. The two halves of the HF are located 11.2 m away from the interaction point, one on each end, providing together coverage in the range $3.0 < |\eta| < 5.2$. In this analysis, the HF information is used for performing an offline event selection. A detailed description of the CMS experiment and coordinate system can be found in Ref. [31].

Several Monte Carlo (MC) simulated event samples are used to evaluate background components, signal efficiencies, and detector acceptance corrections. The simulations include samples containing only the B^0_s meson decay channels being measured, and samples with inclusive (prompt and nonprompt) J/ψ mesons. Proton-proton collisions are generated with PYTHIA8 v212 tune CUETP8M1 [33] and propagated through the CMS detector using the GEANT4 package [34]. The decay of the B^0_s mesons is modeled with EVTGEN 1.3.0 [35], and final-state photon radiation in the B^0_s decays is simulated with PHOTOS 2.0 [36]. For the PbPb MC samples, each PYTHIA8 event is embedded into a PbPb collision event generated with HYDJET 1.8 [37], which is tuned to reproduce global event properties, such as the charged-hadron p_T spectrum and particle multiplicity. For both samples, the signal p_T shape is reweighted to match the one from FONLL. For both pp and PbPb data and MC samples, the dimuon and ditrack mass distributions/resolutions are consistent.

Events were collected with the same trigger during the pp and PbPb data acquisition, requiring the presence of two muon candidates (with no explicit momentum threshold) in coincidence with a bunch crossing. For the offline analysis, events have to pass a set of selection criteria designed to reject events from background processes (beam-gas collisions and beam scraping events) as described in Ref. [38]. Events are required to have at least one reconstructed primary interaction vertex, formed by two or more tracks, with a distance from the center of the nominal interaction region of less than 15 cm along the beam axis. In PbPb collisions, the shapes of the clusters in the pixel detector have to be compatible with those expected from particles produced by a PbPb collision [39]. In order to select hadronic collisions, the PbPb events are also required to have at least three towers in each of the HF detectors with energy deposits of more than 3 GeV per tower. The combined efficiency for this event selection, including the remaining non-hadronic contamination, is $(99 \pm 2)\%$. Values higher than 100% are possible, reflecting the potential presence of ultra-peripheral (i.e., non-hadronic) collisions in the selected event sample. The PbPb sample corresponds to an integrated luminosity of approximately 351μb$^{-1}$. This value is indicative only, as the PbPb yield is normalized by the total number of minimum bias events sampled, N_{MB} [38]. The pp data set corresponds to an integrated luminosity of $28.0 \mathrm{pb}^{-1}$, which is known to an accuracy of $\pm 2.3\%$ from the uncertainty in the calibration.
based on a van der Meer scan \cite{40}. The average number of additional collisions per bunch crossing is approximately 0.9 for pp and less than 0.01 for PbPb data. The presence of multiple collisions is found to have a negligible effect on the measurement.

3 Signal extraction

The analysis procedure is common for pp and PbPb data. Kinematic limits are imposed on the single muons so that their reconstruction efficiency stays above 10%. These limits are $p_T^\mu > 3.5 \text{GeV}/c$ for $|\eta^\mu| < 1.2$, $p_T^\mu > 1.8 \text{GeV}/c$ for $2.1 \leq |\eta^\mu| < 2.4$, and linearly interpolated in the $1.2 < |\eta^\mu| < 2.1$ region. The muons are also required to match the muons that triggered the event online, and to pass selection criteria optimized for low p_T (the so-called soft selection \cite{30}).

Two muons of opposite sign (OS), with an invariant mass within $\pm 150 \text{MeV}/c^2$ of the world-average J/ψ meson mass \cite{28} are selected to reconstruct a J/ψ candidate, with a mass resolution of typically 18–55 MeV/c^2, depending on the dimuon rapidity and p_T. The OS muon pairs are fitted with a common vertex constraint and are kept if the p-value of the χ^2 of the fit is greater than 1%, thus lowering the background from charm and beauty hadron semileptonic decays. Similarly, the ϕ meson candidates are formed with a common vertex constraint between two OS charged-particle tracks with $p_T > 300(150) \text{MeV}/c$ for PbPb (p p) sample, both required to pass standard selections \cite{38}. The invariant mass, with a resolution of ~ 3.9 (3.4) MeV/c^2 for PbPb (p p) data, is required to be within 15 MeV/c^2 of the world-average ϕ meson mass \cite{28}. The B^0_s meson candidates are constructed by combining the J/ψ and ϕ candidates and requiring that they originate from a common vertex. Without using particle identification, assumptions need to be made about the masses of the charged particles. The difference between the natural width (according to PDG \cite{41}) and the measured width (reflecting detector resolution) of the peaks is much bigger for the J/ψ meson than for the ϕ meson. Therefore, in calculating the mass of the B^0_s candidates, the two charged particles are always assumed to have the mass of charged kaons, and the muon pair is assumed to have the mass of a J/ψ meson.

The B^0_s candidates are selected according to their daughter charged particle track kinematics, the χ^2 probability of their decay vertex (the probability for the muon tracks from the J/ψ meson decay and the other charged particle tracks to originate from a common vertex), the distance between the primary and decay vertices (normalized by its uncertainty), and the pointing angle (the angle between the line segment connecting the primary and decay vertices and the momentum vector of the B^0_s meson). The selection is optimized separately for pp and PbPb results as well as each individual p_T bin, using a multivariate technique that employs the boosted decision tree (BDT) algorithm \cite{42}, in order to maximize the statistical significance of the B^0_s meson signals. The B^0_s signal samples are taken from simulation. The signal samples are scaled to the number of B^0_s candidates predicted by FONLL calculations corresponding to the integrated luminosity of the analyzed data sample. This normalization is not used when performing the BDT training. The background samples for the multivariate training are taken from data sidebands of the B^0_s meson invariant mass ($0.2 < |M_{\mu \mu KK} - M_{B^0_s,PDG}| < 0.3 \text{GeV}/c^2$), which is about 5σ away from the PDG B^0_s mass value. The optimal selection criterion is the working point with the highest signal significance ($N_s/\sqrt{(N_s + N_b}$), where N_s (N_b) are the expected signal (background) candidate yields from the simulated signal (data sidebands) within the mass range $|M_{\mu \mu KK} - M_{B^0_s,PDG}| < 0.08 \text{GeV}/c^2$.

The raw yields of B^0_s mesons in pp and PbPb collisions are extracted using an extended unbinned maximum likelihood fit to the invariant mass distribution of the B^0_s candidates in the mass range 5–6 G\text{eV}/c^2. The estimation of the statistical uncertainties of the fitted raw yields
Figure 1: Invariant mass distributions of B^0_s candidates in pp (left) and PbPb (right) collisions measured in the range $|y| < 2.4$ and in the p_T range of 7–15 GeV/c. The χ^2 divided by the number of degrees of freedom (nDOF) is also given.

is based on the second derivatives of the negative log-likelihood function. Examples of fits to the invariant mass distributions in pp and PbPb collisions are shown in Figs. 1 and 2 for the p_T regions 7–15 and 15–50 GeV/c, respectively. The signal shape is modeled by two Gaussian functions with a common mean (which is a free parameter together with the amplitude), and different widths individually determined from MC simulations for the pp and PbPb results. The relative contribution of the two Gaussian functions to the signal yield is also fixed at the value given by the MC sample. The background is dominated by random combinations of prompt and nonprompt J/ψ candidates with extra particles and it is modeled by a first-order polynomial, as determined by studies of the inclusive J/ψ MC sample. Peaking structures that could arise from the background contamination of other B meson decays (e.g., $B^0 \to J/\psi K^{*0}$) were found to be negligible as a consequence of the tight selection on the mass of the ϕ candidate.

The differential cross section for B^0_s production in $|y| < 2.4$ is computed in each p_T interval according to

$$\frac{d\sigma^{B^0_s}}{dp_T} \bigg|_{|y|<2.4} = \frac{1}{2B} \frac{1}{L} \frac{1}{\Delta p_T} \left(\frac{N_{pp}^{(B^0_s+\bar{B}^0_s)}(p_T)}{\alpha_{pp}(p_T) e_{pp}(p_T)} \right) \bigg|_{|y|<2.4}, \quad (1)$$

for pp data, and for PbPb data according to

$$\frac{1}{T_{AA}} \frac{dN^{B^0_s}_{PbPb}}{dp_T} \bigg|_{|y|<2.4} = \frac{1}{2B} \frac{1}{N_{MB}} \frac{1}{T_{AA}} \frac{1}{\Delta p_T} \left(\frac{N_{PbPb}^{(B^0_s+\bar{B}^0_s)}(p_T)}{\alpha_{PbPb}(p_T) e_{PbPb}(p_T)} \right) \bigg|_{|y|<2.4}. \quad (2)$$

The $N_{pp,PbPb}^{(B^0_s+\bar{B}^0_s)}$ is the raw signal yield extracted in each p_T interval of width Δp_T, $(\alpha, e)_{pp,PbPb}$ represents the corresponding acceptance times efficiency, and B is the branching fraction of the decay chain. For the pp cross section, L represents the integrated luminosity, and for the PbPb cross section, N_{MB} is the number of minimum bias events and T_{AA} is the nuclear overlap function [43]. The T_{AA} is equal to the number of NN binary collisions divided by the NN
total inelastic cross section, and it can be interpreted as the NN-equivalent integrated luminosity per heavy ion collision. The T_{AA} value for inclusive PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV is (5.6 ± 0.2) mb$^{-1}$ as estimated from an MC Glauber model [38, 43]. Assuming that, in the kinematic region accessible by the present measurement, the B^0_s and \bar{B}^0_s production cross sections are equal, the factor 1/2 accounts for the fact that the yields are measured for particles and antiparticles added together, but the cross section is given for one species only.

4 Systematic uncertainties

The cross section measurements are affected by several sources of systematic uncertainties arising from the signal extraction, corrections, B, L, N_{MB}, and T_{AA} determination. Unless mentioned otherwise, the same procedures were used to estimate the uncertainties for the pp and PbPb results. The uncertainty of the signal modeling is evaluated by considering four fit variations: (i) increasing/decreasing the width parameters determined from simulation by 4% (the maximum relative statistical uncertainty of the fitted width parameter among all p_T bins from pp and PbPb data); (ii) using a single Gaussian function; (iii) using a sum of three Gaussian functions with a common mean, and, (iv) fixing the mean of the Gaussian function to the value determined from simulation. The uncertainty in the modeling of the background shapes is also evaluated by varying the probability distribution functions used to describe the background to a higher-order polynomial and exponential function. The maximum of the signal variations and the maximum of all the background variations are propagated as systematic uncertainties.

For the pp results, the systematic uncertainty due to the selection of the B^0_s meson candidates is estimated by comparing the BDT-obtained nominal result with the results using a cut-based method (a rectangular cut) that uses the Genetic Algorithm to determine the best cut value for each parameter [42]. The same signal and background shape parametrization are used, and the same analysis parameters are optimized as in the BDT nominal method. The significance is similar for the two methods (~8) for the pp bins. This provides an estimate of the potential difference between different selection criteria. The full difference between the two methods is propagated as a systematic uncertainty. For the PbPb results, because of the small signal in
Figure 3: The p_T-differential production cross section of B^0_s in pp collisions at $\sqrt{s} = 5.02$ TeV in three p_T intervals from 7 to 50 GeV/c. The vertical bars (boxes) correspond to statistical (systematic) uncertainties. The global systematic uncertainty, listed in the legend and not included in the point-to-point uncertainties, comprises the uncertainties in the integrated luminosity measurement and in the branching fraction B. The pp cross section is compared to FONLL calculations [26] represented by the colored yellow boxes with the heights indicating the theoretical uncertainty.

data, in order to minimize the impact of statistical fluctuations, a different approach was taken. In this case, the B^0_s selection uncertainty was estimated using the pp data sample, as the full difference in the yield between the pp results with the BDT trained on the pp sample (the nominal result) and the results with the BDT trained on the PbPb sample (the selection used for the PbPb results).

The bin-by-bin systematic uncertainties associated with the acceptance correction are estimated by varying the shape of the generated B^0_s meson p_T and y spectra. For the purpose of the systematic studies only, both data and MC are split into four p_T and y bins. The ratio between data and simulated p_T spectra (including their statistical uncertainties) is used to generate pseudo-experiments (‘toys’). Each toy is fit with a polynomial, which is then used to reweight the MC B^0_s meson p_T spectra. A new acceptance value is calculated for each modified shape, for each kinematic bin. The root mean square (RMS) of all acceptances determined via toys is propagated as the systematic uncertainty by choosing the maximum RMS value emerging from the p_T and y shape variations. Because of the small signal available, for the PbPb results the pp ratio is used to generate the toys. There is also an uncertainty assigned to account for potential bias in the efficiency calculations from the FONLL simulations of the B^0_s meson p_T shape. This uncertainty is calculated as the difference between the nominal results and those obtained by generating the PYTHIA p_T shape. An additional uncertainty comes from the finite size of the MC samples. This is determined by the statistical uncertainty of the simulated signal, after applying all selection criteria.

The uncertainty in the efficiency of the muon trigger, reconstruction, and identification is evaluated bin-by-bin using control samples in data [44]. A relative systematic uncertainty of 4% per hadron track in pp collisions [29] and 6% in PbPb collisions [38] is also considered, to account for the uncertainty in the track reconstruction efficiency. This uncertainty propagates to 8% and 12% for the B^0_s measurement in pp and PbPb, respectively. The systematic uncertainty in the cross section measurement is computed as the sum in quadrature of the different contributions.
mentioned above. The uncertainty in the B_s^0 meson decay B is 7.6% \cite{28}. The uncertainty for N_{MB} accounts for the inefficiency of the event selection and the trigger in selecting hadronic events \cite{38}. The T_{AA} uncertainty is $+2.8\%$, -3.4% \cite{38}. In the calculations of the systematic uncertainties of the B_s^0 meson R_{AA} and the R_{AA} ratio between B_s^0 and B^+, correlated uncertainties from the track and muon reconstruction and identification are partially canceled.

The values for each systematic uncertainty source are listed in Table 1.

Table 1: Summary of systematic uncertainties in percentage (%) from each source in pp and PbPb analyses.

<table>
<thead>
<tr>
<th>Collision system</th>
<th>pp</th>
<th>PbPb</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T interval (GeV/c)</td>
<td>[7,15]</td>
<td>[15,20]</td>
</tr>
<tr>
<td></td>
<td>[20,50]</td>
<td>[7,15]</td>
</tr>
<tr>
<td></td>
<td>[15,20]</td>
<td>[20,50]</td>
</tr>
<tr>
<td>Signal modeling</td>
<td>2.5</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Background modeling</td>
<td>3.4</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>B_s^0 selection</td>
<td>15</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>B_s^0 acceptance</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>B_s^0 efficiency</td>
<td>6.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>MC sample size</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Muon trigger, reconstruction, and identification</td>
<td>4.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Hadron tracking efficiency</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Branching fractions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of minimum bias events in PbPb data</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>T_{AA}</td>
<td>—</td>
<td>$+2.8/\ -3.4$</td>
</tr>
<tr>
<td>Integrated luminosity of pp data</td>
<td>2.3</td>
<td>—</td>
</tr>
</tbody>
</table>

5 Results

In Fig. 3 and in the left panel of Fig. 4, the p_T-differential production cross sections in pp and PbPb collisions measured in the interval $|y| < 2.4$ are presented. The pp results are compared to the predictions of FONLL calculations \cite{26}. The FONLL reference cross section is obtained by multiplying the FONLL total b quark production \cite{24,25,26} by the world-average production fraction of B_s^0 of 10.3\% \cite{28}. The B_s^0 FONLL prediction is consistent with the measured B_s^0 pp spectrum within the uncertainties. The measured spectrum has a smaller uncertainty than that of the FONLL calculation.

The nuclear modification factor R_{AA}, shown in Fig. 4, is computed as:

$$
R_{AA}(p_T) = \frac{1}{T_{AA}} \frac{dN_{B_s^0}^{PbPb}}{dp_T} / \frac{d\sigma_{B_s^0}^{pp}}{dp_T}.
$$

(3)

The B_s^0 meson R_{AA} is 1.5 ± 0.6 (stat) ± 0.5 (syst) for 7–15 GeV/c, and 0.87 ± 0.30 (stat) ± 0.17 (syst) for 15–50 GeV/c, respectively. In the right panel of Fig. 4, the R_{AA} of B^+ mesons from a previous measurement \cite{27} is also shown. Compared to the B^+ mesons, there is an indication of an enhancement for B_s^0 mesons, which would be the expectation in the presence of a contribution from beauty recombination with strange quarks in heavy ion collisions. However, the B_s^0 R_{AA} values are compatible with unity and their large uncertainties do not exclude a significant suppression. The p_T dependence of R_{AA} is compared to the B_s^0 prediction of a perturbative QCD
based model that includes both collisional and radiative energy loss, (CUJET3.0) \cite{45-47}, and a transport model based on a Langevin equation that includes collisional energy loss and heavy quark diffusion in the medium, (TAMU) \cite{17,48}. The difference between the two models below \(p_T \sim 15 \text{ GeV} \) reflects the contribution from recombination processes, which are included in the TAMU but not in the CUJET3.0 model. The results measured for \(p_T > 7 \text{ GeV/c} \) have the power to disentangle the two models, albeit after an increase in precision, which can be achieved with a bigger data sample.

![Diagram](image_url)

Figure 4: (left) The \(p_T \)-differential production cross section of \(B_s^0 \) mesons in pp collisions and the \(p_T \)-differential corrected yield of \(B_s^0 \) mesons scaled by \(T_{AA} \) in PbPb collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) in two \(p_T \) intervals from 7 to 50 GeV/c. The vertical bars (boxes) correspond to statistical (systematic) uncertainties. The global systematic uncertainty comprises the uncertainties in \(T_{AA}, N_{MBL}, \) and \(B \). (right) The nuclear modification factor \(R_{AA} \) of \(B_s^0 \) measured in PbPb collisions at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \) from 7 to 50 GeV/c. The vertical bars (boxes) correspond to statistical (systematic) uncertainties. The \(B^+ \) \(R_{AA} \) measurement \cite{27} is also shown for comparison. The global systematic uncertainty, represented by the grey box at \(R_{AA} = 1 \), comprises the uncertainties in the integrated luminosity measurement and \(T_{AA} \) value. Two \(B_s^0 \) theoretical calculations are also shown for comparison: TAMU \cite{17,48} and CUJET3.0 \cite{45-47}. The line width of the theoretical calculation from Refs. \cite{17,48} represents the size of its statistical uncertainty.

To further quantify the significance of a possible enhancement of the \(B_s^0 / B^+ \) ratio in PbPb with respect to pp collisions, the ratio between the \(B_s^0 \) and the \(B^+ R_{AA} \) is also calculated, canceling the systematic uncertainty sources that are common to both measurements (acceptance, tracking efficiency, and muon-related). The \(B^+ R_{AA} \) with a wider \(p_T \) binning (15–50 GeV/c) is obtained by a \(B^+ \) yield weighted average of the results from three \(p_T \) bins (15–20, 20–30 and 30–50 GeV/c) presented in previous work \cite{27}. The result is shown in Fig. 5. The ratio is 4.0 ± 1.8 (stat) ± 1.3 (syst) for 7–15 GeV/c, and 1.8 ± 0.7 (stat) ± 0.3 (syst) for 15–50 GeV/c, respectively. Assuming a Gaussian distribution with mean and width equal to that of the \(R_{AA} \) ratio and its uncertainty (including statistical and systematic components added in quadrature), the hypothesis of the ratio values being consistent with unity (no enhancement) is tested with a \(\chi^2 \) test. The resulting p-values are 18% and 28% for 7–15 and 15–50 GeV/c, respectively. This shows that, with a p-value cutoff of 5%, the scenario of no enhancement cannot be rejected. This analysis demonstrates the capability of performing a fully reconstructed \(B_s^0 \) measurement in PbPb collisions with the CMS detector.
Figure 5: The nuclear modification factor R_{AA} ratio between B^0_s and B^+ measured in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV from 7 to 50 GeV/c. Two B^0_s theoretical calculations are also shown for comparison: TAMU [17, 48], and CUJET3.0 [45–47].

6 Summary

The first measurement of the differential production cross section of B^0_s mesons (including both charge conjugates) in both pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair is presented. The B^0_s and B^0_s mesons are studied with the CMS detector at the LHC in the rapidity range $|y| < 2.4$ via the reconstruction of one of their exclusive hadronic decay channels, $B^0_s \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$. The nuclear modification factor R_{AA} of B^0_s is measured in the transverse momentum range from 7 to 50 GeV/c, inclusively for 0–100% event centrality. A hint of an enhancement of the B^0_s/B^+ ratio in PbPb with respect to pp collisions is seen. More precise measurements of the B^0_s and B^\pm mesons R_{AA} with the upcoming high-luminosity LHC heavy ion runs could provide further constraints on the relevance of recombination, a marker of deconfined matter, for beauty hadron production, and unambiguous information about the mechanisms of beauty hadronization in heavy ion collisions.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal);
References

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Université Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahuja, C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,
Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang, X. Gao, L. Yuan

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Tsinghua University, Beijing, China
Y. Wang

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A. Ellithi Kamel, M.A. Mahmoud, Y. Mohammed

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken
Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
I. Bagaturia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
G. Bencze, C. Hajdu, D. Horvath, Á. Hunyadi, F. Sikler, T.Á. Vámi, V. Veszpremi, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Tórcsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, B. Sutar, RavindraKumar Verma

Tata Institute of Fundamental Research-B, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, E. Eskandari Tadavani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
G. Pugliesea,c, R. Radognaa, A. Ranieria, G. Selvaggia,b, A. Sharmaa, L. Silvestrisa, R. Vendittia, P. Verwilligena, G. Zitoa

INFN Sezione di Bologna a, Università di Bologna b,c, Bologna, Italy
G. Abbiendia, C. Battilanaa,b, D. Bonacorsia,b, L. Borgonovia,b, S. Braibant-Giacomellia,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, S.S. Chhibraa,b, C. Cioccaa, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, E. Fontanesi, P. Giacomellia, G. Grandia, L. Guiduccia,b, S. Lo Meoa, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b, A. Perrottaa, F. Primaveraa,b,17, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia

INFN Sezione di Catania a, Università di Catania b,c, Catania, Italy
S. Albergoa,b, A. Di Mattiaa, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

INFN Sezione di Firenze a, Università di Firenze b,c, Firenze, Italy
G. Barbagliaa, K. Chatterjeea,b, V. Ciullia,b, C. Cividinia, R. D’Alessandroa,b, E. Focardia,b, G. Latino, P. Lenzia,b, M. Meschinia, S. Paolettia, L. Russoa,30, G. Sguazzonia, D. Stroma, L. Viliania

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova a, Università di Genova b,c, Genova, Italy
F. Ferroa, F. Raveraa,b, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benagliaa, A. Beschib, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b,17, S. Di Guidaa,d,17, M.E. Dinardoa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b, S. Malvezzia, A. Massironia,b, D. Menascea, F. Monti, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, T. Tabarelli de Fatisa,b, D. Zuoloa,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b,c, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b, A. Di Crescenzoa,b, F. Fabozzia,c, F. Fiengaa, G. Galatia, A.O.M. Iorioa,b, W.A. Khana, L. Listaa, S. Meolaa,d,17, P. Paoluccia,17, C. Sciaccaa,b, E. Voevodinaa,b

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzia, N. Bacchettaa, D. Biselloa,b, A. Bolettia,b, A. Bragagnolo, R. Carlina,b, P. Checchiaa, M. Dall’Ossa,b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S.Y. Hoh, S. Lacapraraa, P. Lujan, M. Margonia,b, A.T. Meneguzzoa,b, J. Fazzinia,b, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, A. Tiko, E. Torassaa, M. Zanettia,b, P. Zottoa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b,c, Pavia, Italy
A. Braghieria, A. Magnania, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b,c, Perugia, Italy
M. Biasinia,b, G.M. Bileia, C. Cecchita,b, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, R. Leonardia,b, E. Manonia, G. Mantovania,b, V. Mariania,b, M. Menichellia, A. Rossia,b, A. Santocchiaa,b, D. Spigaa
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulinov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov, V. Blinov, T. Dimova, L. Kardapoltsev, Y. Skovpen

Institute for High Energy Physics of National Research Centre 'Kurchatov Institute', Protvino, Russia

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, S. Baidali, V. Okhotnikov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Troconiz

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
University of Ruhuna, Department of Physics, Matara, Sri Lanka
N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak55, G. Karapinar56, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. G"ulmez, M. Kaya57, O. Kaya58, S. Ozkorucuklu59, S. Tekten, E.A. Yetkin60

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen61

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. Mcmaster, N. Pastika, C. Smith

Catholic University of America, Washington DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok,

University of California, Los Angeles, USA

University of California, Riverside, USA

University of California, San Diego, La Jolla, USA
J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fermi National Accelerator Laboratory, Batavia, USA
University of Florida, Gainesville, USA

Florida International University, Miami, USA
Y.R. Joshi, S. Linn

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebbasoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA
University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, P. Tan, R. Taus
Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
A.G. Delannoy, J. Heideman, G. Riley, S. Spanier

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA

University of Wisconsin - Madison, Madison, WI, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at University of Chinese Academy of Sciences, Beijing, China
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Now at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Now at British University in Egypt, Cairo, Egypt
12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at Ilia State University, Tbilisi, Georgia
17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
19: Also at University of Hamburg, Hamburg, Germany
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
22: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
23: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
24: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
25: Also at Institute of Physics, Bhubaneswar, India
26: Also at Shoolini University, Solan, India
27: Also at University of Visva-Bharati, Santiniketan, India
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Kyunghee University, Seoul, Korea
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
45: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
46: Also at National and Kapodistrian University of Athens, Athens, Greece
47: Also at Riga Technical University, Riga, Latvia
48: Also at Universität Zürich, Zurich, Switzerland
49: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
50: Also at Gaziosmanpasa University, Tokat, Turkey
51: Also at Adiyaman University, Adiyaman, Turkey
52: Also at Istanbul Aydin University, Istanbul, Turkey
53: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
54: Also at Piri Reis University, Istanbul, Turkey
55: Also at Ozyegin University, Istanbul, Turkey
56: Also at Izmir Institute of Technology, Izmir, Turkey
57: Also at Marmara University, Istanbul, Turkey
58: Also at Kafkas University, Kars, Turkey
59: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
60: Also at School of Physics and Astronomy, University of Southampton, Southampton,
United Kingdom
64: Also at Monash University, Faculty of Science, Clayton, Australia
65: Also at Bethel University, St. Paul, USA
66: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
67: Also at Utah Valley University, Orem, USA
68: Also at Purdue University, West Lafayette, USA
69: Also at Beykent University, Istanbul, Turkey
70: Also at Bingol University, Bingol, Turkey
71: Also at Sinop University, Sinop, Turkey
72: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
73: Also at Texas A&M University at Qatar, Doha, Qatar
74: Also at Kyungpook National University, Daegu, Korea