arXiv:1907.08592v2 [stat.ML] 5 Aug 2020

Kernel Mode Decomposition
and programmable/interpretable regression networks

Houman Owhadi* Clint Scovelf Gene Ryan Yoot

August 7, 2020

Abstract

Mode decomposition is a prototypical pattern recognition problem that can be
addressed from the (a priori distinct) perspectives of numerical approximation, sta-
tistical inference and deep learning. Could its analysis through these combined
perspectives be used as a Rosetta stone for deciphering mechanisms at play in deep
learning? Motivated by this question we introduce programmable and interpretable
regression networks for pattern recognition and address mode decomposition as a
prototypical problem. The programming of these networks is achieved by assem-
bling elementary modules decomposing and recomposing kernels and data. These
elementary steps are repeated across levels of abstraction and interpreted from the
equivalent perspectives of optimal recovery, game theory and Gaussian process re-
gression (GPR). The prototypical mode/kernel decomposition module produces an

approximation (wy,wsa, - , Wy, ) of an element (vy,vy,...,v,) € VE x -+ x V,, of a
product of Hilbert subspaces (V;,| - ||v;) of a common Hilbert space from the ob-
servation of the sum v := vy + -+ + vy, € Vi + -+ + V,,,. This approximation is

minmax optimal with respect to the relative error in the product norm >, | - [3.
and obtained as w; = Qi(Zj Q;) v =E[&] Zj ¢; = v] where @; and & ~ N(0,Q;)
are the covariance operator and the Gaussian process defined by the norm || - |v;.
The prototypical mode/kernel recomposition module performs partial sums of the
recovered modes w; and covariance operators (); based on the alignment between
each recovered mode w; and the data v with respect to the inner product defined
by S7! with S := >}, Q; (which has a natural interpretation as model/data align-

ment <wi,v>s,l = E[<£i,v>z,l] and variance decomposition in the GPR setting).
We illustrate the proposed framework by programming regression networks approxi-
mating the modes v; = a;(t)y; (0;(t)) of a (possibly noisy) signal ¥, v; when the am-
plitudes a;, instantaneous phases #; and periodic waveforms y; may all be unknown
and show near machine precision recovery under regularity and separation assump-
tions on the instantaneous amplitudes a; and frequencies #;. The structure of some
of these networks share intriguing similarities with convolutional neural networks
while being interpretable, programmable and amenable to theoretical analysis.
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1 Introduction

The purpose of the Empirical Mode Decomposition (EMD) algorithm [51] can be loosely
expressed as solving a (usually noiseless) version of the following problem, illustrated in
Figure 1.

Problem 1. For m € N*, let ay,...,an be piecewise smooth functions on [0,1] and
let 61,...,0n, be strictly increasing functions on [0,1]. Assume that m and the a;,0;
are unknown. Given the (possibly noisy) observation of v(t) = Y a;(t) cos (6;(t)),t €
[0, 1], recover the modes v;(t) := a;(t) cos (6;(t)).
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Figure 1: A prototypical mode decomposition problem: given v = v; + v9 + v3 recover
U1, V2, V3.

In practical applications, generally the instantaneous frequencies w; = ‘%’ are as-
sumed to be smooth and well separated. Furthermore the w; and the instantaneous
amplitudes are assumed to be varying at a slower rate than the instantaneous phases
0; so that near 7 € [0,1] the intrinsic mode function v; can be approximated by a

trigonometric function, i.e.
vi(t) ~ a;(1) cos (wi(T)(t — ) + 0;(7)) for t ~ 7. (1.1)

The difficulty of analyzing and generalizing the EMD approach and its popularity and
success in practical applications [50] have stimulated the design of alternative methods
aimed at solving Problem 1. Methods that are amenable to a greater degree of analysis
include synchrosqueezing [1%, (0], variational mode decomposition [21] and non-linear
L; minimization with sparse time-frequency representations [16, 17].

A Rosetta stone for deep learning? Since Problem 1 can be seen as prototypical
pattern recognition problem that can be addressed from the perspectives of numerical
approximation, statistical inference and machine learning, one may wonder if its analy-
sis, from the combined approaches of numerical approximation and statistical inference,
could be used as a Rosetta stone for deciphering deep learning. Indeed, although suc-
cessful industrial applications [58] have consolidated the recognition of artificial neural
networks (ANNSs) as powerful pattern recognition tools, their utilization has recently



been compared to “operating on an alien technology” [53] due to the challenges brought
by a lag in theoretical understanding: (1) because ANNs are not easily interpretable the
resulting models may not be interpretable (and identifying causes of success or failure
may be challenging) (2) because ANNs rely on the resolution of non-convex (possibly
stochastic) optimization problems, they are not easily amenable to a complete uncer-
tainty quantification analysis (3) because the architecture design of ANNs essentially
relies on trial and error, the design of architectures with good generalization properties
may involve a significant amount of experimentation.

Since elementary operations performed by ANNs can be interpreted [77] as stack-
ing Gaussian process regression steps with nonlinear thresholding and pooling opera-
tions across levels of abstractions, it is natural to wonder whether interpretable Gaus-
sian process regression (GPR) based networks could be conceived for mode decomposi-
tion/pattern recognition. Could such networks (1) be programmable based on rational
and modular (object oriented) design? (2) be amenable to analysis and convergence
results? (3) help our understanding of fundamental mechanisms that might be at play
in pattern recognition and thereby help elaborate a rigorous theory for Deep Learning?
This paper is an attempt to address these questions, while using mode decomposition [51]
as a prototypical pattern recognition problem. As an application of the programmable
and interpretable regression networks introduced in this paper, we will also address the
following generalization of Problem 1, where the periodic waveforms may all be non-
trigonometric, distinct, and unknown and present an algorithm producing near machine
precision (10~7 to 10~%) recoveries of the modes.

Problem 2. For m € N*, let ay,...,a,, be piecewise smooth functions on [—1,1], let
01,...,0m be piecewise smooth functions on [—1,1] such that the instantaneous frequen-
cies 9Z are strictly positive and well separated, and let yi,. .., ym be square-integrable 2m-
periodic functions. Assume that m and the a;, 0;,y; are all unknown. Given the observa-
tion v(t) = 3701 ai(t)yi (0:(t)) (for t € [—1,1]) recover the modes v;(t) := a;(t)y; (6:(t)).

One fundamental idea is that although Problems 1 and 2 are nonlinear, they can be,
to some degree, linearized by recovering the modes v; as aggregates of sufficiently fine
modes living in linear spaces (which, as suggested by the approximation (1.1), can be
chosen as linear spans of functions ¢ — cos(w(t — 7) + 6) windowed around 7, i.e. Gabor
wavelets). The first part of the resulting network recovers those finer modes through a
linear optimal recovery operation. Its second part recovers the modes v; through a hier-
archy of (linear) aggregation steps sandwiched between (nonlinear) ancestor/descendant
identification steps. These identification steps are obtained by composing the align-
ments between v and the aggregates of the fine modes with simple and interpretable
nonlinearities (such as thresholding, graph-cuts, etc...), as presented in Section 4.
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Figure 2: Left: The mode decomposition problem. Right: The game theoretic approach.

2 Review of additive Gaussian process regression, empiri-
cal mode decomposition and synchrosqueezing

The kernel mode decomposition framework has relations to the fields of additive Gaussian
process regression, empirical mode decomposition and synchrosqueezing. Consequently,
here we review these subjects giving a context to our work. This section is not essential
to understanding the paper and so can be skipped on first reading.

Although simple kriging and GPR are derived differently, they can be shown to be
equivalent and are often referred to as the same, see e.g. Yoo [112, Sec. 1.1] for a review
of kriging and its relationship with GPR. Regarding the origins of kriging, paraphrasing
Cressie [13], known for introducing kriging in spatial statistics, "both Matheron [(7]
(see also [06]) and Gandin [35] were the first to publish a definitive development of
spatial kriging. D. G. Krige’s contributions in mining engineering were considerable but
he did not discover kriging, illustrating once again Stigler’s Law of Eponymy (Stigler
[96]), which states that "no scientific discovery is named after its original discoverer.”
The eponymous title of Stigler’s work is playfully consistent with his law, since in it he
essentially names Merton [70, p. 356] as the discoverer of Stigler’s law.

2.1 Additive Gaussian processes

Following Hastie and Tibshirani [10, 39], the generalized additive model (GAM) replaces
a linear predictor »}; Bjx;, where the §; are parameters, with >}. f;j(z;) where the f;
are unspecified functions. For certain types of prediction problems such as binary target
variables, one may add a final function h(zj fi(z;))). To incorporate fully dependent
responses we can consider models of the form f(z1,...,zx). Additive models have
been successfully used in regression, see Stone [97] and Fan et al. [29]. Vector valued
generalizations of GAMs have been developed in Yee and Wild [111] and Yee [110].
For vector valued additive models of large vector dimension with a large number of
dimensions in the observation data, Yee [110] develops methods for reducing the rank of
the systems used in their estimation.



When the underlying random variables are Gaussian and we apply to regression, we
naturally describe the model in terms of its covariance kernel k(z1,...,zn, 2], ..., 2)
or as an additive model ) k;(z;,2}), where the kernel is an additive sum of kernels
depending on lower dimensional variables. It is natural to generalize this setting to a
covariance defined by a weighted sum over all orders d of dependency of weighted sums
of kernels depending only on d D dimensional variables, where N = Dd. Of course, such
general kernels are exponentially complex in the dimension NV, so are not very useful.
Nearly simultaneously, Duvenaud et al. [27] and Durrande et al. [23, 2], introducing
Gaussian Additive Processes, addressed this problem. Duvenaud et al. [27] restricts the
sum at order d to be symmetric in the scalar components in the vector variables, thus
reduces this complexity in such a way that their complexity is mild and their estimation
is computationally tractable. Durrande et al. [23, 24] consider additive versions of vector
dependent kernels and product versions of them, and study their respective performance
properties along the the performance of their sum. Moreover, because of the additive
nature of these methodologies, they both achieve strong interpretability as described by
Plate [78].

2.2 Gaussian Process Regression

Williams and Rasmussen [106] provide an introduction to Gaussian Process Regression
(GPR). More generally, an excellent introduction to Gaussian processes in machine learn-
ing, along with a description of many of its applications and its history, can be found in
Rasmussen [$1], and Rasmussen and Williams [35], see also Yoo [112]. Recent applica-
tion domain developments include source separation, which is related to subject of this
book, by Park and Choi [76] and Liutkus et al. [02] and the detection of periodicities by
Durrande et al. [25, 26] and Preotiuc-Pietro and Cohn [79].

When the number of dimensions of the observational data is large, computational
efficiency becomes extremely important. There has been much work in this area, the so-

called sparse methods, e.g. Tresp [103], Smola and Bartlett [92], Williams and Seeger
[105], Csaté and Opper [15], Csaté et al. [16], Csaté [14], Quifonero-Candela [30],
Lawrence et al. [56], Seeger [90], Seeger et al. [91], Schwaighofer and Tresp [39], Snelson
and Ghahramani [93]. Quinonero-Candela and Rasmussen [31] provide a unifying frame-

work for the sparse methods based on expressing them in terms of their effective prior.
The majority of these methods utilize the so-called inducing variable methods, which are
data points in the same domain as the unlabeled data. Some require these to be a subset
of the training data while others, such as Snelson and Ghahramani [93] allow them to
inferred along with the the primary hyperparameters using optimization. However, there
are notable exceptions such as Hensman et al. [12] who apply a Kullback-Liebler derived
variational formulation and utilize Bochner’s theorem on positive definite functions to
choose optimal features in Fourier space.

The majority of these methods use the Kullback-Liebler (KL) criterion to select the
induced points, See Rasmussen and Williams [85, Ch. 8] for a review. In particular,
Seeger et al. [91], Seeger [90] among others, utilize the KL criterion to optimize both
the model hyperparameters and the inducing variables. However, they observe that the



approximation of the marginal likelihood is sensitive to the choice of inducing variables
and therefore convergence of the method is problematic. Snelson and Ghahramani [93]
attempt to resolve this problem by developing a KL formulation where the model hy-
perparameters and the inducing variables are jointly optimized. Nevertheless, since the
inducing variables determine an approximate marginal likelihood, these methods can
suffer from overfitting. Titsias’ [100] breakthrough, a development of Csaté and Opper
[15] and Seeger [90], was the introduction of a KL variational framework where the model
hyperparameters and the inducing variables are selected in such a way as to maximize a
lower bound to the true marginal likelihood, and thus are selected to minimize the KL
distance between the sparse model and the true one. When the dimensions of the obser-

vational data are very large, Hensman et al. [11], utilizing recent advances in stochastic
variational inference of Hoffman et al. [15] and Hensman et al. [13], appear to develop
methods which scale well. Adam et al. [I] develop these results in the context Additive

GP applied to the source separation problem.

For vector Gaussian processes, one can proceed basically as in the scalar case, in-
cluding the development of sparse methods, however one needs to take care that the
vector covariance structure is positive definite (see the review by Alvarez et al. [1]) See
e.g. Yu et al. [114], Boyle and Frean [10, 9], Melkumyan and Ramos [69], Alvarez and
Lawrence [2, 3], Titsias and Lazaro-Gredilla [101]. Raissi et al. [¢2] develop methods to
learn linear differential equations using GPs.

2.3 Empirical Mode Decomposition (EMD)

The definition of an instantaneous frequency of a signal z(t) is normally accomplished
through application of the Hilbert transform # defined by the principle value of the
singular integral

1 x(T)
(H(2))(t) == ;PV JR ;dT,

which, when it is well defined, determines the harmonic conjugate y := H(x) of z(t) of
a function ‘
z(t) + iy(t) = a(t)e”™)

which has an analytic extension to the upper complex half plane in ¢, allowing the
derivative w := 6 the interpretation of an instantaneous frequency of

x(t)) = a(t) cos(6(t)) .

However, this definition is controversial, see e.g. Boashash [7] for a review, and pos-
sesses many difficulties, and the Empirical Mode Decomposition (EMD) algorithm was
invented by Huang et al. [71] to circumvent them by decomposing a signal into a sum
of intrinsic mode functions (IMFs), essentially functions whose number of local extrema
and zero crossings are either equal or differ by 1 and such that the mean of the envelope
of the local maxima and the local minima is 0, which are processed without difficulty
by the Hilbert transform. See Huang [19] for a more comprehensive discussion. This
combination of the EMD and the Hilbert transform, called the Hilbert-Huang transform,



is used decompose a signal into its fundamental AM-FM components. Following Rilling
et al. [37], the EMD appears as follows: Given a signal x(t)

1. identify all local extrema of x(t)
2. interpolate between the local minima (resp. maxima) to obtain the envelope epin (%)
(resp. emax(t))

€min (t) +Emax (t)
2

4. extract the detail d(t) := x(t) — m(t)

3. compute the mean m(t) :=

5. iterate on the residual m(t)

The sifting process iterates steps (1) through (4) on the detail until it is close enough to
zero mean. Then the residual is computed and step (5) is applied.

Despite its remarkable success, see e.g. [12, 51, 91, , 11, 17, 20] and the review
on geophysical applications of Huang and Wu [52]. the original method is defined by an
algorithm and therefore its performance is difficult to analyze. In particular, sifting and
other iterative methods usually do not allow for backward error propagation. Despite
this, much is known about it, improvements have been made and efforts are underway to
develop formulations which facilitate a performance analysis. To begin, it appears that
the EMD algorithm is sensitive to noise, so that Wu and Huang [105] introduce and study
an Ensemble EMD, further developed in Torres et al. [102], which appears to resolve
the noise problem while increasing the computational costs. On the other hand, when
applied to white noise Flandrin et al. [33, 31, 32] and Wu and Huang [107] demonstrate
that it acts as an adaptive wavelet-like filter bank, leading to Gilles’ [36] development of
empirical wavelets. Rilling and Flandrin [36] successfully analyze the performance of the
the algorithm on the sum of two cosines. Lin et al. [01] consider an alternative framework
for the empirical mode decomposition problem considering a moving average operator
instead of the mean function of the EMD. This leads to a mathematically analyzable
framework, and in some cases (such as the stationary case) to the analysis of Toeplitz
operators, a good theory with good results. This technique has been further developed

by Huang et al. [18], with some success. Approaches based on variational principles, such
as Feldman [30], utilizing an iterative variational approach using the Hilbert transform,
Hou and Shi [16], a compressed sensing approach, Daubechies et al. [18], the wavelet base

synchrosqueezing method to be discussed in a moment, and Dragomiretskiy and Zosso
[21], a generalization of the classic Wiener filter using the alternate direction method of
multipliers method, see Boyd et al. [3], to solve the resulting bi-variate minimization
problem, appear to be good candidates for analysis. However, the variational objective
function in [16] uses higher order total variational terms so appears sensitive to noise,
[30] is an iterative variational approach, and the selection of the relevant modes in
[21] for problems with noise is currently under investigation, see e.g. Ma et al. [(4]
and the references therein. On the other hand, Daubechies et al. [18] provide rigorous
performance guarantees under certain conditions. Nevertheless, there is still much effort



in developing their work, see e.g. Auger et al. [] for a review of synchrosqeezing and its
relationship with time-frequency reassignment.

2.4 Synchrosqueezing

Synchrosqueezing, introduced in Daubechies and Maes [19], was developed in Daubechies,
Lu and Wu [18] as an alternative to the EMD algorithm which would allow mathematical
performance analysis, and has generated much interest, see e.g. [72, 99, 98, 5, 59, ].
Informally following [18], for a signal z(t) we let

t—>b

W{(a,b) := a2 f :U(t)d}(T)dt

R
denote the wavelet transform of the signal z(t) using the wavelet 1. They demonstrate
that for a wavelet such that its Fourier transform satisfies ¥ (§) = 0,& < 0, when applied
to a pure tone

x(t) := Acos(wt) (2.1)
that 1n W (a, b)
OlnW(a,
W(a,b) = _ZT (22)
satisfies
w(a,b) =w,

that is, it provides a perfect estimate of the frequency of the signal (2.1). This suggests
using (2.2) to define the map
(a,b) — (w(a,b),b)

to push the mass in the reconstruction formula

0 3
z(b) = ?R[C’Jlj W (a, b)a_ida] ,
0
where Cy, := SSO @df , to obtain the identity

Re[q;l LOO W(a,b)a—%da] - &e[q;l fRT(w,b)dw] , (2.3)

where

T(w,b) = At W (a, b)cf%S(w(a, b) — w)da (2.4)

where

A(b) :={a:W(a,b) # 0}
and w(a,b) is defined as in (2.2) for (a,b) such that a € A(b). We therefore obtain the

reconstruction formula

x(b) = R[C;! JRT(W, by (2.5)

8



for the synchrosqueezed transform 7. In addition, [18, Thm. 3.3] demonstrates that
for a signal x comprised of a sum of AM-FM modes with sufficiently separated fre-
quencies whose amplitudes are slowly varying with respect to their phases, that the
synchrosqueezed transform T'(w, b) is concentrated in narrow bands w &~ 6;(b) about the
instantaneous frequency of the i-th mode and restricting the integration in (2.5) to these
bands provides a good recovery of the modes.

3 The mode decomposition problem

To begin the general (abstract) formulation of the mode decomposition problem, let V
be a separable Hilbert space with inner product <-, > and corresponding norm || -||. Also
let Z be a finite set of indices and let (V;);ez be linear subspaces V; < V such that

V=>V. (3.1)

€L
The mode decomposition problem can be informally formulated as follows
Problem 3. Given v eV recover v; € V;,i € I, such that v = ), 7 v;.

Our solution to Problem 3 will use the interface between numerical approximation,
inference and learning (as presented in [74, 75]), which although traditionally seen as
entirely separate subjects, are intimately connected through the common purpose of
making estimations with partial information [75]. Since the study of this interface has
been shown to help automate the process of discovery in numerical analysis and the
design of fast solvers [73, 74, 88], this paper is also motivated by the idea it might, in a
similar manner and to some degree, also help the process of discovery in machine learning.
Here, these interplays will be exploited to address the general formulation Problem 3
of the mode recovery problem from the three perspectives of optimal recovery, game
theory and Gaussian process regression. The corresponding minmax recovery framework
(illustrated in Figure 2 and presented below) will then be used as a building block for
the proposed programmable networks.

3.1 Optimal recovery setting

Problem 3 is ill-posed if the subspaces (V;);ez are not linearly independent, in the sense
that such a recovery will not be unique. Nevertheless, optimal solutions can be defined
in the optimal recovery setting of Micchelli and Rivlin [71]. To this end, let | - |z be a
quadratic norm on the product space

B=1v (3.2)

€L

making B a Hilbert space, and let



be the information map defined by

Dy = Z u;, u = (uj)iez € B. (3.3)
€L

An optimal recovery solution mapping

v:V -8B

for the mode decomposition problem is defined as follows: for given v € V, we define
U(v) to be the minimizer w of

min max e ls (3.4)
weB|Pw=v ueB|Pu=v HUHB

Lemma 3.1. Let ® : B — V be surjective. For v € V, the solution w of the convex
optimization problem

{Mmimize |wlls (3.5)

Subject to w € B and dw = v.

determines the unique optimal minmazx solution w = ¥ (v) to (3.4). Moreover,
U(v) = o,
where the Moore-Penrose inverse ® : V — B of ® is defined by
o+ = o7 (d0”) .

Now let us be more specific about the structure of B that we will assume. Indeed,
let the subspaces (V;);ez be equipped with quadratic norms (| - |v; )iez making each

Vi [ - lIv2)

a Hilbert space, and equip their product B = [ [,.; Vi with the product norm

||U||26 = Z HUiH%/i’ u = (u;)iez € B. (3.6)
i€l

We use the notation [-,-] for the duality product between V* on the left and V' on the
right, and also for the duality product between V;* and V; for all i. The norm || - |y,
makes V; into a Hilbert space if and only if

Jvil3;, = [Q; toi il v € Vi, (3.7)
for some positive symmetric linear bijection

Ql‘/z*_)‘/;)

10



where by positive and symmetric we mean [¢, Q;¢] = 0 and [¢, Q]| = [p, Q;¢] for all
@, ¢ € V.*. For each i € Z, the dual space V;* to (V;,| - [v;) is also a Hilbert space with
norm

||¢i|\%/i* = [¢i, Qidhil, pi € V¥, (3-8)
and therefore the dual space B* of B can be identified with the product of the dual

spaces
B =] (3.9)
1€l

with (product) duality product

[¢,ul = > [, uil, ¢ = (¢i)iez € B, u= (wi)icz € B. (3.10)

i€T
Moreover the symmetric positive linear bijection
Q:B*—>B (3.11)
defining the quadratic norm | - |z is the block-diagonal operator

Q := diag(Q;)ier

defined by its action Q¢ = (Q;i)iez, ¢ € B*.
Let
€; . VZ —V

be the subset inclusion and let its adjoint

ef V* > VF

(3

be defined through [e} ¢, v;] = [¢, e;vi] for ¢ € V*, v; € V;. These operations naturally
transform the family of operators

Q’LV;*_)‘/:M iEI,

into a family of operators
eiQiel 1 V¥ >V, (el

all defined on the same space, so that we can define their sum S : V* — V by

S =) eiQief . (3.12)

i€l

The following proposition demonstrates that S is invertible and that S~! and S naturally
generate dual Hilbert space norms on V and V* respectively.

11



Lemma 3.2. The operator S : V* — V, defined in (3.12), is invertible. Moreover,
[0 &1 :=[S7 v, 0], veV, (3.13)
defines a Hilbert space norm on V and

|65 := [¢,50] = > lef o=, oeV*, (3.14)

i€l

defines a Hilbert space norm on V* which is dual to that on V.
The following theorem determines the optimal recovery map V.

Theorem 3.3. Forv eV, the minimizer of (3.5) and therefore the minmaz solution of

(3.4) is
U(v) = (Qie;"Sflfu)ieI. (3.15)
Furthermore
®(V(v)) = v, veV,
where
U (V|- fs—) = (B[ ]s)
and

(VA ls) = (B ] ls#)

are isometries. In particular, writing ¥;(v) := Qie;"S_lv, we have

[0 = 1¥@)[E = D 1:()[},  veV. (3.16)
1€l
Observe that the adjoint
LVF S B

of @ : B— V, defined by [¢, Pu] = [®*(p),u] for ¢ € V* and u € B, is computed to be
D*(p) = (€ Q)ier, peV*. (3.17)
The following theorem presents optimality results in terms of ®*.

Theorem 3.4. We have

u—w(@u)l = inf lu—QO*(O)lE = inf, D [ui—Qiefol} . (318)
€L

12



3.2 Game/decision theoretic setting

Optimal solutions to Problem 3 can also be defined in the setting of the game/decision
theoretic approach to numerical approximation presented in [74]. In this setting the
minmax problem (3.4) is interpreted as an adversarial zero sum game (illustrated in
Figure 2) between two players and lifted to mixed strategies to identify a saddle point.
Let P>(B) be the set of Borel probability measures p on B such that Eq, [ |u|%] < o0, and
let L(V, B) be the set of Borel measurable functions ¢ : V- — B. Let £ : Po(B)x L(V, B) —
R be the loss function defined by

Ey~p [Hu —(Pu) H%]
Ewu[”“”%] ’

Let us also recall the more general notion of a Gaussian field as described in [74,
Chap. 17]. To that end, a Gaussian space H is a linear subspace H — L?(Q,%,P)
of the L? space of a probability space consisting of centered Gaussian random vari-
ables. A centered Gaussian field £ on B with covariance operator @ : B* — B, written
&~ N(0,Q), is an isometry

E(p, ) = pePa(B), v e L(V,B). (3.19)

£:B*—>H

from B* to a Gaussian space H, in that

[¢,€] ~ N (0.[6,Q0]),  de B,

where we use the notation [¢,£] to denote the action {(¢) of £ on the element ¢ € B*,
thus indicating that & is a weak B-valued Gaussian random variable. As discussed in
[74, Chap. 17], there is a one to one correspondence between Gaussian cylinder measures
and Gaussian fields'. Let ¢ denote the Gaussian field

g’\’N(OvQ)

on B where Q : B* — Bis the block diagonal operator @ := diag(Q;)icz, and let uf denote
the cylinder measure defined by the Gaussian field { — E[£|®&], or the corresponding
Gaussian measure in finite dimensions.
We say that a tuple (1, 1") is a saddle point of the loss function & : Py(B)x L(V,B) —
R if
E(u ") <EW W) < EW,v), pePaB), e L(V,B).

! The cylinder sets of B consists of all sets of the form F~!(B) where B € R" is a Borel set and
F : B — R" is a continuous linear map, over all integers n. A cylinder measure p, see also [74, Chap. 17],
on B, is a collection of measures pr indexed by F' : B — R" over all n such that each ur is a Borel
measure on R" and such that for Fi : B — R"* and F> : B —» R"? and G : R" — R"? linear and
continuous with F» = GFi, we have Gy ur, = pir,, where Gy is the pushforward operator on measures
corresponding to the map G, defined by (Gxv)(B) := v(G~'B). When each measure pr is Gaussian,
the cylinder measure is said to be a Gaussian cylinder measure. A sequence pu, of cylinder measures
such that the sequence (un)r converges in the weak topology for each F, is said to converge in the weak
cylinder measure topology.
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Theorem 3.5 shows that the optimal strategy of Player I is the Gaussian field £ —E[£|®¢],
the optimal strategy of Player II is the conditional expectation

U(v) = E[¢|D¢ = 0], (3.20)
and (3.20) is equal to (3.15).

Theorem 3.5. Let £ be defined as in (3.19). It holds true that

in_ & — mi £ . 3.21
WeP3(B) peL(V,B) (. ¥) VeL(VE) uePa(B) . ¥) (3:21)

Furthermore,

o Ifdim(V) < o then (uf, ¥) is a saddle point for the loss (3.19), where ¥ is as in
(3.15) and (3.20).

o [fdim(V) = oo, then the loss (3.19) admits a sequence of saddle points (i, ¥) €
Pa(B) x L(V, B) where U is as in (3.15) and (3.20), and the u, are Gaussian mea-
sures, with finite dimensional support, converging towards u' in the weak cylinder
measure topology.

Proof. The proof is essentially that of [74, Thm. 18.2] O

3.3 Gaussian process regression setting

. . _ —1
Vi, Qz U{z =QiS v

Ha —

: -

o

o

o

o- >0

[ ] [ ]

[ ] [ ]

[ 2 [ ]

[ B >0

[ [ ]

o °

H H

° - / ~. ~ °

[ ] ///// \\“ [ ]

[ R ]

A A

Figure 3: The minmax solution of the mode decomposition problem.

Let us demonstrate that Theorem 3.5 implies that the minmax optimal solution to
Problem 3 with loss measured as the relative error in the norm (3.6) can be obtained
via Gaussian process regression. To that end, let & ~ N(0,Q;), i € Z, be independent
Vi-valued Gaussian fields defined by the norms || - |y;. Recall that @; is defined in (3.7)
and that & is an isometry from (V;*,|| - [|y+) onto a Gaussian space, mapping ¢ € V;*
to [¢,&] ~ N(O, [¢, Qi¢]). Theorem 3.5 asserts that the minmax estimator is (3.20),
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which, written componentwise, determines the optimal reconstruction of each mode v;
of v =) .7v; to be

B[] > &6 =v] =Q;(> Q) . (3.22)

1€l €L

where the right hand side of (3.22) is obtained from (3.15), and ), @; is a short-
hand notation for ), e;Q;e} obtained by dropping the indications of the injections e;
and their adjoint projections e;. From now on, we will use such simplified notations
whenever there is no risk of confusion. In summary, the minmax solution of the abstract
mode decomposition problem, illustrated in Figure 3, is obtained based on the speci-
fication of the operators Q; : V;* — V; and the injections e; : V; — V, of which the
former can be interpreted as quadratic norm defining operators or as covariance opera-
tors. Table 1 illustrates the three equivalent interpretations -optimal recovery/operator
kernel/Gaussian process regression of our methodology.

Norm Operator/Kernel GP

H/U’LH%G = <Q;1UZ;UZ> Ql : ‘/:L* - ‘/l 57, ~ N(OaQZ)
. . . . 2

wgin {0 0 05,097 Bl | 5,6 =
iwi =

Table 1: Three equivalent interpretations -optimal recovery/operator kernel/Gaussian
process regression of our methodology.

Example 3.6. Consider the problem of recovering the modes v1,v2,vs, vy from the ob-
servation of the signal v = vy + va + v3 + vy Wllustrated in Figure 4. In this example all
modes are defined on the interval [0,1], v1(t) = (1 + 2t2)cos(#1(t)) — 0.5¢sin(1(t)),
va(t) = 2(1 — t3) cos(f2(t)) + (—t + 0.5t3)sin(6a(t)), v3(t) = 2 +t — 0.2t2, and vy
is white-noise (the instantiation of a centered GP with covariance function &(s —t)).
01(t) = Sé wi(s)ds and O;(t) = Sé wa(s)ds are defined by the instantaneous frequencies
wi(t) = 16m(1 +t) and wa(t) = 30m(1 + t2/2). In this recovery problem wi(t) and
wo(t) are known, vy and the amplitudes of the oscillations of vi and vy are unknown
smooth functions of time, only the distribution of vy is known. To define optimal re-
covery solutions one can either define the normed subspaces (Vi, | - |v;) or (equivalently
via (3.7)) the covariance functions/operators of the Gaussian processes &. In this ex-
ample it is simpler to use the latter. To define the covariance function of the GP &
we assume that & (t) = (1.c(t) cos(01(t)) + C1,5(t) sin(01(t)), where (1. and (1,5 are in-

dependent identically distributed centered Gaussian processes with covariance function
s—t 2

E[¢1c(5)Ce(t)] = E[¢is(s)C1,5(t)] = 67(772) (chosen with v = 0.2 as a prior regu-

larity assumption). Under this choice & is a centered GP with covariance function
s—t 2

Ki(s,t) = e_(7(cos(91(s))cos(01(t)) + sin(6;(s))sin(61(t))). Note that the cosine

15
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Figure 4: (1) The signal v = v; + v2 + v3 + v4 (2) The modes vy, vy, v3,v4 (3) v1 and its
approximation w; (4) ve and its approximation ws (5) vs and its approximation ws (6)
vy and its approximation wy.

and sine summation formulas imply that translating 01 by an arbitrary phase b leaves
K invariant (knowing 61 up to a phase shift is sufficient to construct that kernel).

Similarly we select the covariance function of the independent centered GP &3 to be
2

Ky(s,t) = 6_(772)(008(02(8)) cos(02(t)) + sin(fa(s)) sin(6a2(t))). To enforce the regular-

2
ity of & we select its covariance function to be Ks3(s,t) = 1 + st + 6_%. Finally
since v4 s white noise we represent it with a centered GP with covariance function
Ky(s,t) = 8(s —t). Figure 4 shows the recovered modes using (3.22) (or equivalently
defined as (3.15) and the minimizer of (3.5)). In this numerical implementation the
interval [0,1] is discretized with 302 points (with uniform time steps between points),
&4 is a discretized centered Gaussian vector of dimension 302 and of identity covariance
matriz and &1, 2, &3 are discretized as centered Gaussian vectors with covariance matri-
ces corresponding to the kernel matrices (K(tl, t; )) 0.2:1 corresponding to K1, Ko and K3
determined by the sample points t;,i =1,...

Table 2 provides a summary of the approach of Example 3.6, illustrating the connec-
tion between the assumed mode structure and corresponding Gaussian process structure
and its corresponding reproducing kernel structure.
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Mode GP Kernel

v1(t) = a1(t) cos(01(t)) | &u(t) = Ci(t) cos(b(t))

s—t]?

ko ElG ()G 0] =

a1 unknown smooth

g2 | Ki(s,t) =€ 97 cos(61(s)) cos(61(t))

up(t) = aa(t) cos(02(t)) | &a(t) = Ca(t) cos(6a(t)) e

02 known |s—t]

E[¢a(s)Ga(t)] =

as unknown smooth

2 | Ko(s,t) =e % cos(ba(s)) cos(Ba(t))

_ls=t)? ls—t|2
vz unknown smooth | E[&5(s)é3(8)] =e 2 Ks(s,t)=e 2
vy unknown white noise| E[£4(s)&4(t)] = 028(s—t) Ky(s,t) = 0%8(s — t)
V=01 + V24 v3+ g E=86+E&E+EE+ &4 K=K+ Ky+ K3+ K4

Table 2: A summary of the approach of Example 3.6, illustrating the connection be-
tween the assumed mode structure and corresponding Gaussian process structure and
its corresponding reproducing kernel structure. Note that, for clarity of presentation,
this summary does not exactly match that of Example 3.6.

On additive models. The recovery approach of Example 3.6 is based on the de-
sign of an appropriate additive regression model. Additive regression models are not
new. They were introduced in [97] for approximating multivariate functions with sums
of univariate functions. Generalized additive models (GAMs) [10] replace a linear re-
gression model }; a; X; with an additive regression model }}; f;(X;) where the f; are
unspecified (smooth) functions estimated from the data. Since their inception GAMs
have become increasingly popular because they are both easy to interpret and easy to
fit [78]. This popularity has motivated the introduction of additive Gaussian processes
[27, 24] defined as Gaussian processes whose high dimensional covariance kernels are
obtained from sums of low dimensional ones. Such kernels are expected to overcome
the curse of dimensionality by exploiting additive non-local effects when such effects are
present [27]. See Section 2.1. Of course, performing regression or mode decomposition
with Gaussian processes (GPs) obtained as sums of independent GPs (i.e. performing
kriging with kernels obtained as sums of simpler kernels) is much older since Tikhonov
regularization (for signal/noise separation) has a natural interpretation as a conditional
expectation E[&|&s + & ] where & is a GP with a smooth prior (for the signal) and
&, is a white noise GP independent from &;. More recent applications include clas-
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sification [05], source separation [76, (2], and the detection of the periodic part of a
function from partial point evaluations [20, 1]. For that latter application, the approach
of [26] is to (1) consider the RKHS Hp defined by a Matérn kernel K (2) interpolate
the data with the kernel K and (3) recover the periodic part by projecting the inter-
polator (using a projection that is orthogonal with respect to the RKHS scalar product
onto H), := span{cos(2wkt/\),sin(27kt/)) | 1 < k < ¢} (the parameters of the Matérn
kernel and the period A are obtained via maximum likelihood estimation). Defining K,
and K, as the kernels induced on H), and its orthogonal complement in Hg, we have
K = K, + K,,;, and the recovery (after MLE estimation of the parameters) can also be
identified as the conditional expectation of the GP induced by K, conditioned on the
GP induced by K, + K.

4 Kernel mode decomposition networks (KMDNets)

V= { (t)cos (8(t)) | @, € linear spaces} U(l w(l)
v; € VJ w; € VJ é :Z
° o ;Xw 04:
ﬁ / : \ / :
v .&. ’AZE.
® — > o [ :/ e — :
P o E . %E
. - S 2 1 .
Difficult as a mode decomposition problem Uj(' ) - zle z( )
V;: Nonlinear vz(l) € Vi(l): Linear spaces

Figure 5: Left: Problem 1 is hard as a mode decomposition problem because the modes
vj = a;(t) cos(6;(t)) live in non-linear functional spaces. Right: One fundamental idea
is to recover those modes as aggregates of finer modes v; living in linear spaces.

The recovery approach described in Example 3.6 is based on the prior knowledge of
(1) the number of quasi-periodic modes (2) their phase functions #; and (3) their base
periodic waveform (which need not be a cosine function). In most applications (1) and
(2) are not available and the base waveform may not be trigonometric and may not be
known. Even when the base waveforms are known and trigonometric (as in Problem
1), when the modes’ phase functions are unknown, the recovery of the modes is still
significantly harder than when they are known because, as illustrated in Figure 5, the
functional spaces defined by the modes a;(t) cos (Qj(t)) (under regularity assumptions
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on the a; and 6;) are no longer linear spaces and the simple calculus of Section 3 requires
the spaces Vj to be linear.

To address the full Problem 1, one fundamental idea is to recover those modes v;
as aggregates of finer modes v; living in linear spaces V; (see Figure 5). In partic-
ular, we will identify ¢ with time-frequency-phase triples (7,w,f) and the spaces V;
with one dimensional spaces spanned by functions that are maximally localized in the
time-frequency-phase domain (i.e. by Gabor wavelets as suggested by the approxima-
tion (1.1)) and recover the modes a;(t)cos (#;(t)) by aggregating the finer recovered
modes. The implementation of this idea will therefore transform the nonlinear mode

e @

S

—+ Linear

v

Identification of ¢ ~» j: nonlinear .
Linear

Figure 6: Mode decomposition/recomposition problem. Note that the nonlinearity of
this model is fully represented in the identification of the relation ¢ ~» j; once this
identification is determined all other operations are linear.

decomposition problem illustrated on the left hand side of Figure 5 into the mode de-
composition/recomposition problem illustrated in Figure 6 and transfer its nonlinearity
to the identification of ancestor/descendant relationships i ~ j.

To identify these ancestor/descendant relations we will compute the energy F(i) :=
sz||%/z for each recovered mode w;, which as illustrated in Figure 7 and discussed in
Section 4.1, can also be identified as the alignment <wi, v> g—1 between recovered mode
w; and the signal v or as the alignment E[Var[{&;, v) g—1] between the model §; and the
data v. Furthermore E satisfy an energy preservation identity >}, E(i) = |v]|3_, which
leads to its variance decomposition interpretation. Although alignment calculations are
linear, the calculations of the resulting child-ancestor relations may involve a nonlinearity
(such as thresholding, graph-cut, computation of a maximizer) and the resulting network
can be seen as a sequence of sandwiched linear operations and simple non-linear steps
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Figure 7: Derivation of ancestor/descendant relations from energy calculations.

having striking similarities with artificial neural networks.

Of course this strategy can be repeated across levels of abstractions and its complete
deployment will also require the generalization of the setting of Section 3 (illustrated in
Figure 3) to a hierarchical setting (illustrated in Figure 10 and described in Section 4.3).

4.1 Model/data alignment and energy/variance decomposition

Using the setting and notations of Section 3 and fixing the observed data v € V, let
FE : 7 — R, be the function defined by

E(i) = |¥;(v)|},, €T, (4.1)

where ¥; are the components of the optimal recovery map ¥ evaluated in Theorem 3.3.
We will refer to E(i) as the energy of the mode i in reference to its numerical analysis
interpretation (motivated by the ”energy” representation of E(i) = [Q; 'W;(v), ¥;(v)]
determined by (3.7), and the interpretation of Q; ! as an elliptic operator) and our
general approach will be based on using its local and/or global maximizers to decom-
pose/recompose kernels.

Writing Eiot := [[v|%-1, note that (3.16) implies that

Bt = Y E(i). (4.2)

€L
Let (-,-)¢; be the scalar product on V defined by the norm | - | g-1.

Proposition 4.1. Let ¢ ~ N(0,Q) and ¢ := S~ v. It holds true that forie T,

B(i) = (¥(v),v) g1 = Var ([¢,&]) = Var ((&,v)q1) - (4.3)
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Observe that E(i) = Var (<£l, U>S,1) implies that E(i) is a measure of the alignment
between the Gaussian process (GP) model & and the data v in V' and (4.2) corresponds
to the variance decomposition

Var (<Z &, U>S,1) = Z Var (<£¢, v>s,1) . (4.4)

i€l i€l

Therefore, the stronger this alignment E(i) is, the better the model &; is at explain-
ing/representing the data. Consequently, we refer to the energy F(i) as the alignment
energy. Observe also that the identity E(i) = (w;, v>S,1 with w; = ¥;(v) implies that
E(i) is also a measure of the alignment between the optimal approximation w; of v;
and the signal v. Table 3 illustrates the relations between the conservation of alignment
energies and the variance decomposition derived from Theorem 3.3 and Proposition 4.1.

Norm Operator/Kernel GP
E(i) [2i(0) [, = {¥i(v),v)g 1 | [S™1v,QiS ] Var ((§, v)s-1)
2 E(@) | vl (S~ v, 0] Var (), &, v)s—1)

Table 3: Identities for E(i) and ), E(4)

4.2 Programming modules and feedforward network

@)
oA e wi | Bli){amne) G )
2) @ Qi) @

" (i) B() £(5)

Figure 8: Elementary programming modules for Kernel Mode Decomposition.

We will now combine the alignment energies of Section 4.1 with the mode decompo-
sition approach of Section 3 to design elementary programming modules (illustrated in
Figure 8) for kernel mode decomposition networks (KMDNets). These will be introduced
in this section and developed in the following ones. Per Section 3 and Theorem 3.3, the
optimal recoveries of the modes (v;);ez given the covariance operators (Q;);ez and the
observation of 3,7 v; are the elements Q;(>}; Q) ~'v in V;. This operation is illustrated
in module (1) of Figure 8. An important quantity derived from this recovery is the en-
ergy function E : T — Ry, defined in (4.1) by E(i) := [Q; 'wi, w;] with w; := ¥;(v),
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and illustrated in module (2). Since, per (4.2), Byt = Y07 E(i), where Ey := ||v]%_, is
the total energy (4.1), the function E can be interpreted as performing a decomposition
of the total energy over the set of labels Z. When Z can be identified with the set of
vertices of a graph, the values of the E(i) can be used to cut that graph into subgraphs
indexed by labels j € J and define a relation ¢ ~» j mapping ¢ € Z to its subgraph j. This
graph-cut operation is illustrated in module (3). Since, per Section 4.1, E(i) is also the
mean squared alignment between the model & and the data v, and (4.4) is a variance
decomposition, this clustering operation combines variance/model alignment informa-
tion (as done with PCA) with the geometric information (as done with mixture models
[68]) provided by the graph to assign a class j € J to each element i € Z. However, the
relation ¢ ~ j may also be obtained through a projection step, possibly ignoring the
values of E(i), as illustrated in module (4) (e.g. when i is an r-tuple (i1, i9,...,%,) then
the truncation/projection map (i1,...,%) ~» (i1,...,%,—1) naturally defines a relation
~~). As illustrated in module (5), combining the relation ~» with a sum >}, . produces
aggregated covariance operators () := ZM]- Q;, modes w; = ZM]- w; and energies
E(j) = X;..; E(i) such that for Vj := >, . V;, the modes (w;);..; are (which can be
proven directly or as an elementary application of Theorem 4.4 in the next section) to
be optimal recovery modes in ]_[Z.Wj Vi given the covariance operators (Q;);..; and the
observation of w; = >, w; in V;. Furthermore, we have E(j) = [Qj_le,wj]. Nat-
urally, combining these elementary modules leads to more complex secondary modules
(illustrated in Figure 9) whose nesting produces a network aggregating the fine modes
w; into increasingly coarse modes with the last node corresponding to v.

E(j)

Qi

[Q; "ws, wi] E(Z) //

Figure 9: Programming modules derived from the elementary modules of Figure 8.

4.3 Hierarchical mode decomposition

We now describe how a hierarchy of mode decomposition/recomposition steps discussed
in Section 4.2 naturally produces a hierarchy of labels, covariance operators, subspaces
and recoveries (illustrated in Figure 10) along with important geometries and inter-
relationships. This description will lead to the meta-algorithm Algorithm 1, presented
in Section 4.4, aimed at the production of a KMDNet such as the one illustrated in
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Figure 10: The generalization of abstract mode decomposition problem of Figure 3 to a
hierarchy as described in Section 4.3.

Figure 10. Section 4.5 will present a practical application to Problem 1.

Our first step is to generalize the recovery approach of Section 3 to the case where
V' is the sum of a hierarchy of linear nested subspaces labeled by a hierarchy of indices,
as defined below.

Definition 4.2. Forqe N*, let T ... T(9 be finite sets of indices such that T(9 = {1}
has only one element. Let ulel'(l) be endowed with a relation ~ that is (1) transitive,
i.e., i~ j and j ~ k implies i ~> k (2) directed, i.e., i € Z6) and j € TU) with s = r
implies i N> j (that is, i does not lead to j) and (3) locally surjective, i.e., any element
j eI with r > 1 has at least one i € T~ such that i ~ j. For1 <k <r < q and
an element i € ), write i%) := {j € T¥) | j ~» i} for the level k ancestors of i.

Let Vi(k)7 i e I k € {1,...,q}, be a hierarchy of nested linear subspaces of a
separable Hilbert space V such that

‘/1(‘1) =V
and, for each level in the hierarchy k € {1,...,¢ — 1},

v = Sy e gy (4.5)

3
jei(k)

Let B9 =V and for ke {1,...,q — 1}, let B%*) be the product space
B =TT vi¥. (4.6)

ieZ (k)
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For k <r and j € (), let
B = [T v (4.7)

and let

be defined by

7k k
<I>§-T )(u) = Z u;, u€ B](- ). (4.8)
iej (k)
Putting these components together as (k) — (<I>§-T7k)) jez(r), We obtain the multi-linear
map
ok R L B 1<k <r<yq,
defined by
k) () = ()] i) iezeys = (U)iezo € B®) (4.9)
iej (k)
To put hierarchical metric structure on these spaces, for k € {1,...,q} and i € zk),
let

i

be positive symmetric linear bijections determining the quadratic norms

o2 6 = [ o), weV®, (4.10)

7

on the Vi(k). Then for k € {1,...,q}, let B%) be endowed with the quadratic norm
defined by

HUH?g(k) = Z Huz‘Hf/ﬂkw ue B®) ) (4.11)
ieZ(k) !

and, for k <7 < g and j € Z(), let BJ(.k) = Hiej(k> Vi(k) be endowed with the quadratic
norm defined by

k
HuHZ(k) = Z HuiH%/_(k), Uu € BJ(- ).
igj (k) !

For 1 < k < r < g, the nesting relations (4.5) imply that

V;(k) c V}(T), = j(k), ] = _’Z(T)7
so that the subset injection
My Ly (4.12)

is well defined for all ¢ € j (k). j € Z(") | and since all spaces are complete, they have
well-defined adjoints, which we write

k? b k b
el vy (4.13)

%,] A
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Forl<k<r<gq icZ® and jeZ("), let

(k) y/(r) (k)
\I}Z}j : ‘/] — V;
be defined by
k,r k) (k,r r),—1 r
lIIE_] )(”j) = QE )65’]- )Q§ ) vj, vj € Vj( ) , (4.14)

so that, when putting the components together as

(k) ._
vl = (v

k7
g,jr))iej(k)7 (415)

(4.7) determines the multi-linear map

(kr) .y (r) (k)
vV —>Bj .

Further collecting components simultaneously over the range and domain as
k7
gk = (‘1'5 T))jeI(T)
we obtain from (4.6) the multi-linear map
(kr) . glr) _, (k)
v g T B;
jeI(T)

defined by

k) (y) = (ng)BE,IE'J)Qg‘T)’_l”j)iej(m7 v = (v;) ez € BT (4.16)

The following condition assumes that the relation ~» determines a mapping ~~:
Z®) & 7k forall k =1,...,q — 1.

Condition 4.3. For ke {l,...,q—1}, everyic Z®) has a unique descendant in T*+1).
That is, there exists a j € T with i ~ j and there is no other j € T*:+Y) such that
i~ gl

Condition 4.3 simplifies the previous results as follows: the subsets ({i € j(k)}) jeT(k+1)
form a partition of Z(®) g0 that, for k < r, we obtain the simultaneous product structure

k (k)
B*) I1 B
jeZ(T)
B0 = ] v (4.17)
jeI("”)

so that both

and



are diagonal multi-linear maps with components

(rk) . 12(k) ()
‘I>j : B]- — VJ

and (k) (r) (k)
) T
v vy~ B
respectively. Moreover, both maps are linear under the isomorphism between products
and external direct sums of vector spaces. For r > k, we have the following connections

between B*), B, Vi(k) and Vj(r).

HieI(k) !
\I,(;w)T lq)(nk) izmj(k)
B ezt v

J

The following theorem is a consequence of Theorem 3.3.

Theorem 4.4. Assume that Condition 4.3 holds and that the ng) : Vi(k)’* —: Vi(k)
satisfy the nesting relations
Q§k+1) _ Z 6§§+1,k)Q§k)€§?k+1)7 jeI(kH), (4.19)

iej (k)
forke{l,...,q—1}. Then for 1 <k <r <gq,

o Ukr) o <I>(’"’k‘)(u) is the minmaz recovery of u € B®) given the observation of
®(F) (u) € B using the relative error in | - gy morm as a loss.

o K)o W) is the identity map on B
o U (BU, |- gw) — (BF, |- [ go) is an isometry.
o OB (BOW | sy ) — (BE* | - | gy .x) is an isometry.
Moreover we have the following semigroup properties for 1 <k <r < s < q:
o DR — plsr) o k)
o Uk — plkr) o prs)
o Urs) — @rk) o glks)
Remark 4.5. The proof of Theorem 4.4 also demonstrates that, under its assumptions,

for1<k<r<gqandjeI, \115,’“7’”) oQ)g.T’k) !

the observation of <I>§T’k) (u) € Vj(r) using the relative error in | - \]B(k) norm as a loss.

u) is the minmax recovery o uEB(-k wen
(u) y g

Furthermore, ®

J
;r’k) o \Ilg.k’r) is the identity map on Vj(T) and \Ilg-k’r) : (‘/j(r)a I ||V7_(r)) -

J

k k,r), r), k), . .
(BJ( ), I HBJ(_k)) and <I>§ ) (V-( ad |- ||Vj(r),*) — (BJ( A || g.%) are isometries.
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Gaussian process regression interpretation As in the setting of Section 4.3, for
ke{l,...,q}, let
Q(k’) - B)x _, p(k)

be the block-diagonal operator
. k
QW = diag(Q™") .z

defined by its action Q¥ ¢ := (Qz(k)gm)iez(k), ¢ € B®)* and, as discussed in Section 3.2,
write

¢® ~ N(0,Q™)

for the centered Gaussian field on B*) with covariance operator Q%)

Theorem 4.6. Under the assumptions of Theorem 4.4, for 1 < k < q, the distribution of
W) is that of @D (M), Purthermore €1 conditioned on ®*1D (M) is a time reverse
martingale? in k and, for 1 <k <r < q, we have

v () = E[¢® [ @O (W) = o], veBD. (4.20)

4.4 Mode decomposition through partitioning and integration
In the setting of Section 4.3, recall that Z(9) = {1} and Vl(q) =V so that the index j in
\I!ggj’q) defined in (4.14) only has one value j = 1 and 1) = Z() | and therefore

gk () = QW FDQW"ly eV, ieT® 421
7,1 i,1 1

7

Fix ave V and for ke {1,...,q}, let

E® .7k LR

)

defined by
E® (i) = [0 )L, ieT®), (4.22)

be the alignment energy of the mode i € Z("). Under the nesting relations (4.19), the
definition (4.10) of the norms and the semigroup properties of the subspace embeddings
(4.12) imply that

EMUG) = Y EWG), ieZ®t) kefl,...,q—1}. (4.23)
i'ei(®)
We will now consider applications where the space (V, |- |y ) is known, and the spaces

v “‘/’L(l)), including their index set Z(!) are known, but the spaces (Vj(k), [ - H‘/j(k))

(2

2If F, is a decreasing sequence of sub-o fields of a o-field F and Y is a F measurable random variable,
then (X,,Fn), where E,, := E[Y|F,] is a reverse martingale, in that E[ X, |Fnt1] = Xni1
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Figure 11: Derivation of the hierarchy from alignments.

and their indices Z(*), are unknown for 1 < k < ¢, as is any relation ~» connecting
them. Instead, they will be constructed by induction from model/data alignments as
illustrated in Figures 7 and 11 and explained below. In these applications

WVl Iv) = A1 ),

V = ez Vi(l) and the operator ng) : V¥ — V associated with the norm [ - [« is
the sum !
9P = 3] g (21
ieZ()

In this construction we assume that the set of indices Z(!) are vertices of a graph
GW, whose edges provide neighbor relations among the indices. The following meta-
algorithm, Algorithm 1, forms a general algorithmic framework for the adaptive deter-
mination of the intermediate spaces (Vj(k), [ - \|V_(k>), their indices Z(*), and a relation ~,

J
in such a way that Theorem 4.4 applies. Observe that this meta-algorithm is obtained
by combining the elementary programming modules illustrated in Figures 8 and 9 and
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discussed in Section 4.2. In the following Section 4.5, it is demonstrated on a problem
in time-frequency mode decomposition.

Algorithm 1 Mode decomposition through partitioning and integration.

1: for k=1tog—2do

2:  Compute the function E® : Z0) - R, defined by (4.21) and (4.22).

3. Use the function E®) to segment /partition the graph G®) into subgraphs
(G;k—’-l)
of j € Z-+1) ag the vertices i € Z¥) of the sub- graph G(kH)

4:  Identify the subspaces Vj(k+ ) and the operators Q through (4.5) and (4.19).

5: end for

6: Recover the modes (¥

) jez(v+1), thereby determining the indices Z(*,+1) | Define the ancestors j*)

D (1)) qta-n) Of 0.

4.5 Application to time-frequency decomposition

We will now propose a solution to Problem 1 based on the hierarchical segmentation
approach described in Section 4.4. We will employ the GPR interpretation of Section
3.3 and assume that the noisy signal v = u + v,, where v, is the noise, is the realization
of a Gaussian process £ obtained by integrating Gabor wavelets [34] against white noise.
To that end, for 7,0 € R and w, a > 0, let

2\1 |w _wl—n)?
Xrwo(t) = (;) \/;cos(w(t —7)+0)e T, teR, (4.25)
be the shifted/scaled Gabor wavelet, whose scaling is motivated by the normalization
S X2, 0(t) dt d8 = 1. See Figure 12 for an illustration of the Gabor wavelets. Recall
[341] that each x is minimally localized in the time-frequency domain (it minimizes the
product of standard deviations in the time and frequency domains) and the parameter «
is proportional to the ratio between localization in frequency and localization in space.

7 =0.5 ’TZO —— y7=05 = 7=0.75 =
i w =100 w =100 Brw =200 |} “w =200
L 0=0 ‘9=% 10=0 1e=0

N N N Py — 2
01 02 03 04 05 06 07 08 09 1 O 01 02 03 04 05 06 07 08 09 1 ©O0 01 02 03 04 05 06 07 08 09 1

Figure 12: Gabor wavelets X, ¢ (4.25) for various parameter values with o = 16.
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Let ((7,w, ) be a white noise process on R? (a centered GP with covariance function
E[C(T,w, )¢ (T', W', 9’)] =0(1 —7")0(w —w')5(0 — ")) and let

T Wmax 1
&ult) = J J L (T, w,0)Xrwo(t)drdwdf, teR. (4.26)

Wmin

Letting, for each 7,w and 6,

KT,w,B(Sa t) = XT,w,O(S)XT,w,G(t)a s,t e R) (427)

be the reproducing kernel associated with the wavelet x,. g, it follows that &, is a
centered GP with covariance function

™ Wmax 1
Ky (s,t) = f J J K;uo(s,t)drdwdf, s,teR. (4.28)
-7 0

Wmin

Given o > 0, let £, (t) be a white noise process on R (independent from () of variance
o? (a centered GP with covariance function E[&,(s)& ()] = 025(s — t)) and let &, the
GP defined by

§ =8+, (4.29)

be used to generate the observed signal v = u + v,. £ is a centered GP with covariance
function defined by the kernel
K:=K,+ K, (4.30)

with
Ky(s,t) = 028(s —t). (4.31)

Hence, compared to the setting of Section 3, and apart from the mode corresponding
to the noise &, the finite number of modes indexed by Z has been turned into a continuum
of modes indexed by

7 := {(r,w,0) € [0,1] X [Wimin, Wmax] X (=7, 7]}

with corresponding one dimensional subspaces

‘/(2173079) = Span{XT,w,G } )

positive operators Q) ¢ defined by the kernels K, ¢(s,t) and the integral

™ Wmax 1
Ky (s,t) = f J f K:wo(s, t)drdwdf, s,teR,
—T 0

Wmin
of these kernels (4.28) to obtain a master kernel K, instead of a sum
S = Z eiQieZ‘
1€l
as in (3.12). Table 4 illustrates the time-frequency version of Table 2 we have just devel-

oped and the following remark explains the connection between kernels and operators
in more detail.
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Mode GP Kernel

UT,w,G(t) = aT,w,G(t)XT,w,O(t) §T,w,€(t) = C(T,w, H)XT,UJ,O(t)

KT,o.),H $,t) = Xrw,0(S)Xrw,o(l
(lq-,wﬁ unknOWn in L2 E[C(T,UJ, 6)((,7_/7&)/7 9/)] ( ) ( ) ( )

=8(1 —7)8(w —W)8(6 — )

Vrw = §7 1 Vrw,odf Erow(t) = §7 &ruwo(t) Krw(s,t) =7 K, g(s,t)do
w=§§$vr 0 0drdwdd = {§(& wo(t)drdwdd Ku(s,t) = §§§ K 0(s, t)drdwdd
vy unknown white noise E[¢,(5)é,(t)] = 025(5 — 1) Ky(s,t) = 025(5 — 1)
v =0y + U E=bu+é K=K, +K,
v; = SA(Z.) V7 wdTdw & = SA(i) §rwdrdw K; = XA(i) K drdw

Table 4: The time-frequency version of Table 2

Remark 4.7 (Kernels, operators, and discretizations). This kernel mode decompo-
sttion framework constructs reproducing kernels K through the integration of elementary
reproducing kernels, but the recovery formula of Theorem 3.3 requires the application
of operators, and their inverses, corresponding to these kernels. In general, there is
no canonical connection between kernels and operators, but here we consider restrict-
ing to the unit interval [0,1] < R in the time variable t. Then, each kernel K under
consideration other than K, corresponds to the symmetric positive integral operator

K : L?[0,1] — L?[0,1]
defined by )
:J K(s,0)f()dt, se[0,1], fe L2[0,1].
0

Moreover, these kernels all have sufficient reqularity that K is compact and therefore
not invertible, see e.g. Steinwart and Christmann [95, Thm. 4.27]. On the other hand,
the operator

K, : L*[0,1] — L?[0,1]
corresponding to the white noise kernel K, (4.31) is
K, =o’I
where

I:L*0,1] — L*[0,1]
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is the identity map. Since K = K, + K, (4.30), the operator K = K,+ K, is a
symmetric positive compact operator plus a positive multiple of the identity and therefore
it is Fredholm and invertible. Consequently, we can apply Theorem 3.3 for the optimal
recovery.

In addition, in numerical applications, T and w are discretized (using N + 1 dis-
cretization steps) and the integrals in (4.35) are replaced by sums over 1, := k/N and
WE 1= Wmin + %(wmax — Wmin) (k € {0,1,...,N}). Moreover, as in Example 3.6, the
time interval [0, 1] is discretized into M points and the corresponding operators on RM
are 021, where I : RM — RM s the identity, plus the kernel matric (Ku(ti,tj))?’/j[.:l
corresponding to the sample points t;,i =1,..., M.

For simplicity and conciseness, henceforth we will keep describing the proposed ap-
proach in the continuous setting. Moreover, except in Section 4.6, we will overload
notation and not use the K notation, but instead use the same symbol K for a kernel
and its corresponding operator.

le) Eiej(l) Q;z)% Zj63<2> (3)

s -

T \11(3’4)

B® 5 @ ¥ B® 5 w® vev

74 ={1,2,3,0} T®
3

Figure 13: Mode decomposition through partitioning and integration. ¢ = 4, w(®) :=
UGBy, w? .= @Yy, and o corresponds to the noise component.

We now describe the hierarchical approach of Section 4.4 to this time-frequency
setting and illustrate it in Figure 13. To that end, we identify Z with Z(!) so that

71 — {(T,w,e) € [0,1] X [Wmin, Wmax] X (_ﬂﬂr]} v {o},

where the noise mode has been illustrated in Figure 13 by adding an isolated point with
label o to each set Z() with k < ¢ = 4.

Although Line 3 of Algorithm 1 uses the energy EW) at level k = 1 to partition
the index set ZU), the algorithm is flexible with regards to if or how we use it. In
this particular application we first ignore the computation of F 1) and straightforward
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partition Z) into a family of subsets
) = {(r,w,0) : 0 e (—m, 7]} u{c},  (T,w)€[0,1] X [Wiin, Wmax],

indexed by 7 and w, so that the corresponding index set at level & = 2 is

I® = {(7,w) € [0,1] % [wmin, wmax]} v {0},
and the ancestors of (1,w, o) are

(r,w,0)?) = {(r,w,0) : 0 € (—m,7]} U {c}.
The subspace corresponding to the label (7,w) is then

V((TZL) = span{XT’w,g | 6 € (—77,77]}

and, as in (4.19), its associated positive operator is characterized by the kernel

Ky i= f Ky 0df. (4.32)

We can evaluate K, using (4.27) and (4.25) by defining

2 1 w 7“;2(15—7—)2
Xrwelt) = (;) 4\/;cos(w(t e TeT o, teR,
2 1 _ W2(t=m)2
X7,w,s (t) = (*) * \/aSiIl(w(t - T))e ;2 y te R, (433)
(0%

™

and using the cosine summation formula to obtain

KT,LU(‘S? t) = XT,UJ,C(S)XT,UJ,C(t) + XT,W,S(S)X7—7UJ7S(t) . (4'34)
Therefore V(SQZJ) = span{Xrw.c; Xrw,s} and (4.28) reduces to
Wmax 1
Ku(s, 1) = f K5, £)dr doo (4.35)
Wmin 0

Using K := K,+ K, (4.30), let f be the solution of the linear system S(l) K(s,t)f(t)dt =
v(s), i.e.

Kf=uv, (4.36)
and let E(7,w) be the energy of the recovered mode indexed by (7,w), i.e.

1l
E(t,w) = J J F(8)Krw(s,t)f(t)dsdt, (Tyw) € [0,1] X [Wmin, Wmax] - (4.37)
0 JO

Since K f = v implies that
'K = fTKY,
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it follows that

Wmax [~
oI Kty = J E(r,w)drdw + fTK,f. (4.38)
Wmin YO
For the recovery of the m (which is unknown) modes using Algorithm 1, at the second
level £k = 2 we use E(7,w) to partition the time-frequency domain of (7,w) into n
disjoint subsets A(1), A(2),...A(n). As illustrated in Figure 13, n = 3 is determined
from E(r,w), and Z®) is defined as {1,2,...,n,0}, the subspace corresponding to the
mode 7 + o as Vi(g) = span{Xrw.c, Xrws | (T,w) € A(7)} and the kernel associated with
the mode 7 & o as

Ki(s,1) = f K,o(s,)drdw,  steR, (4.39)
(1,w)eA(3)

as displayed in the bottom row in Table 4, so that

We then apply the optimal recovery formula of Theorem 3.3 to approximate the modes
of v1,...,v, of u from the noisy observation of v = u + v, (where v, is a realization of
&) with the elements wy, ..., w, obtained via

wi = KK 'v = K f,

that is, the integration

Figure 14 illustrates a three mode m = 3 noisy signal, the correct determination of
n = m = 3, and the recovery of its modes. Figure 14.1 displays the total observed signal
v = u + v, and the three modes vy, vo, v3 constituting u = v; + v2 + v are displayed in
Figures 14.5, 6 and 7, along with their recoveries wy, wy and w33, Figure 14.8 also shows
approximations of the instantaneous frequencies obtained as

wi g(t) := argmax,, (1 w)eA(i) E(t,w). (4.41)

4.6 Convergence of the numerical methods

This section, which can be skipped on the first reading, provides a rough overview of
how the empirical approach describe in Remark 4.7 generates convergence results. To
keep this discussion simple, we assume that the reproducing kernel K is continuous and
its corresponding integral operator K is injective (the more general case is handled by
quotienting with respect to its nullspace). Then the RKHS Hg can be described as the

3The recoveries w; in Figure 14.5,6 and 7, are indicated in red and the modes v; of the signal are in
blue. When the recovery is accurate, the red recovery blocks the blue and appears red.
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Figure 14: (1) The signal v = u + v, where u = v + vo + v3, v, ~ N(0,0%8(t — s))
and 0 = 0.01 (2) (1,w) — E(7,w) defined by (4.37) (one can identify three stripes) (3)
w — F(0.6,w) (4) Partitioning [0,1] X [Wmin, Wmax] = Ui_; A(i) of the time frequency
domain into three disjoint subsets identified from F (5) v; and its approximation w; (6)
vy and its approximation we (7) vs and its approximation ws (8) wi,ws,ws and their
approximations wi g, w2 g, W3 E-

image K %(LQ[O, 1])  L?[0,1] of the unique positive symmetric square root of K and
the map K3 L?[0,1] — Hp is an isometric isomorphism, see e.g. [55, Thm. 17.12].
Moreover, by the zero-one law of Lukié¢ and Beder [63, Thm. 7.2], the Gaussian stochastic
process with covariance K has its sample paths in Hx with probability 1. Consequently,
the Gaussian stochastic process with covariance K will have some approximation error
when the observation v is not an element of Hy . This is the classical situation justifying
the employment of Tikhonov regularization, motivating our introduction of the additive
white noise component to the stochastic model. However, before we discuss Tikhonov
regularization, let us begin with the case when v is an element of Hg. Then, according
to Engl, Hanke and Neubauer’s [28, Ex. 3.25] analysis of the least-squares collocation
method in [28, Ex. 3.25] applied to solving the operator equation K 3 f = v, where K 3
is considered as K2 : L2 [0,1] — Hp, application of the dual least-squares method of
regularization, described in Engl, Hanke and Neubauer [28, Ch. 3.3], reveals that our
collocation discretigz%tion produces the least-squares collocation approxinllation fm of
the solution f of K2 f = v, i.e. the minimal norm solution f,, of QK2 f,, = Qnv,
where Q,, : Hx — Hpg denotes the Hpg-orthogonal projection onto the span ), of
the representers @, € Hy of the point evaluations at the collocation points z; (i.e. we
have (w, ®; )i, = w(z;), w € Hg, j = 1,...m). Moreover, [28, Thm. 3.24] asserts
that the resulting solution f,, satisfies f,, = P,,f where P, : L?[0,1] — L?[0,1] is the
orthogonal projection onto K %’*,’)/m. Quantitative analysis of the convergence of f, to
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f is then a function of the strong convergence of P,, to the identity operator and can be
assessed in terms of the expressivity of the set of representers ®,.. For v not an element
of Hy, Tikhonov regularization is applied together with least-squares collocation as in
[28, Ch. 5.2].

5 Additional programming modules and squeezing

The KMDNets described in Section 4 not only introduce hierarchical structures to im-
plement nonlinear estimations using linear techniques, but can also be thought of as a
sparsification technique whose goal is to reduce the computational complexity of solving
the corresponding GPR problem, much like the sparse methods have been invented for
GPR discussed in Section 2.2. The primary difference is that, whereas those methods
generally use a set of inducing points determining a low rank approximation and then
choose the location of those points to optimize its approximation, here we utilize the the
landscape of the energy function E : Z — R, defined in (4.1) and analyzed in Propo-
sition 4.1, interpreted as alignment energies near (4.4). In this section, this analogue of
sparse methods will be further developed for the KMDNets using the energy alignment
landscape to further develop programming modules which improve the efficacy and ac-
curacy of the reconstruction. For another application of the alignment energies in model
construction, see Hamzi and Owhadi [38, Sec. 3.3.2] where it is used to estimate the
optimal time lag of a ARMA-like time series model.

In the approach described in Section 4.4, Z(¥) was partitioned into subsets (j (k)) GeT(+1)

and the ng) were integrated (that is, summed over or average-pooled) using (4.5) and

(4.19) in Line 4 of Algorithm 1, over each subset to obtain the Q;kﬂ). This partitioning
approach can naturally be generalized to a domain decomposition approach by letting
the subsets be non-disjoint and such that, for some k, U jeTk+1) ] (k) forms a strict subset?

of Z) (i.e. some i € Z(F) may not have descendants). We will now generalize the relation
~ 50 as to (1) not satisfy Condition 4.3, that is, it does not define a map (a label ¢ may
have multiple descendants) (2) be non directed, that is, not satisfy Definition 4.2 (some
j € T+ may have descendants in Z(*)) and (3) enable loops.

With this generalization the proposed framework is closer (in spirit) to an object
oriented programming language than to a meta-algorithm. This is consistent with what
Yann LeCun in his recent lecture at the STAM Conference on Mathematics of Data
Science (MDS20) [57] has stated; paraphrasing him: ”The types of architectures people
use nowdays are not just chains of alternating linear and pointwise nonlinearities, they
are more like programs now.” We will therefore describe it as such via the introduction
of additional elementary programming modules and illustrate the proposed language by
programming increasingly efficient networks for mode decomposition.

4Although the results of Theorem 4.4 do not hold true under this general domain-decomposition,
those of Theorem 3.3 remain true between levels k and ¢ (in particular, at each level k the ng) are

optimal recovered modes given the ng) and the observation v).
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5.1 Elementary programming modules

Figure 15: Elementary programming modules.

We will now introduce new elementary programming modules in addition to the five
illustrated in Figure 8 and discussed in Section 4.2. These new modules are illustrated in
Figure 15, beginning with module (6). Here they will be discussed abstractly but forward
reference to specific examples.. The first module (module (6)) of Figure 15 replaces the
average-pooling operation to the define the energy E by a max-pool operation. More
precisely module (6) combines a relation ¢ ~~ j with an energy E to produce a maz-pool
energy via

S(5) zrlnaij(i), (5.1)
where ¢ ~~ j here is over 7 from the previous level to that of j. In what follows we will
adhere to this semantic convention. As shown in module (7), this combination can also
be performed starting with a maz-pool energy, i.e. module (7) combines a relation i ~ j
with a max-pool energy S at one level to produce a max-pool energy at the next level
via

S(y) = anaJxS(z') . (5.2)
Maximizers can naturally be derived from this max-pooling operation and modules (8)
and (9) define i(j) as the maximizer (or the set of maximizers if non-unique) of the
energy or the max-pool energy. More precisely module (8) combines a relation i ~ j
with an energy function E(7) to produce

i(j) = argmax;_,; E(i), (5.3)

and module (9)°combines a relation i ~ j with a max-pool energy function S(i) to

produce
i(j) = argmax;_,; S(i) . (5.4)
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5.2 Programming the network

Programming of the network is achieved by assembling the modules of Figures 8 and 15
in a manner that (1) v is one of the inputs of the network and (if the network is used for
mode decomposition/pattern recognition) (2) the modes v, are one of the outputs of the
network. As with any interpretable programming language avoiding inefficient coding
and bugs remains important. We will now use this language to program KMDNets.

5.3 Squeezing

We will now present an interpretation and a variant (illustrated in Figure 17) of the
synchrosqueezing transform due Daubechies et al. [19, 18] (see Section 2.4 for a descrip-
tion), in the setting of KMDNets, and thereby initiate its GP regression version. We
will demonstrate that this version generalizes to the case where the basic waveform is
non-periodic and/or unknown. We use the setting and notations of Section 4.5.

Let f be the solution of Kf = v (4.36) and let

B(r,w,0) Jff Kyo(s, ) f(1) ds dt (5.5)

be the energy of the mode indexed by (7,w,#). For (1,w) € [0,1] X [Wmin, Wmax], Write
Oc (T, w) 1= argmaxge(_r - E(7,w,0). (5.6)

Since the definitions (4.25) of x;. ¢ and (4.33) of xrw.c and Xr. s, together with the
cosine summation formula, imply that

Xras(t) = V}(XW,C(@ c03(0) — Xrwn(t)sin(0)), R,

®The description of the remaining modules (10)-(17), which can be skipped on first reading, is as
follows. Similarly to module (3) of Figure 8, module (10) of Figure 15 combines the max-pool energy S
with a graph operation to produce the ancestor-descendant relation ¢ ~ j. We will show that module
(10) leads to a more robust domain decomposition than module (3) due to its insensitivity to domain
discretization. Module (11) uses the functional dependence j(i) to define the relation i ~» j. Module
(12) expresses the transitivity of function dependence, i.e. it combines j(i) and k(j) to produce k(z).
Similarly, module (13) expresses the transitivity of the relation ~-, i.e. ¢ ~» j and j ~» k can be combined
to produce i ~ k. Module (14) (analogously to module (4)) uses an injection step to define a functional
dependence i(j) (e.g. for the time-frequency application in Figure 19, if 7 is the set of (1,w’) and T is
that of (7,w) the injection ¢ : Z n J — Z defines a functional dependence i(j)). Module (15) uses a
functional dependence i(j) to produce another functional dependence k(j) (e.g. for the time-frequency-
phase application in Figures 21 and 22, we can define the functional dependence (7,w’)(T,w) from
the functional dependence (7, w,0)(r,w) via w’'(T,w) = 8-0(7,w)). Module (16) utilizes the functional
dependence i(j) to produce a pullback covariance operator Q; := Qi) (:= Xy Qi if () is a set-
valued rather than a single-valued mapping). Module (17) combines a functional dependence i(j) with
a relation j ~» k to produce a covariance operator @y (e.g. for the time-frequency-phase application of
Figures 21 and 22, for i = (7,w, ) € M and j = (r,k) € Z™ where the index k is the mode index, the
functional dependence i(j) defines through (5.20) estimated phases 6k (-) which can then be substituted
for 0(-) in the kernel K(s,t) = 67‘57”2/%(cos(@(s))cos(@(t) + sin(6(s)) sin(6(t)), producing for each
mode index k a kernel with corresponding operator Qy).
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it follows that, if we define

1
Wi(rw) = f e (O F(8) dt

0
1
Wilrw) = | xeasf@)dr 6.7
we obtain
1
1
f Xrw Q(t)f(t) dt = 7(COS(0)WC(T7W) - Sin(Q)WS(va)) . (58)
o VT
Consequently, we deduce from (5.5) and (4.27) that
1
B(r,w,6) = —(cos(8)We(r,w) - sin(0) Wi (r,w))”. (5.9)
It follows that, when either W, (7,w) # 0 or Wy(T,w) # 0, that
0c(7,w) = phase (We(r,w) — iWs(T,w)), (5.10)

where, for a complex number z,
phase(z) :=0 € (—m, 7] : z=re? r>0. (5.11)
Moreover, it follows from (4.32), (4.37) and (5.5) that

E(t,w) = E(r,w,0)dd,

—T

so that it follows from (5.9) that
E(r,w) = W2(T,w) + Wi (T,w). (5.12)

Now consider the mode decomposition problem with observation v = >’ v; under the
assumption that the phases vary much faster than the amplitudes. It follows that for
the determination of frequencies (not the determination of the phases) we can, without
loss of generality, assume each mode is of the form

v;(t) = a;(t) cos(0;(t)) (5.13)

where a; is slowly varying compared to 8;. We will use the symbol ~ to denote an informal
approximation analysis. Theorem 6.1 asserts that K is approximately a multiple of the
identity operator, so we conclude that the solution f to Kf = v in (4.36) is f ~ cv for
some constant ¢. Because we will be performing a phase calculation the constant c¢ is
irrelevant and so can be set to 1, that is we have f ~ v and therefore we can write (5.7)
as

1

We(r,w) =~ LXT,LU,C(t)U(t)dt
1

Wirw) ~ L s (B0(t) dt (5.14)
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For fixed 7, for t near 7,

vi(t) ~ a;(7) cos((t — 7)0;(7) + 0;(7)) (5.15)
so that, since the frequencies 0; are relatively large and well separated, it follows from
the nullification effect of integrating cosines of high frequencies, that for w =~ éi(T),
(5.14) holds true with v; instead of v in the right-hand side. Because the amplitudes of
v; in (5.13) are slowly varying compared to their frequencies, it again follows from the
nullification effect of integrating cosines of high frequencies, the approximation formula
(5.15), the representation (4.33) of Xr. . and Xr. s and the sine and cosine summation
formulas, that

1

We(r,w) =~ a;(1)cos(b;(7)) L Xrw,e(t) cos((t — T)w) dt
1

Wi(r,w) ~ —ai(T) sin(@i(T))j0 Xrw,s(t)sin((t — 7)w) dt .

Since the representation (4.33) of xrw.c and X7 s, and the sine and cosine summation
formulas, also imply that S(l) Xrw,e(t)cos((t — T)w) dt ~ Sé Xrw,s(t)sin((t — 7)w)dt > 0,
it follows that

1
We(r,w) — iWs(1,w) ~ ai(T)ewi(T) f Xrw,e(t)cos((t —T)w)dt,
0

so that 0.(7,w), defined in (5.10), is an approximation of 6;(7), and
00,
we(T,w) = F(T,w) (5.16)

is an approximation of the instantaneous frequency 91(7)

Remark 5.1. In the discrete case, on a set {1} of points, we proceed differently than in
(5.16). Ignoring for the moment the requirement (5.11) that the phase 8.(T,w) defined
in (5.10) lies in (—m, |, an accurate finite difference approrimation we(my,w) to the
frequency is determined by

Oc(Th, W) + We(Th, W) (Th41 — Th) = Oc(Thp1,w)-
To incorporating the requirement, it is natural to instead define we(Tg,w) as solving

i we (W) (Th41—Tk) p0e (Thw) _ pibe(Thr1,w)
e e e ,

which using (5.10) becomes

796 (71 (T 1 ~7i) i Phase(We(ry ) —iWs (i @) _ i Phase(We(ri1,0)—iWs (mk1.0))
)

and has the solution
WC(Tk+1,W)WS(Tk,W) - Ws(Tk+17 LU)WC(Tk, w)) (5 17)
WC(Tk—i-l,W)Wc(Tkaw) + WS(Tk+1aW)WS(TkaW) ’

where atan2 is Fortran’s four-quadrant inverse tangent.

1
we(Tk,W) = m atan2
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Figure 16: (1) We(r,w) (2) Wy(r,w) (3) 7 — (We(7,300), Ws(7,300),7) (4) (1,w) —
Oe(T,w) (5) (T,w) = we(T,w) (6) w — we(0.6,w) and w — E(0.6,w) (7) w — S(0.6,w)
B)w — Sp(0.6,w) (9) (r,w) — S(1,w) (10) t — w;(t) and t — w;(t) for i € {1,2,3}
(11) t — cos(#1(t)) and t — cos(b1,(t)) (12) t — sin(#1(t)) and t — sin(61 .(¢)).

In preparation for illustrating the application of the programming of KMDNets, as
a synchrosqueezing algorithm, to the decomposition problem when v and its modes are
as in Figure 14, Figure 16 illustrates the basic quantities we have just been developing.
In particular,

e The functions W, and W are shown in Figures 16.1 and 16.2.

e The function 7 — (W,(7,300), —Ws(7,300)) is shown in Figure 16.3 with 7 the
vertical axis. The functions 6.(7,300), E(7,300) and we(7,300) are the phase,
square modulus and angular velocity of this function.

e The functions (7,w) — Oc(T,w), T — (7, w; p(7)) (with w; g defined in (4.41))
and t — 0;(t) are shown in Figures 16.4, 11 and 12. Observe that 7 — 8.(7, w; (7))
is an approximation of 7 — 6;(7).

e The functions (7,w) — we(T,w), w = we(0.6,w) and 7 — we(7,w; g(7)) are shown
in Figures 16.5, 6 and 10. Observe that 7 — we(7,w; (7)) is an approximation of
the instantaneous frequency 7 — w;(7) = 6;(7) of the mode v;.
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To describe the remaining components of Figure 16 and simultaneously complete
the application of the programming of KMDNets as a synchrosqueezing algorithm and
introduce a max-pool version of synchrosqueezing, we now introduce the synchrosqueezed
energy Sg(7,w) and the max-pool energy S(7,w): Motivated by the synchrosqueezed
transform introduced in Daubechies et al. [18], the synchrosqueezed energy Sg(7,w)
is obtained by transporting the energy E(7,w) via the map (7,w) — (7,we(T,w)) (as
discussed in Section 2.4, especially near (2.3) ), and therefore satisfies

J“max o(w)Sp(T,w) dw = meax o(we(r, ') E(r,w') dw’

Wmin Wmin

for all regular test function ¢, i.e.

Sp(r,w) — lim B(r,o) do (5.18)
600 W iwSwe (W) <w+d
where numerically approximate (5.18) by taking ¢ small.

Returning to the application, the transport of the energy FE(7,w) via the map
(T,w) — (T,we(T,w)) is illustrated for 7 = 0.6 by comparing the plots of the func-
tions w — we(0.6,w) and w — E(0.6,w) in Figure 16.6 with the function w — Sg(0.6,w)
shown in Figure 16.8. As in [I18], the value of Sg(r,w) (and thereby the height of
the peaks in Figure 16.8) depends on the discretization and the measure dw’ used in
the integration (5.18). For example, using a logarithmic discretization or replacing the
Lebesgue measure dw’ by w'dw’ in (5.18) will impact the height of those peaks. To avoid
this dependence on the choice of measure, we define the max-pool energy

S(r,w)= max E(r,u), (5.19)

w'we (T,w')=w
illustrated in Figure 16.9. Comparing Figures 16.6, 7 and 8, observe that, although
both synchrosqueezing and max-pooling decrease the width of the peaks of the energy

plot w — F(0.6,w), only max-squeezing preserves their heights (as noted in [18, Sec. 2]
a discretization dependent weighting of dw’ would have to be introduced to avoid this
dependence).

Figure 17 provides an interpretation of the synchrosqueezed and max-pool ener-
gies Sp(7,w) and S(7,w) in the setting of KMDNet programming, where we note that
the left (synchrosqueezed) and right (max-pool) sub-figures are identical except for
the highlighted portions near their top center. In that interpretation Z(!) and Z(?)
are, as in Section 4.5 and modulo the noise mode o, respectively, the set of time-
frequency-phase labels (7,w,0) € [0,1] X [Wmin,Wmax] X (—m, 7] and the set of time-
frequency labels (7,w) € [0,1] X [Wmin,Wmax]. Modulo the noise label o, Z() is the
range of (7,w) — (7,we(7,w)) and the ancestors of (7,w’) € Z(3) are the (7,w) such that
W' = we(T,w). Then, in that interpretation, the synchrosqueezed energy is simply the
level 3 energy E(®), whereas S (1,w) is the level 3 max-pool energy S (). Note that the
proposed approach naturally generalizes to the case where the periodic waveform y is
known and non-trigonometric by simply replacing the cosine function in (4.25) by y.
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(12)

~ N(0,0%8(s—t)) and o = 0.01

(2) instantaneous frequencies ¢ — w;(t) of the modes ¢ = 1,2,3 (3) (1,w) — S(1,w)
(4) Sub-domains A(1), A(2) and A(3) of the time-frequency domain (5) approximated
instantaneous frequencies ¢ — w; ¢(t) of the modes i = 1,2,3 (6, 7, 8) vy, v2,v3 and their
approximations wi, ws, w3 obtained from the network shown in Figure 19 (9) phase 6,
and its approximation 6y, (10, 11, 12) vy, v2,v3 and their approximations wi, wa, w3
obtained from the network shown in Figure 21.
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5.4 Crossing instantaneous frequencies

Let us now demonstrate the effectiveness of the max-pooling technique in its ability to
perform mode recovery when the instantaneous frequencies of the modes cross. Consider
the noisy signal v illustrated in Figure 18.1. This signal is composed of 4 modes, v = vy +
v +v3 + vy, where v, ~ N(0,0%8(s —t)) is a white noise realization with o = 0.01. The
modes vy, vg, v3 are shown in Figures 18.6, 7 and 8, and their instantaneous frequencies
w1, w2, ws are shown in Figure 18.2 (see Footnote 3). Note that w; and we cross each
other around ¢t ~ 0.6 and vs vanishes around t ~ 0.3. We now program two KMDNets
and describe their accuracy in recovering those modes.

96(7—7 W) 3 > we(T’W)
argmaxy or
EW(r,w,0) T E@) (7, w) 2= | S@3)(7, )
-
o
w ¥ ______ I 3 \
: AQ) \
E \.‘\ﬁ’ 2 . °
7MW 9 I® = {1,2,3,0} T
™ .
KT,w,@ ,i, KTw ‘]A(l) dr de Kz

Figure 19: Recovery from domain decomposition. The left-hand side of the figure is that
of the right-hand side (corresponding to max-pooling) of Figure 17. The remaining part
is obtained by identifying three subsets A(1), A(2), A(3) of the time-frequency domain
(1,w) and integrating the kernel K, (defined as in (4.32)) over those subsets (as in
(4.39)).

The first network, illustrated in Figures 19 and 20 recovers approximations to vy, ve, v3
by identifying three subsets A(1), A(2), A(3) of the time-frequency domain (7, w) and in-
tegrating the kernel K, (defined as in (4.32)) over those subsets (as in (4.39)). For
this example, the subsets A(1), A(2), A(3) are shown in Figure 18.4 and identified as
narrow sausages defined by the peaks of the max-pool energy S®)(r,w’) (computed
as in (5.19)) shown in 18.3). The corresponding approximations wi,ws, w3 (obtained
as in (4.40)) of the modes vy, v2,v3 are shown in Figures 18.6, 7 and 8. Note the
increased approximation error around ¢ & 0.6 corresponding to the crossing point be-
tween wq and wo and A(1) and A(2). The estimated instantaneous frequencies wj (1) =
We (7’, Argmax,, (- .)eA(i) & @) (r, w)) illustrated in Figure 18.5 also show an increased esti-
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mation error around that crossing point.

i = (T7w7 0) k= (7—7 w/) k(]) = (T, we(T,Ww))
) = i(j) = (1, w, O (T, i
Jj=(r,w) i(j) = (1w, 0c(7, w)) Qg

Qi

Q
H W

U {07 Wy

Figure 20: The KMDNet program corresponding to Figure 19. Upper left provides
the symbolic connections between the indices i, j, k and the time-frequency parameters
along with the functional dependencies i(j) and k(j). Beginning with the input v in
the lower left, the operators @); corresponding to the baby kernels K, s are used to
produce optimal recovery estimates w; and the corresponding alignment energies F (7).
The projection function j(i) taking (7,w,f) to (7,w) is the relation ¢ ~ j which deter-
mines the integration operation {df indicated as >, ; which then determines summed
energies E(j) := >, E(i) and covariances Q; := >}, ; Q;. Moreover, the projection
1~ j also determines a max operation arg maxy which we denote by arg max;..; and the
resulting function 6.(7,w) := argmaxg E;, 9, which determines the functional depen-
dency i(j) = (7,w, 0.(7,w)). This function is then differentiated to obtain the functional
relation k(j) = (7, we(T,w)) where we(T,w) = %66(7',&)). This determines the relation
J ~ k which determines the maximization operation max;.., that, when applied to the
alignment energies F(j), produces the max-pooled energies S(k). These energies are
then used to determine a graph cut establishing a relation k£ ~» m where m is a mode
index. Combining this relation with the injection j ~» k determines the relation j ~~» m,
that then determines the summation )| j~wmm OVer the preimages of the relation, thus de-
termining operators @, indexed by the mode m by Q,, := >, o @;. Optimal recovery
is then applied to obtain the estimates wy, := Qm (Y., Qum/) 1.

The second network, illustrated in Figures 21 and 22, proposes a more robust ap-
proach based on the estimates 0; . of instantaneous phases 6; obtained as

ei,e (T) = 0. (7-7 argmax,,. (r.w)eA() 8(3) (T7 LU)) ’ (520)
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Om,e(T)

‘ Wine (T)
Be (T, w) we (T, W)
5% l argmax . (r.w’ye A(m)
argmaxg
E(Q) (7_, w) MaXey:w, (1,w)=w’ 5(3) (7_7 w/) Km

ffﬂvdﬂ

o
w . - x5 \
E \
: 2 =
A\, N 1 /I<6>
Iz Ty T 70) = {1,2,3,0}
Kr IW = {(r,m)|m € {1,2,3},7 € [0,1]} U {0}

Figure 21: Recovery from instantaneous phases approximations. The left-hand side of
the figure is that of the right-hand side (corresponding to max-pooling) of Figure 17 and
therefore also that of Figure 19, and proceeding to the right as in Figure 19, the three
subsets A(1), A(2), A(3) of the time-frequency domain (7,w) and integrating the kernel
K+, (defined as in (4.32)) over those subsets (as in (4.39)). However, to define the kernels
Ky, for the final optimal recovery, we define wp () := argmax,.(;wea() S°(7,w’)
to produce the 6 function for each mode m through 6, (1) = 0c(7,wme(7)). These
functions are inserted into (5.21) to produce K, and their associated operators @,
which are then used in the finally recovery wy, = Qm (>, Qm:) 1v.

where the A(i) are obtained as in the first network, illustrated in Figure 19, and 0, (7, w),
used in the definition (5.20) of 6. ;(7), is identified as in (5.10). To recover the modes
v;, the proposed network proceeds as in Example 3.6 by introducing the kernels

(=)

Ki(s,t) =e 77 (cos(f;e(t)) cos(Bie(s)) + sin(b;c(t)) sin(fie(s))) , (5.21)

with v = 0.2. Defining K, as in (4.31), the approximations wi, ws,ws of the modes
v1, V2, v3, shown in Figures 18.10, 11 and 12, are obtained as in (4.40) with f defined as
the solution of (K7 + Ko + K3 + K,)f = v. Note that the network illustrated in Figure
21 can be interpreted as the concatenation of 2 networks. One aimed at estimating
the instantaneous phases and the other aimed at recovering the modes based on those
phases. This principle of network concatenation is evidently generic.
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T = (T,w, 0) k= (, w/) (1) = (7, Wm,e(T), Om,e (7))

j = (7_? w) [ = (7_, m) 9771,6(7_) = 96(7-7 wm,e(T))

k(1) = (7, wine(7)) S(k)

Qi—
PGzt

V{0 > W aremax,

= k(1)
() 2~ k(5) | C=m
(k) i(l)——Qm

R e

Figure 22: The KMDNet program corresponding to Figure 21. Upper left provides
the symbolic connections between the indices i, j, k, [ and the time-frequency parameters
along with the functional dependencies (1) and k(!) and the definition of 6,, .. Beginning
with the input v in the lower left, ignoring the bottom two rows for the moment, we begin
very much as in Figure 20 moving to the right until the determination of the energies
S(k), the determination of a graph cut and its resulting k ~~ [, and the resulting arg max
relation k(1) := arg maxy..; S(k) which amounts to k(l) = (7, wy.(7)). Returning to the
second row from the bottom, we compose the functional relations of the injection j(k)
and the arg max function i(j) determined by the relation i ~~ j and the energy E(7),
to obtain i(k) and then compose this with the argmax function k(l) to produce the
functional dependence i(l) defined by i(l) = (7,wm,e(T),Om.e(7)). Using the projection
l ~» m, this determines the function 6,,.(-) corresponding to the mode label m. These
functions are inserted into (5.21) to produce K, and their associated operators Q,,
which are then used in the finally recovery wp, = Qu (>, Qm/) ™ v.
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6 Alignments calculated in L?

The calculation of the energies for our prototypical application was done with respect
to the inner product defined by the inverse of the operator associated with K defined in
(4.30), i.e. the energy of the mode (7, w, #) was defined as E(7,w,0) = vl K1K, , g K~ v
with K, ¢ defined in (4.27). The computational complexity of the method can be
accelerated by (1) using the L? inner product instead of the one defined by K~! (i.e.
defining the energy of the mode (7,w,6) by Ea(7,w,0) = v K, gv (2) localizing this
calculation in a time-window centered around 7 and of width proportional to 1/w.

Our experiments show that this simplification lowers the computational complexity
of the proposed approach without impacting its accuracy. Three points justify this
observation: (1) Replacing E by Es is equivalent to calculating mean-squared alignments
with respect to the L?-scalar product instead of the one induced by the inverse of the
operator defined by K (2) In the limit where o — 00 we have E ~ 0~ *E», therefore E and
E, are proportional to each other in the high noise regime (3) If wyin = 0 and wpax = 00
then K, defined by (4.28) is the identity operator on L?. We will now rigorously show
that point (3) holds true when we extend the 7 domain from [0, 1] to R and when the
base waveform is trigonometric, and then show in Section 7 that this results holds true
independently of the base waveform being used.

Let us recall the Schwartz class of test functions

S:={feC®R):sup|z™ D™ f(x)| < 00,mi,mq € N}
TeR

and the confluent hypergeometric function 13, defined by

1) 22 1 2) 23
1F1(a’%2):1+gi+a(a+ )z* ala+)(a+2)z
vyl Ay + 1) 28 Ay + 1) (y+2) 3!

see e.g. see Gradshteyn and Ryzhik [37, Sec. 9.21].

Theorem 6.1. Consider extending the definition (4.28) of the kernel K, so that the
range of w is extended from [Wmin,wWmax| to Ry and that of T is extended from [0,1] to
R, so that

Kpg(s,t) :j J j K; (s, t)drdwdd, s,teR,
—T R+ R
where, as before,
KT,w,G(Sa t) = XT,w,G(S)XT,w,G(t)’ S, te R,

but where we have introduced a perturbation parameter 0 < 5 < 1 defining the Gabor
wavelets

2 N1 o4 _wZ(—r)?
)4@)% cos(w(t—T)—l-Q)e a2 teR, (6.1)

Xrwo(t) := (
defining the elementary kernels. Defining the scaling constant

2 042
H(p) = 2 a(vaa) P r( e Tk (5, 14,

o273
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let Kg denote the integral operator

1
K Szsz s, t)f(t)dt
(Ka9)(s) = 3737 | Katanir(0
associated to the kernel Kg scaled by H(B). Then we have the semigroup property

Ks,Kp, f =Kg 18, f, [fe€S, B1,62>0,81+pP2<1,

and
;laii% (Kgf)(z) = f(z), zeR, feS

where the limit is taken from above.

7 Universality of the aggregated kernel
Let

N
y(t) := Z Ccne™
N

be the Fourier expansion of a general 27 periodic complex-valued waveform, which we
will refer to as the base waveform, and use it to define wavelets

1-8 _Wl 2
Xrwo(t) :=w2 y(w(t—7)+0)e azlt=l

as in the S-parameterized wavelet versions of (4.25) in Theorem 6.1, using the waveform
y instead of the cosine. The following lemma evaluates the aggregated kernel

Kps(s,t) := %J j J X7.w.0(8) X5 o(t)dTdwdb . (7.1)
—rJr. JR Y
Lemma 7.1. Define the norm
N |n\a2
lyl?:= D, e 7 Jeal (7.2)
n=—N
of the base waveform y. We have
N
Kals,t) = 2mfs — 113 an(s, Dleal?
n=—N

where

)= S50 r g e (G 1)

In particular, at B8 = 0 we have

Ko(s,t) = o?|s — 1]~ y|*.
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7.1 Characterizing the norm >\ e 7 |c,|?

The norm (7.2) of the function y(t) := ZiVN cne'™ is expressed in terms of its Fourier
coefficients ¢,,. The following lemma evaluates it directly in terms of the function y.

Lemma 7.2. The norm (7.2) of the function y(t) := ZYN cne'™ satisfies

Iy = f Gt )y (t)y™ (¢ dedt’

where )
sinh(%-)

G(t,t') =2nm > :
cosh (%) — cos(t —t)

t,t' e [—m, 7).

Remark 7.3. The norm (7.2) is clearly insensitive to the size of the high frequency
(large n) components c,e™ of y. On the other hand, the alternative representation of
this norm in Lemma 7.2 combined with the fact that the kernel G satisfies

a2
sinh(5) ¢ Gt t) <2r

—2r < —2 it e[-m ],
cosh(%) +1 cosh(%-) — 1

which, for a = 10, implies
1-107" <G, t)<1+107% t.t' e[-m,n],

implies that
m 2 a1 [T 2
P 1| warP| <1072 [ Jy(o)ar

that is, |y|? is exponentially close to the square of its integral.

8 Non-trigonometric waveform and iterated KMD

We will now consider the mode recovery Problem 1 generalized to the case where the
base waveform of each mode is the same known, possibly non-trigonometric, square-
integrable 2m-periodic function ¢ — y(t). The objective of this problem can be loosely
expressed as solving the following generalization of Problem 1 towards the resolution of
the more general Problem 2. We now switch the time domain from [0, 1] to [—1,1].

Problem 4. For m € N*, let ai,...,an be piecewise smooth functions on [—1,1], let
01,...,0m be strictly increasing functions on [—1,1], and let y be a square-integrable
2m-periodic function. Assume that m and the a;,0; are unknown and the base waveform
y is known. We further assume that, for some € > 0, a;(t) > € and that Hl(t)/ﬁj(t) ¢
[1—€,1+¢€] for alli, j,t. Given the observation v(t) = Y7 ai(t)y(0i(t)) (forte[-1,1])
recover the modes v; := ai(t)y(@-(t)).
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Figure 23: (1) Triangle base waveform (2) EKG base waveform.

Example 8.1. Figure 23 shows two full periods of two 2m-periodic base waveforms (tri-
angle and EKG) which we will use in our numerical experiments/illustrations. The EKG
(-like) waveform is (ypra(t)—(2m) (Q)W yera(s)ds)/|lyexaliz(ozr) with yera(t) de-
fined on [0,27) as (1) 0.3 — |t — x| for [t — 7| < 0.3 (2) 0.03cos? (L (t — m + 1)) for
[t —m+1] < 0.3 (3) 0.03cos®(f(t —m — 1)) for [t — 7 — 1| < 0.3 and (4) O otherwise.

Our approach, summarized in Algorithm 2 and explained in the following sections,
will be to (1) use the max-pool energy S (5.19) to obtain, using (5.20), an estimate
of the phase 0,y (t) associated with the lowest instantaneous frequency wigy = Glow (as
described in Section 8.2) (2) iterate a micro-local KMD (presented in Section 8.1) of
the signal v to obtain a highly accurate estimate of the phase/amplitude 6;, a; of their
corresponding mode v; (this iteration can achieve near machine-precision accuracies when
the instantaneous frequencies are separated) (3) Peel off the mode v; from v (4) iterate
to obtain all the modes (5) perform a last micro-local KMD of the signal for higher
accuracy. To illustrate this approach, in the next two sections we will apply it to the
signals v displayed in Figures 24 and 25, where the modes of Figure 24 are triangular
and those of Figure 25 are EKG.

8.1 The Micro-local KMD module

We will now describe the micro-local KMD module, which will form the basis for the
iterated micro-local KMD algorithm described in Section 8.3. It takes a time 7, an
estimated phase function of i-th mode 6; ., and a signal f, not necessarily equal to v.
Suppose the i-th mode is of form v;(t) = a;(t)y(#;(t)) and is indeed a mode within f.
The module outputs, (1) an estimate a(7,0;., f) of the amplitude a;(7) of the mode v;
and (2) a correction 660(7,0; ¢, f) determining an updated estimate 6; (1) + 06(7, 6, ¢, f)
of the estimated mode phase function 60; .. We assume that a; is strictly positive, that
is, a;(t) = ao, t € [—1,1], for some ag > 0.

51



700 i

500, - E: : 25, — a
a0, W | — az
300 2 — a

200 s = =

o
& & 8 o N & o

100

10‘ 1

: O.),
PPN

N

0.5

°

j

i

°

-0.5

-100 -0.75 -0.50 -0.25 0.00 025 050 075 1.00 -1.00 -075 -0.50 -025 000 025 050 075 100 -100 -075 -050 -025 000 025 050 075 100

It 1 (5)
g \||
||| i HV ‘ il :

-1.00 -075 -050 -0.25 000 025 050 075 100 -100 -0.75 -050 -0.25 000 025 050 075 100 -100 -0.75 -050 -025 000 025 050 075 100

-1.0

Figure 24: Triangle base waveform: (1) Signal v (2) Instantaneous frequencies w; := 6;
(3) Amplitudes a; (4, 5, 6) Modes v1, va, vs.

Indeed, given a > 0, 7 € [—1, 1], differentiable strictly increasing functions 6y and 6.
n [—1,1], and n € {0,...,d} (we set d = 2 in applications in this section), let X,TL’% and
X,,TL’,O; be the wavelets defined by

) = cosbu(t)(t - e ()
X:L’,; (t) = sin(0.(t))(t — T)ne,(e'o(r);tﬂ))z | o

and let &, 9, be the Gaussian process defined by

d
&r, 6. ( Z n an S(t) + Xy, sX:z’fse (t)) ) (8.2)

where X, ., X, s are independent N(0,1) random variables. The function 6y will be
fixed throughout the iterations whereas the function 6. will be updated. Let f; be the
Gaussian windowed signal defined by

%(r)(t—r))?
«

folty = e
and, for (n,j) € {0,...,d} x {c, s}, let

f), tel-1,1], (8.3)

Z’rL' s Ves =i EXTL
J(7 0, f) 1= T E[ X

§T,95 + 50 = fT] ) (8'4)

where &, is white noise, independent of &; g, , with variance o?. To compute Zn,j, observe
that since both &g, and &, are Gaussian fields, it follows from (3.22) that

E[&T,He ] = AO’(&T,OE + ga)
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for the linear mapping .
AO’ = Q‘r,Ge (QT,@E + UZ[) )

where Qrg, : L? — L? is the covariance operator of the Gaussian field &0, and o’l
is the covariance operator of &,. Using the characterization of the limit of Tikhonov
regularization as the Moore-Penrose inverse, see e.g. Barata and Hussein [0, Thm. 4.3],
along with the orthogonal projections connected with the Moore-Penrose inverse, we
conclude that lim,_,0 A, = PXT,ee, where PXT,ee is the L2—orthogonal projection onto the

span 70 := span{xﬁ’%, X,T;z"/, n=0,...,d}, and therefore

57‘,98 + go] = PXnge (§T,96 + ga) . (85)

lim B[,

Since the definition (8.2) can be written {9, = 3, Xn,jx;’ze, summing (8.4) and
using (8.5), we obtain

Z Znaj (T7 967 f)X:L’z‘e = er,ee fT . (86)

n?j

Consider the vector function Z(7, 0, f) € R?¢*2 with components Z,, ;(7, 0, f), the 2d+2
dimensional Gaussian random vector X with components X, ;, (n,7) € {0, ..., d} x {c, s},
and the (2d + 2) x (2d + 2) matrix A™% defined by

Tyee o 7',95 7’795
Ay gty = X s X jr)L2[-11] - (8.7)

Straightforward linear algebra along with (8.6) establish that the vector Z(r,6,, f) can
be computed as the solution of the linear system

AT Z(1,0,, f) = b7 f, (8.8)
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where b7%(f) is the R?¢*2 vector with components b:f (f) = <xn o fr)r2. See sub-
figures (1) and (2) of both the top and bottom of Figure 28 for illustrations of the
windowed signal f-(t) and of its projection lim, o E[ﬁTﬂe &rp. + &0 = fT] in (8.5) corre-
sponding to the signals f displayed in Figures 24 and 25.

To apply these formulations to construct the module, suppose that f is a single mode

f(t) = a(t) cos(0(t)),

so that
(e‘o(r)u—ﬂ )2

fr(t) =€

and consider the modified function

Fo(t) = o (Pm=n)” ( i a(z‘(” (t — T)n> cos(0(t)) (8.10)
n=0 '

a(t) cos(0(t)), (8.9)

obtained by replacing the function a with the first d + 1 terms of its Taylor series about
7. In what follows, we will use the expression ~ to articulate an informal approximation
analysis. It is clear that f, € x™% and, since 9-0(‘ ) is small, that <XT 96 — foore ~
_ 0

0,V(n, j) and therefore P,ro. fr ~ fr, and therefore (8.6) implies that

Zzoj 00 PG ~ F (), te[-11], (8.11)

which by (8.10) implies that

0o () (t—7) )2
(folni=n)

ZZOJ (7 0e, XG0 (1) ~ €™ a(t) cos(0(t)), t~rT, (8.12)

which implies that

ZO,C(T7 967 f) COS(He(t)) + ZO,S(T7 967 f) Sin(ee(t)) ~ a’(T) COS(Q(t))v t~T. (8'13)

Setting s := 0 — 0, as the approximation error, using the cosine summation formula, we
obtain

Z0,6(T, 0c, f) co8(0c(t))+Z0,(T, Oc, f) sin(Be(t)) ~ a(7) (cos(05(t)) cos(0e(t))—sin(0s(t)) sin(Be(t))-
However, t ~ 7 implies that 05(t) ~ 05(7), so that we obtain

Z0,6(T, Oc, f) co8(0c (1)) +Zo,5(7, Oc, f) sin(0e(t)) ~ a(T)(cos(05(7)) cos(0e(t)) —sin(0s (7)) sin(be(t)),
which, since 6, (t) positive and bounded away from 0, implies that

Zo.e(7,0e, f) =~ a(7) cos(65(7))
Z0,5(1:0e, f) ~ —a(r)sin(05(7)) .
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Consequently, writing

AT, 00, f) = A Z3 (7,06, ) + 237,00, )
00(1,0, f) = atan2 ( — Zos(T,0c, f), Zo (T, 0, f)) , (8.14)

we obtain that a(, 0., f) ~ a(7) and 60(T, 0., f) ~ O5(7). We will therefore use a(t, 0., f)
to estimate the amplitude a(7) of the mode f using the estimate 6. and 60(r,0, f) to
estimate the mode phase 6 through 0(7) = 6.(7) + 05(7) ~ 0.(7) + d6(7, b, f). Unless
otherwise specified, Equation (8.14) will take d = 2. Experimental evidence indicates
that d = 2 is a sweet spot in the sense that d = 0 or d = 1 yields less fitting power, while
larger d entails less stability. Iterating this refinement process will allow us to achieve
near machine-precision accuracies in our phase/amplitude estimates. See sub-figures
(1) and (2) of the top and bottom of Figure 29 for illustrations of a(t), a(r,0.,v)(t),
0(t)—0.(t) and 60(T, b, v)(t) corresponding to the first mode v; of the signals v displayed
in Figures 24.4 and 25.4.

8.2 The lowest instantaneous frequency

ST T TE)
¥ ¥
“ WAMAA f wi,e(t) = argmax; e a,,, St w) w Ay i,
14 Uk , ~
. IAAAM xM x ka AL 01,6 (t) = O¢ (ta Wi,e (t)) 500 hf-'A\t‘j'b W)’W w‘tt&‘”"‘\v‘\
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Figure 26: Max-squeezing with the EKG base waveform and derivation of the instan-
taneous phase estimates ;.. (1,2) (1,w) — S(7,w,v) and identification of Aoy (3, 4)
(1,w) — S(7,w,v—v1 ) and identification of its Ajoy (5,6) (T,w) — S(T,wW, v —v1 c—V2¢)
and identification of its Ajuy-.

We will use the max-pool network illustrated in the right-hand side of Figure 17 and
the module of Section 8.1 to design a module taking a signal v as input and producing,
as output, an estimate of the instantaneous phase 0oy (v) of the mode of v having the
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lowest instantaneous frequency. We restrict our presentation to the situation where the
instantaneous frequencies 01 do not cross each other. The main steps of the computation
performed by this module are as follows. Let S(7,w,v) be the max-pool energy defined
as in (5.19), where now it is useful to indicate its dependence on v.

Let Aoy be a subset of the time-frequency domain (7,w) identified (as in Figure
26.2) as a narrow sausage around the lowest instantaneous frequency defined by the
local maxima of the S(7,w,v). If no modes can be detected (above a given threshold)
in S(7,w,v) then we set Oy (v) = . Otherwise we let

Wiow (T) := we (T, Argmax,, (1. w)e .., S(r, w)) (8.15)

be the estimated instantaneous frequency of the mode having the lowest instantaneous
frequency and, with 6, defined as in (5.6), let

elow(T) = 96(7—7 wlow(T)) (8'16)

be the corresponding estimated instantaneous phase (obtained as in (5.20)).

8.3 The iterated micro-local KMD algorithm.

‘ W = Wiow(T) Jl

Oc(T,w )
(mw) ATGMAX): (1,w) € Alow

v Alow

S(1,w)

50 Bic + 500
o = ai,e§(6ie) = D250 4ey(Bsc)]
S }' ~ a; ey (0ie)
\\\\\\\ H'L.e

Figure 27: Modular representation of Algorithm 2, described in this section. The blue
module represents the estimation of the lowest frequency as illustrated in Figure 26. The
brown module represents the iterative estimation of the mode with lowest instantaneous
frequency of lines 10 through 14 of Algorithm 2. The yellow module represents the
iterative refinement of all the modes in lines 21 through 27. The brown and yellow
modules used to refine phase/amplitude estimates use the same code.
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Algorithm 2 Iterated micro-local KMD.

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

1<—1
v —
while true do
if O (v)) = & then
break loop
else
ei,e <~ elow(v(i)>
end if
aje(T) <0
repeat
for jin {1,...,i} do
Ujres <= U — aj,eg(ej,e) - Zk;ﬁj,kgi ak,ey(gk,e>
Gje (7—) A CL(’T, 9]',67 vj,res)/cl
9j78(7_> A Hj,e(T) + %59(7_: Hj,ea 'Uj,res)
end for
until sup, . ’59(7, O, vmes)‘ <€
ol oy — ngi ajey(Be)
1—1+1
end while
m«—1i—1
repeat
for i in {1,...,m}% do
Vjres <~ U — ai,eg(ei,e) - Zj;éi aj,ey(gj,e)
ai78(7—) <« CL(T, 9i,67 Ui,res)
92‘,@(7') A ai,e(T) + %50(7-7 0i,67 Uz’,res)
end for
until sup; |59 (7’, e, Uj7res)| <€

Return the modes v; ¢(t) < a;e(t)y(fie(t)) fori=1,....,m

The method of estimating the lowest instantaneous frequency, described in Section
8.2, provides a foundation for the iterated micro-local KMD algorithm, Algorithm 2. We
now describe Algorithm 2, presented in its modular representation in Figure 27, using

Figures 26, 28 and 29. To that end, let

be the Fourier representation of the base waveform y (which, without loss of generality,

0
y(t) = c1 cos(t) + Z cn cos(nt + dy)
n=2

This repeat loop, used to refine the estimates, is optional. Also, all statements in Algorithms with
dummy variable 7 imply a loop over all values of 7 in the mesh 7.
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has been shifted so that the first sine coefficient is zero) and write
y(t) :== y(t) — c1 cos(t) (8.18)

for its overtones.

Let us describe how lines 1 to 19 provide refined estimates for the amplitude and the
phase of each mode v;,i € {1,...,m} of the signal v. Although the overtones of y prevent
us from simultaneously approximating all the instantaneous frequencies 91 from the max-
pool energy of the signal v, since the lowest mode vioy = a1ow¥y(flow) can be decomposed
into the sum voy = aowC1 €O8(Olow) + Alow¥(flow) Of a signal ajowcy cos(biow) with a
cosine waveform plus the signal ajow ¥ (010w ) containing its higher frequency overtones, the
method of Section 8.2 can be applied to obtain an estimate 6oy ¢ Of fioy and (8.14) can be
applied to obtain an estimate aiow,cC1 of aiowc1 producing an estimate aiow,eC1 coS(Qiow,e)
of the primary component ajoyci cos(fiow) of the first mode. Since ¢; is known, this
estimate produces the estimate ajow (010w ) for the overtones of the lowest mode. Recall
that we calculate all quantities over the interval [—1, 1] in this setting. Estimates near
the borders, —1 and 1, will be less precise, but will be refined in the following loops.
To improve the accuracy of this estimate, in lines 13 and 14 the micro local KMD of
Section 8.1 is iteratively applied to the residual signal of every previously identified mode
Vjres < V= @j.eY(0j.e) = Dpzjrei Wh,eY(O.e), consisting of the signal v with the estimated
modes k # j as well as the overtones of estimated mode j removed. This residual is
the sum of the estimation of the isolated base frequency component of v; and }; =i Vj-
The rate parameter 1/2 in line 14 is to avoid overcorrecting the phase estimates, while
the parameters €; and ey in lines 16 and 27 are pre-specified accuracy thresholds. The
resulting estimated lower modes are then removed from the signal to determine the
=y — 2j<i @jey(0je) in line 17.

Iterating this process, we peel off an estimate a;y(6; ) of the mode corresponding
to the lowest instantaneous frequency of the residual v := v — 3] i1 @jey(0j¢) of the
signal v obtained in line 17, removing the interference of the first ¢ — 1 modes, including
their overtones, in our estimate of the instantaneous frequency and phase of the i-th
mode. See Figure 26 for the evolution of the A, sausage as these modes are peeled off.
See sub-figures (3) and (5) of the top and bottom of Figure 28 for the results of peeling
off the first two estimated modes of the signal v corresponding to both Figures 24 and
25 and sub-figures (4) and (6) for the results of the corresponding projections in (8.5).
See sub-figures (3) and (4) of the top and bottom of Figure 29 for amplitude and its
estimate of the results of peeling off the first estimated mode and sub-figures (5) and (6)
corresponding to peeling off the first two estimated modes of the signal v corresponding
to both Figures 24 and 25.

After the amplitude/phase estimates a;e,6;c,7 € {1,...,m}, have been obtained
in lines 1 to 19, we have the option to further improve our estimates in a final opti-
mization loop in lines 21 to 27. This option enables us to achieve even higher accu-
racies by iterating the micro local KMD of Section 8.1 on the residual signals v; res <

residual v
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Figure 28: Top: v is as in Figure 24 (the base waveform is triangular). Bottom: v is as in
Figure 25 (the base waveform is EKG). Both top and bottom: d = 2, (1) The windowed
signal vy (2) limg 0 E[&r, . [§r.0,.. 60 = vr] (3) (v—v1,e)r (4) limo 0 E[€r 0, [6r.05, +E0 =
(U - Ul,e)T] (5) ('U — Vl,e — v2,e)7’ (6> limUlOE[é’Tﬂg’e 67,93,5 + 50' = (U — Vl,e — U2,e)‘r]-

v—a;ey(bie) — Z#i ajey(0j.e), consisting of the signal v with all the estimated modes
j + i and estimated overtones of the mode 7 removed.

The proposed algorithm can be further improved by (1) applying a Savitsky-Golay
filter to locally smooth (de-noise) the curves corresponding to each estimate 6; . (which
corresponds to refining our phase estimates through GPR filtering) (2) starting with a
larger « (to decrease interference from other modes/overtones) and slowly reducing its
value in the optional final refinement loop (to further localize our estimates after other
components, and hence interference, have been mostly eliminated).

8.4 Numerical experiments

Here we present results for both the triangle and EKG base waveform examples. As
discussed in the previous section, these results are visually displayed in Figures 28 and
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Figure 29: Top: v is as in Figure 24 (the base waveform is triangular). Bottom: v is as in
Figure 25 (the base waveform is EKG). Both top and bottom: 7 = 0. (1) the amplitude
of the first mode a;(¢) and its local Gaussian regression estimation a(7, 1, v)(t) (2) the
error in estimated phase of the first mode 6;(t) — 6 .(t) and its local Gaussian regression
30(T,01.¢,v)(t) (3, 4) are as (1,2) with v and 6y . replaced by v — v1 . and 62, (5,6) are
as (1,2) with v and 6, . replaced by v — vy . — v, and 3.

29.

8.4.1 Triangle wave example

The base waveform is the triangle wave displayed in Figure 23. We observe the signal
v on a mesh spanning [—1, 1] spaced at intervals of Wloo and aim to recover each mode
v; over this time mesh. We take o = 25 within the first refinement loop corresponding
to lines 1 to 19 and slowly decreased it to 6 in the final loop corresponding to lines
21 to 27. The amplitudes and frequencies of each of the modes are shown in Figure
24. The recovery errors of each mode as well as their amplitude and phase functions

over the whole interval [—1,1] and the interior third [—3,1] are displayed in Table 5
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and 6 respectively. In the interior third of the interval, errors were found to be on
the order of 107 for the first signal component and approximately 10~7 for the higher
two. However, over the full interval, the corresponding figures are in the 104 and 1073
ranges due to recovery errors near the boundaries, —1 and 1, of the interval. Still, a plot
superimposing v; and v; . would visually appear to be one curve over [—1, 1] due to the
negligible recovery errors.

[vi,e—vil 2 [vi,e—vil Loo lai,e—aill 2 0.
Mode [l 2 foallpes fala | 10ie—0illr2
i=1 547x107* | 3.85x107% [ 2.80x 107 | 4.14x 107"
i=2 6.42x107% | 2.58 x107? | 3.80x 107 | 1.85x 10™*
i=3 5.83x101 | 6.29x107% | 2.19x10"* | 6.30x10°°
Table 5: Signal component recovery errors in the triangle base waveform example over
[—1,1].
[vi,e—vill 2 [vi,e—vi] Lo las,e—ail 2 .
Mode [l 2 fonllpes fala | 10ie—0illre
i=1 1.00x107% [ 2.40x 1078 [ 7.08 x 1077 | 6.52x 1077
i=2 2.74x 1077 | 2.55x 1077 | 1.87x 1078 | 2.43x 1077
i=3 2.37x1077 | 3.67x1077 | 1.48x 1077 | 1.48x 10"

Table 6: Signal component recovery errors in the triangle base waveform example over

(=53]

8.4.2 EKG wave example

The base waveform is the EKG wave displayed in Figure 23. We use the same discrete
mesh as in the triangle case. Here, we took o = 25 in the loop corresponding to lines
1 to 19 and slowly decreased it to 15 in the final loop corresponding to lines 21 to 27.
The amplitudes and frequencies of each of the modes are shown in Figure 25, while
the recovery error of each mode as well as their amplitude and phase functions are
shown both over the whole interval [—1, 1] and the interior third [, 1] in Tables 7 and
8 respectively. Within the interior third of the interval, amplitude and phase relative
errors are found to be on the order of 107* to 1077 in this setting. However, over [—1,1],
the mean errors are more substantial, with amplitude and phase estimates in the 107!
to 1073 range. Note the high error rates in L® stemming from errors in placement of the
tallest peak (the region around which is known as the R wave in the EKG community).
In the center third of the interval, v; . and v; are visually indistinguishable due to the
small recovery errors.
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Table 7: Signal component recovery errors on [—1, 1] in the EKG base waveform example.

[vi,e—vil 2 [vi,e—vill o0 lai,e—aill 2 4
Mode [oil,2 ol a2 [6i.c —0ill 2
i=1 5.66x1072 | 1.45x 107! | 496 x 1073 | 8.43x 1073
i=2 461x1072 ] 239%x1071 | 2.35x1072 | 1.15x 1072
i=3 1.34x 1071 1 9.39x 107! | 9.31x1073 | 2.69x 102

[vi,e—vil 2 [vi,e—vill o0 lai,e—aill 2 4
Mode [oil2 ol a2 6. —0ill 2
i=1 1.80x107% | 3.32x107% [ 3.52x107° | 2.85x 10~°
i=2 435%x107% | 5.09x107% | 3.35x107° | 7.18 x 1075
i=3 3.63x107% | 1.08x 1073 | 7.23x107° | 6.26 x 107>

Table 8: Signal component recovery errors on [—%, %] in the EKG base waveform exam-
ple.

9 Unknown base waveforms

Here we consider the extension, Problem 2, of the mode recovery problem, Problem 1,
to the case where the periodic base waveform of each mode is unknown and may be
different across modes. That is, given the observation

U(t) = Z ai(t)yi (gi(t))v te [_L 1]7 (9'1)
i=1

recover the modes v; := a;(t)y; (6;(t)). To avoid ambiguities caused by overtones when
the waveforms y; are not only non-trigonometric but also unknown, we will assume that
the corresponding functions (kéi)te[—l,l] and (K’ 9'Z-/)te[_171] are distinct for 7 £ ¢ and
k, k' € N* that is, they may be equal for some ¢ but not for all t. We represent the i-th
base waveform y; through its Fourier series

kmax
D7 (€4 h,0) cO(kt) + ¢ (1) sin(kt)), (9.2)
k=2

yi(t) = cos(t) +

that, without loss of generality has been scaled and translated. Moreover, since we
operate in a discrete setting, without loss of generality we can also truncate the series
at a finite level kpax, which is naturally bounded by the inverse of the resolution of
the discretization in time. To illustrate our approach, we consider the signal v =
v1 +v1 +v3 and its corresponding modes v; 1= a;(t)y; (Ql(t)) displayed in Figure 30, where
the corresponding base waveforms y1, o and y3 are shown in Figure 31 and described in
Section 9.3.
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Figure 30: (1) Signal v (the signal is defined over [—1, 1] but displayed over [0, 0.4] for

visibility) (2) Instantaneous frequencies w; := 0; (3) Amplitudes a; (4, 5,

6) Modes vy,

vg, v over [0,0.4] (mode plots have also been zoomed in for visibility).
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Figure 32: High level structure of Algorithm 3 for the case when the waveforms are

unknown.

9.1 Micro-local waveform KMD

We now describe the micro-local waveform KMD, Algorithm 3, which takes as inputs
a time 7, estimated instantaneous amplitude and phase functions t — a(t),0(t), and a
signal v, and outputs an estimate of the waveform y(t¢) associated with the phase function
f. The proposed approach is a direct extension of the one presented in Section 8.1 and
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the shaded part of Figure 32 shows the new block which will be added to Algorithm 2,
the algorithm designed for the case when waveforms are non-trigonometric and known.
As described below this new block produces an estimator y; . of the waveform y; from
an estimate 0; . of the phase ;.

Given o > 0, 7 € [—1, 1], and differentiable function ¢ — 6(¢), define the Gaussian
process

0o (7)(t—7) )2 Kmax
Jot) = o (=) (Xic cos (6(t)) + Z (X} cos (KO(t)) + X} sin (k:G(t)))), (9.3)
k=2
where X7, X} , and X} are independent N(0, 1) random variables. Let
6o (7)(t—7) 2
on(t) = e (B ), re[-1,1), (9.4)
be the windowed signal, and define
Zy (1,0,0) = li%E[X,ijkfﬂ + & =], (9.5)
and, for k€ {2,..., kmax}, J € {c, s}, let
Z] (1,0,v)
(7,0,0) = ——. 9.6
ck,] (7_7 ) U) ZiC(T, 0’ U) ( )

When the assumed phase function 6 := 0; . is close to the phase function 0; of the i-th
mode of the signal v in the expansion (9.1), ¢ (7, 6; ¢, v) yields an estimate of the Fourier
coefficient ¢; (1, ;) (9.2) of the i-th base waveform y; at time ¢t = 7. This waveform recovery
is susceptible to error when there is interference in the overtone frequencies (that is for
the values of 7 at which j19i1 ~r jgéiQ for i1 < iy). However, since the coefficient Ci(k,f)
is independent of time, we can overcome this by computing ¢y, ;(7,0;¢,v) at each time
7 and take the most common approximate value over all 7 as follows. Let T' < [—1,1]
be the finite set of values of 7 used in the numerical discretization of the time axis with

N :=|T| elements. For an interval I c R, let

Tr:= {1 €T|ck;(1,6ic,v) €I}, (9.7)
and let Nj := |T7| denote the number of elements of T7. Let I ax be a maximizer of the
function I — Ny over intervals of fixed width L, and define the estimate

N
ﬁ ZTETI Ck,j(Ta 0,‘76, ’U) R % > 0.05
ck,j(ai,e’ /U) = max max NI , (98)
0 ,  —ex < 0.05

of the Fourier coefficient c; (; ;) to be the average of the values of ¢, ;(7,0;.,v) over T €
17,...- The interpretation of the selection of the cutoff 0.05 is as follows: if Nlﬁa" is small
then there is interference in the overtones at all time [—1, 1] and no information may be
obtained about the corresponding Fourier coefficient. When the assumed phase function
is near that of the lowest frequency mode vy, which we write 6 := 01 ., Figures 33.2 and 4
shows zoomed-in histograms of the functions 7 — ¢(3.¢)(7, 01,¢,v) and 7 — c(3 (7, 1., v)
displayed in Figures 33.1 and 3.
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Figure 33: (1) A plot of the function 7 — ¢(3)(7,01.,v) (2) A histogram (cropping
outliers) with bin width 0.002 of ¢(3 ¢)(7, 01 ,¢,v) values. The true value ¢; (3 is 1/9 since
Y1 is a triangle wave. (3) A plot of the function 7 — ¢(3 )(7,01.¢,v) (2) A histogram
(cropping outliers) with bin width 0.002 of ¢(3 4)(7, 01,¢,v) values. The true value c¢; (3
of this overtone is 0.

On the interval width L. In our numerical experiments, the recovered modes and
waveforms show little sensitivity to the choice of L. In particular, we set L to be 0.002,
whereas widths between 0.001 and 0.01 yield similar results. The rationale for the rough
selection of the value of L is as follows. Suppose v = cos(wt) and v' = v + cos(1.5wt).

Define the quantity
max (ca.o(7,0,v") — co.0(7,6,v)), (9.9)
T

with the intuition of approximating the maximum corruption by the cos(1.5wt) term in
the estimated first overtone. This quantity provides a good choice for L and is mainly
dependent on the selection of o and marginally on w. For our selection of o = 10, we
numerically found its value to be approximately 0.002.

9.2 Iterated micro-local KMD with unknown waveforms algorithm

Except for the steps discussed in Section 9.1, Algorithm 3 is identical to Algorithm 2.
As illustrated in Figure 32, we first identify the lowest frequency of the cosine component
of each mode (lines 6 and 7 in Algorithm 3). Next, from lines 10 to 18, we execute a
similar refinement loop as in Algorithm 2 with the addition of an application of micro-
local waveform KMD on lines 15 and 16 to estimate base waveforms. Finally, once each
mode has been identified, we again apply waveform estimation in lines 28-29 (after nearly
eliminating other modes and reducing interference in overtones for higher accuracies).

9.3 Numerical experiments

To illustrate this learning of the base waveform of each mode, we take v(t) = 32| a;(t)y:(0i(t)),
where the lowest frequency mode aq(t)y1(01(t)) has the (unknown) triangle waveform y;
of Figure 23. We determine the waveforms y;,¢ = 2, 3, randomly by setting c¢; ; ;) to be

" This repeat loop, used to refine the estimates, is optional. Also, all statements in Algorithms with
dummy variable 7 imply a loop over all values of 7 in the mesh 7.
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Algorithm 3 Iterated micro-local KMD with unknown waveforms.

1: i« 1 and v — v
2: while true do

3 if Oow(v?) = & then

4 break loop

5:  else

6: ei,e A elow(v(i)>

7 Yie < cos(t)

8 end if

9: a@e(T) —0

10:  repeat

11: for [ in {1,...,4} do

12: Ulres <~ U — al,eyf,e(el,e) - Zkgél’kgi ak,eyl,e(ak,e)
13: al’e(T) «— a(T, (9176, 1)[71«65)/61

14: 9176(7') «— 0176(7') + %50 (7’, 9176, UZJQS)

15: Cl(k,j),e < Ck,j (01,67 vl,res)

16: Yie() < cos() + S0m5 (cp (h,ey,e cOS(K) + €1 (1s) e SIR(K-))
17: end for

18:  until supl’7|60 (7’, O1e. vl,res)| < €
19: (D) gy — ngi ajﬁyi,e(ej‘,e)
20: 1—1+1

21: end while

22: m<«—1—1

23: repeat

24:  foriin {1,...,m}" do

25: Vjres <~ U — ai,egi,e(gi,e) - ij’:z’ aj,eyj,e(0j7e)

26: ai’e(’f) “«— a(T, 92'76, 'Ui,res)

27: i (1) — 0; (1) + %59(7, Oi c, Ui,res)

28: Ci(k,j)e < Ckj (ei,ea v Zj;éi aj,eyj,e(gj,e))

29: Yie(:) < cos(-) + 2223" (i, (k). COS(k-) + € (k,s).e SIN(E-))

30: end for
31: until supW’(SG(T, Hi,e,vmes)‘ < €9
32: Return the modes v; ¢(t) < aje(t)y(6ic(t)) fori =1,...,m

zero with probability 1/2 or to be a random sample from A(0, 1/k*) with probability 1/2,
for k€ {2,...,7} and j € {¢,s}. The waveforms y,y2,y3 thus obtained are illustrated
in Figure 31. The modes v1, v, vs, their amplitudes and instantaneous frequencies are
shown in Figure 30.

We use the same mesh and the same value of « values as in Section 8.4.1. The main
source of error for the recovery of the first mode’s base waveform stems from the fact
that a triangle wave has an infinite number of overtones, while in our implementation,
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[vi,e—vill 2 [vie—vi] o0 laic—aill 2 . lyi,e—vill 12
Mode ol ol a2 10ie=0il2 | =L
i=1 6.31x1075 [ 2.39x1072 [ 9.69x107° | 1.41x107° [ 6.32x 1073
i=2 3.83x107% | 1.08x1073 | 5.75x107° | 1.16 x 10~% | 3.76 x 10~
i=3 3.94%x107% | 1.46x 1073 | 9.53x107° | 6.77x107° | 3.80 x 10~

Table 9: Signal component recovery errors over [—1,1] when the base waveforms are
unknown

we estimate only the first 15 overtones. Indeed, the L? recovery error of approximating
the first 16 tones of the triangle wave is 3.57 x 10™%, while the full recovery errors are
presented in Table 9. We omitted the plots of the y; . as they are visually indistinguish-
able from those of the y;. Note that errors are only slightly improved away from the
borders as the majority of it is accounted for by the waveform recovery error.

10 Crossing frequencies, vanishing modes, and noise

The algorithm introduced in this section addresses the following generalization of the
mode recovery Problem 4, allowing for crossing frequencies, vanishing modes and noise.
The purpose of the J, e-condition in Problem 5 is to prevent a long overlap of the instan-
taneous frequencies of distinct modes.

Problem 5. Form € N*, let ay, ..., an, be piecewise smooth functions on [—1,1], and let
01,...,0m be strictly increasing functions on [—1,1] such that, for e > 0 and ¢ € [0,1),
the length of t with 0;(t)/0;(t) € [1 —€,1+ €] is less than §. Assume that m and the a;,6;
are unknown, and the square-integrable 2mw-periodic base waveform y is known. Given the
observation v(t) = Y"1 a;(t)y(6;(t)) + ve(t) (for t € [~1,1]), where v, is a realization
of white noise with variance o®, recover the modes v;(t) := a;(t)y(6;(t)).

We will use the following two examples to illustrate our algorithm, in particular
the identification of the lowest frequency wiow(7), at each time 7, and the process of
obtaining estimates of modes.

Example 10.1. Consider the problem of recovering the modes of the signal v = v1 +v9+
vs + v, shown in Figure 34. Each mode has a triangular base waveform. In this example
vs has the highest frequency and its amplitude vanishes over t > —0.25. The frequencies
of v1 and va, cross around t = 0.25. v, ~ N(0,025(t — s)) is white noise with standard
deviation o = 0.5. While the signal-to-noise ratio is Var(vy + v + v3)/ Var(v,) = 13.1,
the SNR ratio against each of the modes Var(v;)/ Var(vy), i = 1,2,3, is 2.7, 7.7, and
10.7 respectively.

Example 10.2. Consider the signal v = v1 + v9 + v3 + v, shown in Figure 35. Fach
mode has a triangular base waveform. In this example, the vanishing mode, v1, has the
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Figure 34: (1) Signal v (2) Instantaneous frequencies w; := 6; (3) Amplitudes a; (4, 5,
6) Modes vy, va, vs3.

1007 200 =1

(1) W (2) i ©)

0.0 500

00|

200 — -
“100 075 050 -025 080 025 050 0 L0 L0 -0 050 =02 0K 02 050 07 K00 —100 -075 —050 -025 000 02 050 075 Lo

Figure 35: (1) Signal v (2) Instantaneous frequencies w; := 6; (3) Amplitudes a;.

lowest frequency over t < —0.25 but then its amplitude vanishes over t =2 —0.25. The
frequencies of vy and vs, cross around t = 0.25. v, ~ N(0,026(t — s)) is white noise
with standard deviation o = 0.5.

Examples 10.1 and 10.2 of Problem 5 cannot directly be solved with Algorithm 2
(where the mode with the lowest frequency is iteratively identified and peeled off) be-
cause the lowest observed instantaneous frequency may no longer be associated with
the same mode at different times in [—1,1] (due to vanishing amplitudes and crossing
frequencies). Indeed, as can be seen in Figure 34.2, the mode v; will have lowest instan-
taneous frequency at times prior to the intersection, i.e. over ¢ < 0.25, while the lowest
frequency is associated with vy over ¢t = 0.25. Further, in Example 10.2 which has modes
with frequencies illustrated in Figure 35.2, Figure 35.3 shows that the amplitude of the
mode v; vanishes for ¢ = —0.5 and therefore will not contribute to a lowest frequency
estimation in that interval. Figure 35.2 implies that v; will appear to have the lowest
instantaneous frequency for ¢t < —0.5, vy will appear to for ¢ = 0.25, and v3 otherwise.

The algorithms introduced in this section will address these challenges by first es-
timating the lowest frequency mode at each point of time in [—1,1] and dividing the
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domain into intervals with continuous instantaneous frequency and élow R Wiow In Algo-
rithm 4. Divisions to [—1, 1] can be caused by either a mode vanishing or a frequency
intersection. The portions of modes corresponding to these resulting intervals with iden-
tified instantaneous frequencies are called mode fragments. Next, Algorithm 5 extends
the domain of these fragments to the maximal domain such that the instantaneous fre-
quency is continuous and élow A Wiow, thus determining what are called mode segments.
The difference between fragments and segments is elaborated in the discussion of Figure
36. Furthermore, in Algorithm 6, the segments that are judged to be an artifact of noise
or a mode intersection are removed. After segments are grouped by the judgment of
the user of the algorithm into which belong to the same mode, they are then joined via
interpolation to create estimates of full modes. Finally, in Algorithm 7, mode estimates
are refined as in the final refinement loop in Algorithm 2.

10.1 Identifying modes and segments

Algorithm 4, which follows, presents the main module Mmode (v, V, Vseg) composing Al-
gorithm 7. The input of this module is the original signal v, a set of (estimated) modes
Vo= {vie : [-1,1] > R}, and a set Vs := {v"® : T;. — R} of (estimated) seg-
ments v, where each mode is defined in terms of its amplitude a;. and phase 0; . as
Vie(t) = a;e(t)y(0ic(t)), and each segment is defined in terms of its amplitude a*¢ and
phase ¢ as the function v%¢(t) := a®¢(¢)y(6>¢(¢)) on its closed interval domain T, . In
Algorithm 4 we consider a uniform mesh 7 < [—1, 1] with mesh spacing ¢t and define a
mesh interval [a,b] := {t € T : a <t < b}, using the same notation for a mesh interval
as a regular closed interval. In particular, both the modes and segments v; , v con-
tain, as data, their amplitudes a; ., a"® and phase functions 6; ., >, while the segments
additionally contain as data their domain T;.. Moreover, their frequencies w; , wh® can
also be directly extracted since they are a function of their phase functions. The output
of this module is an updated set of modes V" and segments Vé’e“gt. The first step of
this module (lines 2 to 5 of Algorithm 4) is to compute, for each time 7 € [—1,1], the

residual ‘
Vyi= 0 — Z Vie — 2 vp© (10.1)

v;,cEV V1€EVseg i TET e
of the original signal after peeling off the modes and localized segments, where the local-
ized segment

) . he () (t—7) )2
v2f(t) = az’e(T)e*(Lu 2=2)

y((t — 7)w™(7) + 0°(7)), te[-1,1], 7€ Tie, (10.2)

defined from the amplitude, phase and frequency of segment v%€, is well-defined on the
whole domain [—1,1] when 7 € T;.. Extending vy so that it is defined as the zero
function for 7 ¢ T, ., (10.1) appears more simply as

Vr =0 — Zv@e - 2 vhe (10.3)
1%

Vseg
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Note that unlike previous sections where the function 6y, common throughout many
iterations, would be determining the width parameter 6y(7) in the exponential in (10.2),
here the latest frequency estimate w® is used. The peeling (10.3) of the modes, as well as
the segments, off of the signal v is to identify other segments with higher instantaneous
frequencies.

Next, in line 6 of Algorithm 4, we compute the lowest instantaneous frequency
Wiow (T, v7) of vy as in (8.15), where Ay is determined either by the user or a set of
rules, e.g. we identify wiow(7,v7) as the lowest frequency local maxima of the energy
S(7,-,v;) that is greater than a set threshold ¢y (in our implementations, we set this
threshold as a fixed fraction of max,,, S(7,w,v)). If no energies are detected above this
given threshold in S(7,-,v;) we set wiow(7,v;) = . We use the abbreviation wjgy (7)
for wiow(T,v7). Figure 36.2 shows wioy(7) derived from S (Figure 36.1) in Example
10.2. Then, using the micro-local KMD approach of Section 8.1 with (the maximum
polynomial degree) d set to 0, lines 8 and 9 of Algorithm 4 compute an amplitude

low (T) 1= a(7, (- — T)wiow (7), V) (10.4)

and phase
elow(T) = 50(7_7 ( - T)wlow(7)7 ’U) (105

)
at t = 7, using (8.14) applied to the locally estimated phase function (- — 7)wiew(7)
determined by the estimated instantaneous frequency wioy (7). The approximation (10.5)
is justified since this estimated phase function (- — 7)wjew(7) vanishes at ¢ = 7, so that
the discussion below (8.14) demonstrates that the updated estimated phase 0+ d6(r, (- —
T)Wiow (7),v) = 00(7, (- — T)wiow (T), v) is an estimate of the instantaneous phase at t = 7
and frequency w = wiow (7). Then ajow (7)Y (low (7)) is an estimate, at ¢ = 7, of the mode
having the lowest frequency. If wiow (7) = &, we leave ajoy and 6oy undefined.

(1) 700 A 700
z: 600 (2) .2 B SN 3 600 2 0
3:00‘ 4 5 = 500 = 3 B
2.759’ - q‘
2 3 400 400
2.50,

2.25 1 300 1_ 200 1 (3)
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Figure 36: The identification of the first mode segments in Example 10.2 is shown. The
scale of the vertical axis is log;g(w) in sub-figure (1) and w in sub-figures (2) and (3)
Segments are labeled in (1). (1) Energy S(-,-,v) (2) the identified lowest frequency at
each time ¢ with consistent segment numbering (3) identified mode segments including
an artifact of the intersection, labeled as segment 0.
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Algorithm 4 Lowest frequency segment identification

1: function Mmmyede(v, V, Veeg)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:

20:
21:
22:
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:
33:

for v"¢ in Vs, do

; , whe(r)(t=1))?
(1) — abe(r)e (FTRER)

end for ‘
Ur < U= Dy Vie = 2y, vhe
Get wiow (T, v7) as in (8.15) and abbreviate it as wiow (7)
if wiow(7) + &
Qow (T) — a(T, (- — T)wiow(T), v7)
Orow (1) < 00(T, (- — T)wiow (T), v7)
end if
Set T to be the regular time mesh with spacing dt
T < T o {7loton(7) + 20}
if T = then
Vseg —
return V, Vs, and goto line 34
end if
Teut < {[min(7), max(7)]} (Initialize the set of mesh intervals Tcyt)
for successive 71,72 (T2 — 71 = 6t) in T do

if ‘log <$ii§§2§>‘ > ¢ or | log (<9low<w>—elow<n)><m—n>-1)

u-’low(Tl)
if [Tl,Tg] c [tl,tg] S 7Zut then
7zut — (%ut N {[tlatQ]}) o {[tlaTl]a [7—272(:2]}
end if
end if
end for
Vlow <~ alow?/(elow)
for [t1,t2] in Teyy do
Ve 1y 15]: 1 th = MODE EXTEND(v, viow |1, . S(-,,07))

y((t = m)w'(7) + 0%4(7))

> ¢9 then

if Sz:f Wiow (T)dT > €3 then
Vseg < Vseg Y {Useg,[t’l,t;]}
end if
end for
yout, Vs?eét — MODE_PROCESS(V, Vseg, S(-, -, vr))
return VU, Vou!

34: end function

Next, let us describe how we use the values of (7, wiow (7)) to determine the interval

domains for segments. Writing 7.yt for the set of interval domains of these segments,
Teut is initially set, in line 17, to contain the single element 7, that is, the entire time
mesh 7. We split an element of 7yt whenever wjyy is not continuous or 6y, and wiow
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Algorithm 5 Mode fragment extension

1:
2
3
4
5:
6
7
8
9

10:
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23:
24:

25:

26:
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28:
29:
30:
31:
32:
33:

function MODE_EXTEND (v, Vseg, S(+, -, v7))

smooth < True
TL < 11
while smooth is True do
01 — 9_seg(71)
W1 < eseg('rl)
To «— T1 — dt
W < ATGMAX e [(1—c)ur,(14e)ws] S (T2, W V)
92 «— (59(7’2, ( — 7'2)0.)2, UT)

log (Zf)‘ > €1 or |log (M)

w1

smooth <« False

else
ag «— a(7a, (+ — T2)wa, vr)
Useg(TQ) <« aQy(02)
l1, 71 < T2

end if

end while

if > ¢y then

TL < 12
while smooth is True do
01 < e_seg(ﬁ)
W1 < eseg(Tl)
Ty < 11 + dt
Wy < ATGMAX ye[(1—e)w,,(1+e)wa] S (T2, W Ur)
02 «— (59(7’2, ( — Tg)wg, UT)

log (Zf)‘ > ¢ or |log (M)

w1

smooth < False

else
ag «— a(7a, (+ — T2)wa, vr)
Useg(TZ) < a2y(92)
lo, T < T

end if

end while

if > €9 then

return vgeg, t1, t2

34: end function

are not approximately equal, as follows. If our identified instantaneous frequency around
t = 7 matches a single mode, we expect neither condition to be satisfied, i.e. we expect
both wjew to be continuous and Oy, ~ wiow. In our discrete implementation (lines 18 to
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24), we introduce a cut between two successive points, 71 and 7o, of the time mesh T, if
log (WIOW(TQ)> ((Glow(7_2) B elow(Tl))(7_2 - Tl)_l)
Wiow (7'1)

wlow(Tl)
where €1 and €5 are pre-set thresholds. Each potential mode segment is then identified
as leW’[tl o] for some t1 < to, t1,t2 € T.

>¢ or |log > €g, (10.6)

Note that in Figure 36.2, the continuous stretch of wj.y, labeled by 2 does not corre-
spond to the full mode segment labeled by 2 in Figure 36.1, but a fragment of it. This
is because the lowest frequency mode, vy, is identified by wiow () over t < —0.5. We des-
ignate this partially identified mode segment as a mode fragment. Such fragments are
extended to fully identified segments (as in 2 on Figure 36.3) with the MODE_EXTEND
module, with pseudo-code shown in Algorithm 5. This MODE_EXTEND module iter-
atively extends the support, [t1,t2], by applying, in lines 8 and 23, a max-squeezing to
identify instantaneous frequencies at neighboring mesh points to the left and right of
the interval [t1,t2]. The process is stopped if it is detected, in lines 10 and 25, that the
extension is discontinuous in phase according to (10.6). This sub-module returns (max-
imally continuous) full mode segments. Furthermore, to remove segments that may be
generated by noise or are mode intersections, in lines 26 to 31 of Algorithm 4, segments
such that \

f Wiow (T)dT < €3 (10.7)

t1
where €3 is a threshold, are removed. In our implementation, we take e3 := 207, corre-
sponding to 10 full periods. Note that Figure 37.2 shows those segments deemed noise
at level €3 := 207 but which are not deemed noise at level 3w, in the step after all three
modes have been estimated in Example 10.1. Consequently, it appears that the noise
level €3 := 207 successfully removes most noise artifacts. Note that the mode segments
in Figure 37.2 are short and have quickly varying frequencies compared to those of full
modes.
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Figure 37: (1) Energy S(-,-,v — v1¢ — v2 — v3,) (2) identified mode segments (Vieg
obtained after the loop in Algorithm 4 on line 31).
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Algorithm 6 Raw segment processing

1: function MODE_PROCESS(V, Vseg, S(-, -, v7))

2 Vgroup —

3 for v"¢ in Ve do

4 if v»¢ corresponds to a mode intersection or noise then
5: Vseg < Vseg ™ {v"¢}

6 else

7 for Vg‘roup,j in (Vgroup,j’)j’ do

8 if v"¢ corresponds to the same mode as Vgroup,j then
9: Veroup,j < Vgroup,j Y {v"°}

10: break for loop

11: end if

12: end for

13: if v"¢ not added to any mode block then

14: Veroup,j) 5 = Vgroup 1) v {v"}}

15: end if

16: end if

17: end for
18: for Vgroup,j in (Vgroup,j’)j’ do

19: if Veroup,; is complete then

20: Transform the segments in Vgroup,; into a mode v; .
21: V< Vu{vje}

22: Vseg < Vseg Vgroup,j

23: end if

24: end for
25:  return V, Vi
26: end function

Next, line 32 of Algorithm 4 applies the function MODE_PROCESS, Algorithm 6, to
V and Vseg, the sets of modes and segments, as well as the energy S(-, -, v7), to produce the
updated sets V% and Vé’eg. This function utilizes a partition of a set Vyroup, initialized
to be empty, into a set of partition blocks (Vgrouw)j, where Veroup,j © Veroup, Vj. The
partition blocks consist of segments that have been identified as corresponding to the
same mode, indexed locally by j. Each segment in Vi will either be discarded or
placed into a partition block. When a partition block is complete it will be turned into
a mode in V°" by interpolating instantaneous frequencies and amplitudes in the (small)
missing sections of 7 and the elements of the partition block removed from Vgroup, and
Vseg- All partition blocks that are not complete will be passed-on to the next iteration.
These selection steps depend on the prior information about the modes composing the
signal and may be based on (a) user input and/or (b) a set of pre-defined rules. Further
details and rationale on the options to discard, place segments into partition blocks, and
determine the completeness of a block, will be discussed in the following paragraphs.
The first loop in Algorithm 6, lines 3 to 17, takes each segment v"¢ in Vseg, and either
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discards it, adds it to a partition block in Vgroup, or creates a new partition block with
it. On line 4, we specify that a segment is to be discarded (i.e. removed from the set
of segments Vi) whenever it corresponds to a mode intersection or noise, where we
identify a mode intersection whenever two modes’ instantaneous frequencies match at
any particular time. This can be seen in Figure 38.1 where the energies for the higher
two frequency modes on ¢ 2 —.25 meet in frequency at time t ~ 0.25, as well as Figure
36.1, where the lower two frequency modes on ¢t = —.25 also meet around ¢t ~ 0.25.
Moreover, segment 0 in Figure 36.3 corresponds an artifact of this mode intersection. In
these two examples, it has been observed selecting €3 large enough leads to no identified
noise artifacts. However, identified segments with these similar characteristics as those
in Figure 37.2, i.e. short with rapidly varying frequency, are discarded, especially if there
is a prior knowledge of noise in the signal.
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Figure 38:  The scale of the vertical axis is log;o(w) in the top row of sub-figures
(1,3,5) and w in bottom row of sub-figures (2,4,6). Segments are labeled in (1). (1,
2) Energy S(-,-,v) and the identified lowest frequency segments (3, 4) First updated
energy S(-,-,v — vl — v2¢) and its identified lowest frequency segments (5, 6) Second
updated energy S(-,-,v —v1 . —v2.) and its identified lowest frequency segments, where
v1¢ results from joining mode segments 1 and 4, while vo, is generated from joining

segments 3 and 2.

All segments v>¢ that are not discarded are iteratively put into existing partition
blocks in lines 7-12 of Algorithm 6, or used to create a new partition block in line 14,
which we denote by {{v*¢}}. For example, in Figure 38.2, we place segment 1 into its
own partition block on line 14 by default since when Vgyoup is empty, the loop from
lines 7-12 is not executed. Then we do not place segment 2 in the partition block with
segment 1, but again place it in its own partition block on line 14 with the observation
they belong to different modes (based on the max-squeezed energy S in Figure 38.1).
The end result of this iteration is segments 1 and 2 placed into separate partition blocks.
In the next iteration shown in 38.4, we construct two partition blocks, one consisting of
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{{v!¢,v*¢}} and the other {{v?¢ v>€}}. In the following iteration, illustrated in Figure
38.6, we again place segment 5 into its own partition block on line 14 by default. The
next iteration is the last since no segments which violate (10.7) are observed. Both
blocks are then designated as complete modes, that is correspond to a mode at all time
[—1,1], and are used to construct vy and vy . This determination can be based on (a)
user input and/or (b) a set of pre-defined rules. Observing S at the third stage in Figure
38.5, we designate it as complete.

The final loop of Algorithm 6 on lines 18-24 begins by checking whether the block is
complete. For a block deemed complete, in line 20, their segments are combined to create
an estimate of their corresponding mode by interpolating the amplitude and phase to
fill the gaps and extrapolation by zero to the boundary. Then, in line 21, this estimated
mode is added to V and, in line 22, its generating segments removed from Vyes. Finally,
the segments of the incomplete blocks constitute the output Vseg of Algorithm 6.

In the implementation corresponding to Figure 38.2, each block consisting of seg-
ments 1 and 2 respectively are both determined to not be complete, and hence are
passed to the next iteration as members of Vies to the next iteration. In Figure 38.4,
the block consisting of segments 1 and 4 and the block consisting of segments 2 and 3,
are deemed complete since each block appears to contain different portions of the same
mode (with missing portions corresponding to the intersection between the correspond-
ing modes around ¢ ~ 0.25), and consequently their segments are therefore designated to
be turned into modes v . from segments 1 and 4 and vz . from 2 and 3. Finally in Figure
38.6, the block consisting of only segment 5 is determined to be complete and in line 20
is extrapolated by zero to produce its corresponding mode. In Example 10.2, shown in
Figure 36.3, we place segments 1, 2, and 3 in separate blocks (and disregard 0), but only
designate the block containing segment 1 as complete. The output of Algorithm 6, and
hence Algorithm 4, are the updated list of modes and segments.

10.2 The segmented micro-local KMD algorithm

The segmented iterated micro-local algorithm identifies full modes in the setting of
Problem 5 and is presented in Algorithm 7. Except for the call of the function mmode,
Algorithm 4, Algorithm 7 is similar to Algorithm 2. It is initialized by V = ¢J and Ve =
&, and the main iteration between lines 2 and 17 identifies the modes or segments with
lowest instantaneous frequency and then provides refined estimates for the amplitude
and the phase of each mode v;,i € {1,...,m} of the signal v. We first apply mmode
to identify segments to be passed-on to the next iteration and mode-segments to be
combined into modes. This set of recognized modes V°" will be refined in the loop
between lines 8 to 14 by iteratively applying the micro-local KMD steps of Section 8.1
on the base frequency of each mode (these steps correspond to the final optimization
loop, i.e. lines 21 to 27 in Algorithm 2). The loop is terminated when no additions are
made to V or Veg.
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Algorithm 7 Segmented iterated micro-local KMD.
1: {Vu Vseg} <~ {@7 @}

2: while true do

3. {yout, V;)e“gt} — Mmode(V, V, Vieg)

4 if Vo = @ and [V°"| = V| then

5: break loop

6: end if

7. if [V°U] > |V| then

8: repeat

9: for v; . in yout do

10: Vjres <~ UV — ai,eg(ei,e) - Zj;é@' aj,er(gj,e)
11: A e(T) a(T, Oi e, v@res)/cl

12: 92'75(7') «— 91‘7@(7') + %(59(7‘, 9,‘78, Ui,res)
13: end for

14: until sup, , [00 (7', Oie. v@res)] <€

15:  end if

16: {V, Vaeg} < {V°", Vo
17: end while
18: Return the modes vj¢(t) <« a;c(t)y(0;c(t)) for i =1,...,m

10.3 Numerical experiments

Figure 39: (1) v1. and v (2) va and vy (3) vz and v3. See footnote 3

Figure 39 and Table 10 show the accuracy of Algorithm 7 in recovering the modes of
the signal described in Example 10.1, the results for Example 10.2 appearing essentially
the same, and thereby quantify its robustness to noise, vanishing amplitudes, and cross-
ing frequencies. We again take the mesh spanning [—1, 1] spaced at intervals of size ﬁ
and aim to recover each mode v; on the whole interval [—1,1]. We kept o = 25 constant
in our implementation. The amplitudes and frequencies of the modes composing v are
shown in Figure 34. The recovery errors of the modes are found to be consistently on
the order of 1072, Note that in the noise-free setting with identical modes, the recovery
error is on the order of 10~3 implying the noise is mainly responsible for the errors shown
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in Table 10.

[vi,e—vil 12

[vi,e—vil Lo

faie—ail 2

Mode : - , Haz e_eiHL2
Tvil L2 [vill oo Jail 2 ,

i=1 317x1072 [ 6.99x1072 | 2.24x1072 | 1.99x 1072

i=2 249%x 1072 | 7.09x 1072 | 1.64x 1072 | 1.81x 1072

i=3 3.52x1072 ] 9.52x 1072 | 3.13x 1072 | 2.02x 1072

Table 10: Signal component recovery errors in Example 10.1. Note that the error in
phase for mode ¢ = 3 was calculated over [—1, —%] since the phase of a zero signal is
undefined.

11 Proofs

11.1 Proof of Lemma 3.1

We first establish that U(v) = ®*v, where the Moore-Penrose inverse ®* is defined by
Ot = <I>T(<I><I>T)_1, where ®” is the Hilbert space adjoint of ®. To that end, let w* be
the solution of (3.5). Since ® : B — V is surjective it follows that ® : Ker'(®) — V is

a bijection and therefore
{w: dw = v} = wo + Ker(P)

for a unique wg € Ker (®). Therefore, setting w’ := w—wq we find that (w’)* := w* —wy
is a solution of

{Minimize |w” + wolls (11.1)

Subject to w’ € B and ®w’' =0,

so that by the projection theorem we have (w')* = Pger@)(—wo) where Pgey(q) is the
orthogonal projection onto Ker(®). Therefore w* = wg + (w')* = wo — Pker(a)(wo) =
PKerL((I))'UJO, so that we obtain

w* = PKerJ‘(CI))wO'

Since @ is surjective and continuous it follows from the closed range theorem, see
e.g. Yosida [113, p. 208] that Im(®”) = Ker'(®) and Ker(®”) = &, which implies that
®dT . V — V is invertible, so that the Moore-Penrose inverse ®* : V — B of ®, is
well-defined by

ot = o7 (d0”) .

It follows that Py, 1 () = ®tP and PP = Iy so that
w* = Pyert (yWo = Ot Pwy = dTo,

that is, we obtain the second assertion w* = ®*v.
For the first assertion, suppose that Ker ® = (. Since it is surjective, it follows that

® is a bijection. Then, the unique solution to the minmax problem is the only feasible

78



one w* = &~y = d*y. When Ker ® # (¥, observe that since all u which satisfy ®u = v
have the representation u = wy + «’ for fixed wy € Ker'(®) and some u’ € Ker(®), it
follows that the inner maximum satisfies

|u—wls v + wo — w|s

max ————— =
ueB|Pu=v HUHB u'eKer(P) ”Ul + w(]HB

[tu” + wo — wl|g

= max 1max
u/eKer(®) teR Htu’ + U)o”lg

= 1

On the other hand, for w := ®*v, we have

Ju—wls  _ |u— @5
max ———— = max ——
ueB|Pu=v HUHB ueB|Pu=v HUHB
[u— @7 Puls
= max ——
ueB|Pu=v H’LLHB
lu — PKerJ'(q))uHB
= max
ueB|du=v HUHB
< 1,

which implies that w := ®*v is a minmax solution. To see that it is the unique optimal
solution, observe that we have just established that

-
N T 101

=1 11.2
ueB|Pu=v HUHB ( )

for any optimal W : V — B. It then follows that

Ju—¥(Pu)|s _

max =1

ueB lulls

which implies that the map I — W o & : B — B is a contraction. Moreover, by selecting
u € Ker(®) tending to 0, it follows from (11.2) that ¥(0) = 0. Since, by definition,
® o U = Iy, we have

(I-Pod)Pu) = (I-TVod)(u—Vodu)
= u—Voduy—Vod(u—Todu)
= u—\I!ofbu—\I/(q)u—(I)o\I!o(I)u)
= uf\lloéuf\ll(q)uféu)
= u—\Ilo@u—\I'(O)
= u—Vodu

so that the map I — Vo ® is a projection. Since ®(u— VYo Pu) = du—PoWody =0 it
follows that Im(I — ¥ o ®) < Ker(®), but since for b € Ker(®), we have (I — Vo ®)(b) =
b— W o ®b = b, we obtain the equality Im(I — ¥ o @) = Ker(®P).
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To show that a projection of this form is necessarily linear, let us demonstrate that
Im(¥ o ®) = Ker'(®). To that end, use the decomposition B = Ker(®) @ Ker(®) to
write u = v/ +u” with v/ € Ker(®) and «” € Ker®(®) and write the contractive condition
Ju— W o Dul? < Jul? as

o+ = Wo D + )P < ol + ",

which using the linearity of ® and u’ € Ker(®) we obtain
Hu/ +u" —To @u”HQ < “u/ + u”“27

Suppose that ¥ o du” = v’ + v” with v/ € Ker(®) nontrivial. Then, selecting v’ = v,
with £ € R, we obtain
H(t o 1)’[)/ +u — 1)”|2 < Ht’l)/ + u//HQ

which amounts to
(t =12 + u” — "> < 20> + [u")?

and therefore
(1= 20)[0"* + " = "> < Ju"|%,
which provides a contradiction for ¢ large enough negative. Consequently, v = 0 and
Im(¥ o ®)  KerH(®). Since I = Vo d + (I — ¥ o ®) with Im(¥ o &) < Ker'(®) and
Im(I — Wo®) c Ker(®) it follows that Im(W o ®) = Ker(®). Since Wo ® is a projection
it follows that
Vodu =u", ' eKert(d).

Consequently, for two elements u; = v} + uf and ug = u + uf with u} € Ker(®) and
u! € Kert(®) for i = 1,2 we have

(I—\IIO(I))(ul—i-ug) = ul—‘rUQ—\I/O(I)(ul—i-UQ)
uy + uly +uf +ul — o ®(uf + ub)
uy + b
= uj +uf —Vodul +ub+uh — Vo duj
= (I-Yo®)(w)+ (I—Tod)(up),

and similarly, for ¢t € R,
(I —Pod)(tuy) =t(I—Vod)(u),

so we conclude that I — ¥ o ® is linear.

Since according to Rao [23, Rem. 9, p. 51|, a contractive linear projection on a Hilbert
space is an orthogonal projection, it follows that the map I — ¥ o ® is an orthogonal
projection, and therefore ¥ o @ = PKerJ_(q)). Since @ is the Moore-Penrose inverse, it
follows that Pyt (g) = Ot so that o ® = &P, and therefore the assertion ¥ = ¢+
follows by right multiplication by ¥ using the identity ® o U = Iy,.
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11.2 Proof of Lemma 3.2

Let us write ® : B — V as

Qu =Y e, u=(u€ Ve,
€L

where we now include the subspace injections e; : V; — V in its description. Let e; :
V; — B denote the component injection &;v; := (0,...,0,v;,0,...,0) and let &l : B — V;
denote the component projection. Using this notation, the norm (3.6) on B becomes

lulg = > e ulf,,  weB, (11.3)
i€l

with inner product

<U1,U2>B = Z <é;-ru1, é,LTU2>Vi, uy, ug € B.
1€l

Clearly, é}réi =0,7 # j and é;-réi = [y, so that

(3

Elu vy, = (e]u,e ey,

= Z <é§1u, é?éﬂ)»vi
JET

= <’LL, éﬂ)i>[3,

implies that é;; is indeed the adjoint of €;. Consequently we obtain

b = EeiéiT

i€l

and therefore its Hilbert space adjoint ®7 : V' — B is

CI)T = Z éielT,

i€l

where eiT : V. — V; is the Hilbert space adjoint of e;. To compute it, use the Riesz
isomorphism

L: V-V
and the usual duality relationships to obtain
ef = Qieft,

where e} : V* — V* is the dual adjoint projection. Consequently we obtain

T _ TN T Tz T A 0. e*
PP" = Ze]ej Eelei = Z €;€; €;€; —26161‘ —ZezQzeiL

JjeT €L i,j€L €L i€l
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and therefore defining

S = Z eiQier
i€l
it follows that
a7 = 3.

Since ®®7 and ¢ are invertible, S is invertible. The invertibility of S implies both
assertions regarding norms and their duality follows in a straightforward way from the
definition of the dual norm. For the Hilbert space version see, e.g., [7, Prop. 11.4].

11.3 Proof of Theorem 3.3

We use the notations and results in the proof of Lemma 3.2. The assumption V = >, V;
implies that the information map ® : B — V defined by

Ou = i, u=(u€ Vi,
1€l

is surjective. Consequently, Lemma 3.1 asserts that the minimizer of (3.5) is w* =
U (v) := &+, where the Moore-Penrose inverse ®* := ®7(®®7)~! of & is well defined,
with ®7 : V' — B being the Hilbert space adjoint to ® : B — V. The proof of Lemma, 3.2
obtained ®®” = S; where S := Der€iQiel and ¢ : V' — V* is the Riesz isomorphism,
ezT = @Q;e;'t, where eZT : V. — V; is the Hilbert space adjoint of e; and e} : V* — V* is
its dual space adjoint, and &7 = DT éieZT, where €; : V; — B denotes the component
injection €;v; := (0,...,0,v;,0,...,0).

Therefore, since (#@7)~! = ;71571 we obtain @ = Y., &;Q;efte~1S™1, which
amounts to

O =) EQier S, (11.4)
1€l

or in coordinates

(@) = QiefS™lv, ieT,

establishing the first assertion. The second follows from the general property ®®+ =
®dT(®@®T)~! = T of the Moore-Penrose inverse. The first isometry assertion follows
from

@ lE = D 1@ )y, = D 1Qief ST, = D [Q; ' Qief ST, Qief STHv] = > [ef ST v, Qief ST ]

1€l €l i€l €l
= >[50, eiQief ST ] =[S0, > eiQief ST ] =[S, S5 0] =[S v, v] = [v]E
i€l 1€l
forveV.
For the second, write ® = ), _, e;el and consider its dual space adjoint ® : V* — B*

defined by
o* = Z él-T’*e;k .

€l
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A straightforward calculation shows that é;TF’* : V¥ — B* is the component injection into
the product B* = [[,.; V;*. Consequently, we obtain

T AT .
elTer * = 6%,]@]7 1,] € Ia
so that
. _T ! _T
PQI* = ZeieiTQZ € ’*e;’-‘ = Z eie;fFer ’*e;f = ZeiQie;‘ =8,

= JjeET i,j€L i€l
and since, for ¢ € V*,

|®*3||% = (D¢, D* P+ = [0%h, QP*¢] = [p, PQP*¢] = [6, Sp] = ||,

it follows that ®* is an isometry.

11.4 Proof of Theorem 3.4

Use the Riesz isomorphism between V' and V* to represent the dual space adjoint ®* :
V¥ > B*of ®: B>V as & : V — B* It follows from the definition of the Hilbert
space adjoint ®7 : V' — B that
[®*v,b] = (v, ®b) = (DT v, b)j.
Since @ : B* — B (3.11) defines the B inner product through
(b1, bo)p = [Q'b1,ba], bi,bs € B,

it follows that [®*v,b] = (Q®*v, by and therefore (Q®*v, bdg = (®Tv,byg,v e V,be B,
so we conclude that
o7 = Qo*.
Since Theorem 3.3 demonstrated that ¥ is the Moore-Penrose inverse ®* which implies
that ¥ o ® is the orthogonal projection onto Im(®7) it follows that ¥ o du € Im(®7).
However, the identity ®7 = Q®* implies that Im(®7) = QIm(®*) so that we obtain
the first part
_ s _ Od*
Ju— ¥ (Qu)|s = o, lu — QP*(¢)[5

of the assertion. The second half follows from the definition (3.6) of | - | 5.

11.5 Proof of Proposition 4.1

Restating the assertion using the injections e; : V; — V, our objective is to establish
that

E(i) = Var ([qS, elfi]) = Var (<ei£i, U>S_1) .

Since [¢, ;&) = [ef ¢, &i], it follows that [¢, ;] ~ N (0, [ef p, Qief #]) so that Var ([(b, ei&]) =
[efd, Qief¢], which using ¢ = S~1v becomes

Var ([¢, ei&i]) = [S™'v, eiQief S~ 0]
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On the other hand, the definitions (4.1) of E(i), (3.7) of | - |v;, and Theorem 3.3 imply
that

E(i) == |Wi(v)[}, = [Q; " Wi(v), ¥;(v)]
= [Q;'Qief ST, Qief STM0] = [ef ST v, Qief ST ] =[S0, eQief SN,

so that we conclude the first part E(i) = Var ([d), eifi]) of the assertion. Since [¢, e;&;] =
[S™1v, €] = (v, e;&i)g—1 we obtain the second.

11.6 Proof of Theorem 4.4

Fix 1 < k < r < ¢q. To apply Theorem 3.3, we select B := B®*) and V := B(") and
endow them with the external direct sum vector space structure of products of vector
spaces. Since the information operator ®(*) : B*) — B(") defined in (4.9) is diagonal
(rk) Bﬁk) — Vj(T),j e Z() and the norm on B*) = [ Liczm BZ«(k) is

with components P,
the product norm | ul? = Dz HUiHZ,(k)» u = (U;);ez(r , it follows from the

. B"
variational characterizatlieozr(l )of Lemma 3.1, the diagonal nature of the information map
&%) and the product metric structure on B*) that the optimal recovery solution ¥ (")
is the diagonal operator with components the optimal solution operators corresponding
to the component information maps @y’k) : Bj(-k) — Vj(r), j € Z("). Since each component
(4.8) of the observation operator is

@gr’k) (u) := Z ug, uE€ B](-k),

iej(k)
it follows that the appropriate subspaces of Vj(r) are

Yy e

i J
Moreover, Condition 4.3 and the semigroup nature of the hierarchy of subspace embed-
dings implies that

(k+2,k) _ Z e(k+2,k+1) (k+1,k) iej(k),

Jsi j.l €l )
lej(k+1)
where the sum, despite its appearance, is over one term, and by induction we can estab-
lish that assumption (4.19) implies that
QP = Y Qe e, (1L5)

i i,

iej (k)
Utilizing the adjoint eggj’r) : Vj(r)’* — Vi(k)’* (4.13) to the subspace embedding eg»;?k) :
AL Vj(r), it now follows from Theorem 3.3 and (11.5) that these component optimal

7
solution maps \I’Ek’r) : Vj(r) — Bj(k) are those assumed in the theorem in (4.14) and (4.15)
as

k,r k) (k,r r),— r
v () = QM5 QI ) v eV, (11.6)

iej(k)?
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The first three assertions for each component j then follow from Theorem 3.3, thus
establishing the first three assertions in full.

For the semigroup assertions, Condition 4.3 implies that, for k <r < sand € (),
there is a one to one relationship between {j € 1("),i € j*)} and {i € I®)}. Consequently,
the definition (4.9) of ®F) implies

07 0 @) (u) = ( 2 (2 ui)))leI(S) - ( Z( Ui>leI(S) = oM (),

jel(r)  iejk) iel(k)

establishing the fourth assertion ®(®F = @) o k),
For the fifth, the definition (4.16) of (%) implies that
k) (k,r r),—1 1 (r,s
Qe QT ) g

k) (kr r),—1 ~(r) (rs s),—1
QE )eg,j )Q§) Q§ )eg',l )Qz() Ul)iej(’”

\Il(kvr) o \IJ(T’S) (’U) — (
(
(Q(k)e(kﬂ") (r,8) ~(8),—
(

1
ij Gl I Ul)iej(k)
k) (k, —1
Qz( )ez(,z S)Qz(s) vl)iel(k)
= \Ij(k,s)(w’

establishing ¥#:5) = gk) o g(rs)
The last assertion follows directly from the second and the fifth.
11.7 Proof of Theorem 4.6

Since £ : B)* _ H is an isometry to a Gaussian space of real variables we can abuse
notation and write £®)(b*) = [b*, )] which emphasizes the interpretation of £*) as a
weak B*)-valued random variable. Since, by Theorem 4.4,

kL (BRI | s ) = (BY* | - [ 50.) is an isometry (11.7)
and €U : BM* _ H is an isometry, it follows that
Q)(kvl)g(l) = 5(1) o @(kJ):* . B(k)v* —H

is an isometry, and therefore a Gaussian field on B%*). Since Gaussian fields transform
like Gaussian measures with respect to continuous linear transformations, we obtain that
€M ~ N(0, Q1) implies that

@(k,l)é—(l) ~ N(O,(b(k:’l)Ql@(k’l)’*),
but the isometric nature (11.7) of ®*1* implies that

oD QW kD% _ k)

)

so we conclude that

DN ~ N (0,Q")
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thus establishing the assertion that £*) is distributed as ®*1 @),

The conditional expectation E[£ (k) | ® P )(f (k))] is uniquely characterized by its field
of conditional expectations E[[b*,£®)] | @) ()], p* € B*)* | which, because of the
linearity of conditional expectation of Gaussian random variables, appears as

E[[b*,¢W] | @R (k)] = [Aps, @0 (¢ W)

for some Ay« € V*. Furthermore, the Gaussian conditioning also implies that the de-
pendence of Ay« on b* is linear so we write Ay = Ab* for some A : B¥ — V* thereby
obtaining

E[[b*, W] | P (e®)] = [Ab*, @R ()] p* e BRI (11.8)

Using the well-known fact, see e.g. Dudley [22, Thm. 10.2.9], that the conditional ex-
pectation of a square integrable random variable on a probability space (2,%’, P) with
respect to a sub-o-algebra ¥’ < X is the orthogonal projection onto the closed subspace
L?(Q,Y, P) c L?(Q,%, P), it follows that the conditional expectation satisfies

E[([b*, W] — [Ap*, @R (W) [v*, @R (¢ W] =0, b* € BF* p* e VIR
Rewriting this as
E[([b*,f(k)] _ [Q(r’k)’*Ab*,f(k)])[Q(T’k)’*v*,f(k)ﬂ =0, b* e B(k)’*,?)* c V(k:),*
we obtain

[b*,Q(k)q)(r’k)’*U*] _ [CI)(T’k)’*Ab*,Q(k)q)(r’k)’*’u*]
[b*’A*q)(r,k:)Q(k)q)(r,k:),*v*]

for all b* € B¥)* and v* € V(*)* and so conclude that

A*(I)( )Q(k)q)(rk Q(k rk),*v*’ b* e B(k)’*,v* c V(k)’*,
which implies that
ARy — b b e Im(QW k) ¥y (11.9)
Since
@RI Iy = (b, @Yy

QU 15, p(r)p ()]
(T»k)’* (k)ffl T‘) (k)

[@(R)* Q=11 ]

[Q(T),le r) & (k) *Q 71b (r) b(k)]

<Q(r) rk) *Q flb b(k >B(T)

we conclude that

T _ Q) k) k).~
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and therefore
Im(QU®+)*) = [m (k)T

Consequently, (11.9) now reads

A*q)(T,k)b — b7 be Im((b(rvk)vT) . (1110)

Since clearly
A*®Rp =0, be Ker(drh)

it follows that
A*(I)(T,k) — le(cp(nk),T)

Since Py, g(m.1) = (®rFN)+ (k) the identity ®*)(®(*))+ = I establishes that
A* = <(I)(r,k))+
Since (11.8) implies that
E[[b*, 60| U9 ()] = [b*, A0 M)], b e B0
which in turn implies that
E[f(k) | (I)(Tak)(g(k))] = A*oF) (¢(R)y |

we obtain

E[g(k) | §(rF) (g(k))] — (@R F k) (k)

Since Theorem 3.3 established that the optimal solution operator W () corresponding to
the information map ®(*) was the Moore-Penrose inverse W) — (k) we obtain

E[¢®) | 00 (£0)] = ) o k) (60 (11.11)

so that
E[¢®) | 979 () = o] = wE)(0),

thus establishing the final assertion. To establish the martingale property, let us define
é(l) =&MW and
R = E[¢W | o®D ()], k=2,....

as a sequence of Gaussian fields all on the same space B, (11.11) implies that

£R) = gLk o k1) (¢, (11.12)
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so that the identities ®(1) = &K o k1) and KL o LK) = Iza) from Theorem 4.4
imply that

E[E®F e (R = E[EIF o kD (cM)erb o gtk o kb (£(1)]
= B[R o ok (£M) R o 1) o gLk) o k1) (£(1))]
)
)

[
[
_ E[\If(l ) o kil |<I>(”“ o dk1) (5(1))]
[¥
(

— = — —

— EMpLk o ekl 0 )|q>(r1 ( )]
— k) o UDRED D (EM)Y]
_ k) o kDM
= gk o kDG gD
= gk 6 gD GOR gk o gD
PR o k) o D))
P(Lr) o D)0

= &,

that is é (k) is a reverse martingale.

11.8 Proof of Theorem 6.1

Let us simplify for the moment and define a scaled wavelet

- 1-8 _wi(t—m)?
Xrwo(t) :=w'2 cos(w(t—7)+0)e oz | teR, (11.13)
so that at 8 = 0 we have
2 \i_
Xrwd = <W> Xrw,0 - (11.14)

Since

Xrw,0(8)Xrwo(t)dr dwdf

-]
- L
- I

™

+
w? (377')2 w2 (t—

(t—7)?
cos(w(s —7) +0)e” o cos(w(t—7)+0)e o dr w'Bdw do

+
w2(577)2 w2(t77)2

cos(w(s —7) +0) cos(w(t —7) +0)e” o2 e a2 drw'Pdwde,

Fe) ' = > = }
= * = = ?

+

the trigonometric identity

cos(w(s —7) + 0) cos(w(t — 7) + 6)
= (cos(w(s — 7)) cosf — sin(w(s — 7)) sin 9) (cos(w(t — 7)) cosf — sin(w(t — 7)) sin 0)
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and the integral identities {* cos?§df = {"_sin?#df = m and §" _cosfsin 6df = 0 imply
that

w2(sf7')2 w2(t77')2

K(s,t) =7TJR J (cos(w(s—T)) cos(w(t—T))+sin(w(s—7)) sin(w(t—7)>6_ o2 e o drw'Pdw

so that the cosine subtraction formula implies

Cw2—1)? W2 (-1)? 1
K(s,t) = wf J cos(w(s—t))e o e o drw “Pdw,
Ry

which amounts to

. p _@P6mn?  WPon)? 1
K(s,t) = WS‘%J J W tem o e a2 drw' Pdw. (11.15)
Ry
Using the identity
il e o (a2 a(ertyr) - (2 442)

and the integral identity

2
feaTszTdT - \/?eba, a>0,beC, (11.16)
a

with the choice a := 20%2 and b := —‘;—z(s +1), so that b?/a = %(s +1)?, we can evaluate
the integral

fe “—2(2T2—2(s+t) )dT _« 7r62—2(s+t) ‘
wy 2

Consequently,

w2|577'|2 w2\t77\2

K(s,t) = W%Jei“(St)e_ o2 e o drwtPdw
T

f (0= 52 (240%) =83 (272 0)7) g 18

= ﬂ?RJ w(s—t)e % 2 +1%) (Je_zz(272—2(5+t)7)d7'>w1_5dw

_ [T %J‘ iw(s—t) 7“’—2 s +t2) 2“’—22(s+t)2w_,8dw
7-[-3 . 4 —L(s—t)2 -
= « ZRJelw(s )¢ 2a2 w P dw
3 w2
= a\f % fcos(w(s — t))e_ﬁ(s_t)Qw_Bdw,

3 W2
K(s,t) = an/ % Jcos(w(s - t))e_mj(s_t)Qw_Bdw. (11.17)
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Utilizing the integral identity

© 1 _a? 11
fo ghlempe? cos(az)dr = §p_’T(g)e 2 [y (—% + 35 —), a>0,u>0,

from Gradshteyn and Ryzhik [37, 3.952:8], with % = 0‘72, p? = ls=t .= |s — t| and
u:=1— [, we obtain

K(s,t) — a\/f;(ﬁa)l_6|s—t|ﬂ_lf(l_2ﬁ)e_

Consequently, reintroducing the scaling (11.14) obtains K, (s,t) = ( 32a2> K (s,t) when
B = 0. To indicate the dependence on (3, we define

wf3,

—

>
/N
ey
N =
I [\3‘ Q
N———

1 _ e, 1=80 a2 B 1 a?
K — ~(v2a)"F)s — ¢fip(—— 2 F( ) 11.1
s(s.0) = 5 (V20 Pls — 1P (e m (5,10 (11.19)
so that K, = K. For fixed «, at the limit § = 0, we have, recalling that F(%) =4/,
V2 1 a?
Ko(s,t) = ?ﬂa\s—ﬂ *71F1(02 O;)

and since 1 F} (O % %) = 1 we obtain

V 27T o?

Ko(s,t) = Ta|8—t|_16_7.

The scaling constant H (/) defined in the theorem satisfies

aZ\ -
HB) %(\fza)lfﬁm—g) *71F1(§ ; V)

with
— (11.20)

so that, by (11.19) we have
1 |s — |71

7)) = T

Therefore, if we let g denote the integral operator
(ICB f J Kpa(s,t)f
associated to the kernel Kz scaled by H , it follows that
(Kaf) s f|s—t|ﬁ oL

namely that it is a scaled version of the integral operator f — g |s — ¢|%~1f(t)dt cor-
responding to the Riesz potential |s — t\ﬁ_l. Consequently, according to Helgason [11,
Lem. 5.4 & Prop. 5.5, this scaling of the Riesz potential by H(/3) implies the assertions
of the theorem.
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11.9 Proof of Lemma 7.1
The outer most integral in the definition (7.1) of Kjp is

T N
f y(w(s )+ H)y* (w(t )+ 9)d9 _ J Z ¢, e @(s=)+0) Z c;kne—im(w(t—r)+0)d9
- TN N
N N r
_ Z Z emw $—T) zm(w(tT)cncfnf ez(nfm)édg
—Nm=—-N -
- 9 Z einw(sz)efinw(th)|cn|2
n=—N
N .
- 97 Z eznw(s—t)|cn|2’
n=—N
so that
(s,t) =2m Z (5,1)|cnl?,
where

. </.)2|sf‘r|2 wQ\thP
Kn(s,t) = %Jem“(s_t)e_ o2 e o drw'Pdw
_ %f inw(s— t (S +t2)€ %(272—2(S+t)’r) d'rwl ﬁdw

_ %jeznw s—t % (s +t2) (J e—:—i (272—2(s+t)7') dT)qu_Bd(/J

— \/7§RJ inw(s— t %(s +t2) 2“;22( t)2w—ﬁdw
_ a\/;%Jeinw(s—t)e—;;Q(s—t) w_ﬁdw

™ — 2 (s-)? B
= /5 cos(nw(s —t))e 242 w Pdw .

Consequently, using the integral identity (11.18) with a = |n||s —t|,u =1 —3,p* =
|s—|? _ \nla ls—t|

552 » and therefore W = and p = V3o e conclude that

Kn<s,t>=%<ﬁa>l‘ﬁls—tﬁ—1r<“f>e (55 "|2 ).

which does not appear to have a nice dependency on n, except for § = 0, where

L. nfe®) _ 1y =
1F1(0;5; 55— ) =1 and I'(5) = /7, so that

1 [n]a
K, (s,t) = §a27re_ 2
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and therefore
Ko(s,t) = o?m?|y[?|s — t] ",

|n|o?
when written in terms of the norm [y|? := 3N ™ 2 |en |

11.10 Proof of Lemma 7.2

For v > 0, let us evaluate the function

o0

o(s) := Z e~ Inhreins (11.21)

n=—a

with Fourier coefficients ¢(n) = e~1"17. Since

o¢]

¢(S) _ Z 6*‘”|’Y€m3

-1
_ Z e Meins 4 1 4 Z e gins

n=1 n=-—au
0 0
_ Z efn'ye'ms 41+ Z efn'yefins
n=1
= 142 Z e " cos(ns),

the identity
sinh(7)

o0
1+2 Z e ™ cosns =

(11.22)
= cosh(y) — cos(s)
of Gradshteyn and Ryzhik [37, 1.461:2] implies that
_ sinh(v)
~ cosh(y) — cos(s)
Consequently, with the choice v := %2 in (11.21), that is, for
0 2
¢(8) — Z ef|n\c“7€zns7
n=—oo
we find that )
Tl (2
o(s) = — b)) (11.23)

cosh(%z) — cos(s)

We will need two basic facts about the Fourier transform of 27-periodic functions, see
e.g. Katznelson [71, Sec. I]. If we denote the Fourier transform by f(n) := 5= " _ f(s)e™™* V¥n,
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the convolution theorem states that for periodic functions f, g € L![—7, 7] that the con-
volution (f*g) =5 (T f(s —t)g(t)dt is a well defined periodic function in L'[—, 7]
and that (f *g)(n) = f(n)g(n),¥n . Moreover, for square integrable 277 periodic func-

tions in L?[—m, 7], the Parseval identity is >0 | fn)? = 5= S
Consequently, observing that ¢, = 0,n < —N,n > N the Parseval 1dentity and the
convolution formula imply that

lyl* = Z e

Inla?

= H( 4 Cn)f:_oouﬁ
= 1(s9)__ I

~ 0
= I(o*y),—_,l2
= H¢*yHi2[_n,ﬂ]

_ J ( J 6(s — t)y(t)dtfgﬁ(s — ) )t ) ds

= J G(t, " y(t)y*(t")dtdt',
that is,
Ioi? = [ Gt eyte)y” (¢ )arae
where
_ J 6(s — )6 (s — ')ds (11.24)
with ‘ )
o(s) = — b)) (11.25)

cosh(%z) — cos(s)
We can evaluate G using the identity (11.22) as follows: Since

G(t,t")

2

Jd)(s —t)p(s —t')ds
3 T cosn/(s — t’))ds,

J<1+226 "4 cosn s—t)><1+22 e

n/=1
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and, for each product, we have
fcos n(s —t)cosn'(s —t')ds
= f (cos nscosnt — sinnssin nt) (cos n'scosn't’ — sinn'ssin n/t’) ds
= Onw f (cos nscosnt — sinnssin nt) (cos nscosnt’ — sinnssin nt') ds.

Using the L2-orthogonality of the cosines and the sines and the identities Scos2 ns =T
and Ssin2 ns = m, we conclude that

. . / . . / / . . /
f (cos ns cosnt — sin ns sin nt) (cos nscosnt — sinnssinnt )ds = T (cos ntcosnt + sinntsinnt )

mcosn(t—t)

and therefore
JCOS n(s —t)cosn'(s — t')ds = 7oy, cosn(t —t'). (11.26)

Consequently, we obtain

Gt,t) = f(l—FQie”afcosn(s—t)( +2Z n'ep Cosn(s—t’)>ds

f(l +42 Yy cosn(s—t)cosn(s—t'))d

= 27T+47TZ sy cosn(t —t")

and therefore, using the identity (11.22) again, we conclude

sinh(2)

G(t,t') =2m ; .
cosh (%) — cos(t —t)
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