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ABSTRACT 

A method for modelling switching-converter 
power stages is developed, whose starting point 
is the unified state-space representation of the 
switched networks and whose end result is either a 
complete state-space description or its equivalent 
small-signal low<-f requency linear circuit model. 

A new canonical circuit model is proposed, 
whose fixed topology contains all the essential 
inputr-output and control properties of any dc-to-
dc switching converter, regardless of its detailed 
configuration, and by which different converters 
can be characterized in the form of a table con­
veniently stored in a computer data bank to pro­
vide a useful tool for computer aided design and 
optimization. The new canonical circuit model 
predicts that, in general;switching action intro­
duces both zeros and poles into the duty ratio to 
output transfer function in addition to those from 
the effective filter network. 

1. INTRODUCTION 

1.1 Brief Review of Existing Modelling Techniques 

In modelling of switching converters in 
general, and power stages in particular, two 
main approaches - one based on state-space 
modelling and the other using an averaging 
technique - have been developed extensively, 
but there has been little correlation between 
them. The first approach remains strictly in 
the domain of equation manipulations, and 
hence relies heavily on numerical methods and 
computerized implementations. Its primary 
advantage is in the unified description of all 
power stages regardless of the type (buck, boost, 
buck-boost or any other variation) through 
utilization of the exact state-space equations 
of the two switched models. On the other hand, 
the approach using an averaging technique is 
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based on equivalent circuit manipulations, 
resulting in a single equivalent linear circuit 
model of the power stage. This has the distinct 
advantage of providing the circuit designer with 
physical insight into the behaviour of the 
original switched circuit, and of allowing the 
powerful tools of linear circuit analysis and 
synthesis to be used to the fullest extent in 
design of regulators incorporating switching 
converters. 

1.2 Proposed New State-Space Averaging Approach 

The method proposed in this paper bridges the 
gap earlier considered to exist between the state-
space technique and the averaging technique of 
modelling power stages by introduction of state-
space averaged modelling. At the same time it 
offers the advantages of botli existing methods -
the general unified treatment of the state-space 
approach, as well as an equivalent linear circuit 
model as its final result. Furthermore, it makes 
certain generalizations possible, which otherwise 
could not be achieved. 

The proposed state-space averaging method, 
outlined in the Flowchart of Fig. 1, allows a 
unified treatment of a large variety of power 
stages currently used, since the averaging step 
in the state-space domain is very simple and clearly 
defined (compare blocks la and 2a). It merely 
consists of averaging the two exact state-space 
descriptions of the switched models over a single 
cycle T, where f g = 1/T is the switching frequency 
(block 2a). Hence there is no need for special 
"knowr-howM in massaging the two switched circuit 
models into topologically equivalent forms in order 
to apply circuit-oriented procedure directly, as 
required in [1] (block lc). Nevertheless, through 
a hybrid modelling technique (block 2c), the cir­
cuit structure of the averaged circuit model 
(block 2b) can be readily recognized from the 
averaged state-space model (block 2a). Hence 
all the benefits of the previous averaging 
technique are retained. Even though this out­
lined process might be preferred, one can proceed 
from blocks 2a and 2b in two parallel but com<-
pletely equivalent directions: one following path 
a strictly in terms of state-space equations, and 
the other along path b in terms of circuit models. 
In either case, a perturbation and linearization 
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F i g .  1 .  Flowchar t  o f  average d  modellin g  approache s 

proces s  require d  t o  includ e  th e  dut y  rati o 
modulatio n  effec t  proceed s  i n  a  ver y  straightfor ­
war d  an d  forma l  man n e r ,  thu s  emphasizin g  th e 
corner-ston e  characte r  o f  block s  2 a  an d  2b .  A t 
thi s  stag e  (bloc k  2 a  o r  2b )  th e  steady-stat e  (dc ) 
an d  lin e  t o  outpu t  transfe r  function s  ar e  alread y 
available ,  a s  indicate d  b y  block s  6 a  an d  6 b 
respectively ,  whil e  th e  dut y  rati o  t o  outpu t 
transfe r  functio n  i s  availabl e  a t  th e  final-stag e 
mode l  (4 a  o r  4b )  a s  indicate d  b y  block s  7 a  an d  7b . 
Th e  tw o  fina l  stag e  model s  (4 a  an d  4b )  the n  giv e 
th e  complet e  descriptio n  o f  th e  switchin g 
converte r  b y  inclusio n  o f  bot h  independen t  cons ­
t r u i s ,  th e  lin e  voltag e  variatio n  an d  th e  dut y 
rati o  modulation . 

Eve n  thoug h  th e  circui t  transformatio n  pat h 
b  migh t  b e  preferre d  fro m  th e  practica l  desig n 
standpoint ,  th e  state-spac e  averagin g  pat h  a  i s 
invaluabl e  i n  reachin g  som e  genera l  conclusion s 
abou t  th e  small-signa l  low-frequenc y  model s  o f 
an y  dc-to-d c  switchin g  converte r  (eve n  thos e 
ye t  t o  b e  inve n t e d ) .  Whe r e a s ,  fo r  pat h  b ,  on e 
ha s  t o  b e  presente d  wit h  th e  particula r  circui t 
i n  orde r  t o  procee d  wit h  modelling ,  fo r  pat h  a 
th e  fina l  state-spac e  average d  equation s  (bloc k 
4a )  giv e  th e  complet e  mode l  descriptio n  throug h 

genera l  matrice s  A- p  A2 an d  vector s  b-^ ,  ï>2> 
c,^- ,  an d  o f  th e  tw o  startin g  switche d  model s 
(Bloc k  l a ) .  Thi s  i s  als o  wh y  alon g  pat h  b  i n 
th e  Flowchar t  a  particula r  exampl e  o f  a  boos t 
powe r  stag e  wit h  parasiti c  effect s  wa s  chosen , 
whil e  alon g  pat h  a  genera l  equation s  hav e  bee n 
retained .  Specifically ,  fo r  th e  boos t  powe r 
stag e  b ^  =  \>2 s  b .  Thi s  exampl e  wil l  b e  late r 
pursue d  i n  detai l  alon g  bot h  paths . 

I n  additio n  th e  state-spac e  averagin g 
approac h  offer s  a  clea r  insigh t  int o  th e 
quantitativ e  natur e  o f  th e  basi c  averagin g 
approximation ,  whic h  become s  bette r  th e  furthe r 
th e  effectiv e  low-pas s  filte r  corne r  frequenc y 
f  i s  belo w  th e  switchin g  frequenc y  f g ,  tha t  i s , 
f  / f  «  1 .  Thi s  i s ,  however ,  show n  t o  b e c  s 
equivalen t  t o  th e  requiremen t  fo r  smal l  outpu t 
voltag e  ripple ,  an d  henc e  doe s  no t  pos e  an y 
seriou s  restrictio n  o r  limitatio n  o n  modellin g 
o f  practica l  dc-to-d c  converters . 

Finally ,  th e  state-spac e  averagin g  approac h 
serve s  a s  a  basi s  fo r  derivatio n  o f  a  usefu l 
genera l  circui t  mode l  tha t  describe s  th e  input -
outpu t  an d  contro l  propertie s  o f  an y  dc-to-d c 
converter . 
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1.3 New Canonical Circuit Model 

The culmination of any of these deriva­
tions along either path a or path b in the 
Flowchart of Fig. 1 is an equivalent circuit 
(block 5), valid for small-signal low-frequency 
variations superimposed upon a dc operating 
point, that represents the two transfer functions 
of interest for a switching converter. These 
are the line voltage to output and duty ratio 
to output transfer functions. 

The equivalent circuit is a canonical model 
that contains the essential properties of any 
dc-to-dc switching converter, regardless of the 
detailed configuration. As seen in block 5 for 
the general case, the model includes an ideal 
transformer that describes the basic dc-to-dc 
transformation ratio from line to output; a 
low-pass filter whose element values depend upon 
the dc duty ratio; and a voltage and a current 
generator proportional to the duty ratio modula­
tion input. 

The canonical model in block 5 of the Flow­
chart can be obtained following either path a or 
path b, namely from block 4a or 4b, as will be 
shown later. However, following the general 
description of the final averaged model in block 
4a, certain generalizations about the canonical 
model are made possible, which are otherwise not 
achievable. Namely, even though for all currently 
known switching dc-to-dc converters (such as the 
buck, boost, buck-boost, Venable [3], Weinberg [4] 
and a number of others) the frequency dependence 
appears only in the duty-ratio dependent voltage 
generator but not in the current generator, and then 
only as a first-order (single-zero) polynomial in 
complex frequency s; however, neither circumstance 
will necessarily occur in some converter yet to be 
conceived. In general, switching action introduces 
both zeros and poles into the duty ratio to output 
transfer function, in addition to the zeros and 
poles of the effective filter network which 
essentially constitute the line voltage to output 
transfer function. Moreover, in general, both 
duty-ratio dependent generators, voltage and cur­
rent, are frequency dependent (additional zeros 
and poles). That in the particular cases of the 
boost or buck-boost converters this dependence 
reduces to a first order polynomial results from 
the fact that the order of the system which is 
involved in the switching action is only two. 
Hence from the general result, the order of the 
polynomial is at most one, though it could reduce 
to a pure constant, as in the buck or the Venable 
converter [3]. 

The significance of the new circuit model is 
that any switching dc-to-dc converter can be 
reduced to this canonical fixed topology form, 
at least as far as its input-output and control 
properties are concerned, hence it is valuable for 
comparison of various performance characteristics 
of different dc-to-dc converters. For example, the 
effective filter networks could be compared as to 
their effectiveness throughout the range of dc 
duty cycle D (in general, the effective filter 
elements depend on duty ratio D ) , and the confi­

guration chosen which optimizes the size and 
weight. Also, comparison of the frequency depen­
dence of the two duty-ratio dependent generators 
provides insight into the question of stability 
once a regulator feedback loop is closed. 

1.4 Extension to Complete Regulator Treatment 

Finally, all the results obtained in modelling 
the converter or, more accurately, the network 
which effectively takes part in switching action, 
can easily be incorporated into more complicated 
systems containing dc-to-dc converters. For 
example, by modelling the modulator stage along the 
same lines, one can obtain a linear circuit model 
of a closed-loop switching regulator. Standard 
linear feedback theory can then be used for both 
analysis and synthesis, stability considerations, 
and proper design of feedback compensating net­
works for multiple loop as well as single-loop 
regulator configurations. 

2. STATE-SPACE AVERAGING 

In this section the state-space averaging 
method is developed first in general for any dc-
to-dc switching converter, and then demonstrated 
in detail for the particular case of the boost 
power stage in which parasitic effects (esr of 
the capacitor and series resistance of the in­
ductor) are included. General equations for 
both steady-state (dc) and dynamic performance 
(ac) are obtained, from which important transfer 
functions are derived and also applied to the 
special case of the boost power stage. 

2.1 Basic State-Space Averaged Model 

The basic dc-to-dc level conversion function 
of switching converters is achieved by r e p e t i t i v e 

switching between two linear networks consisting 
of ideally lossless storage elements, inductances 
and c a p a c i t a n c e s . In p r a c t i c e , this function may 
be obtained by use of transistors and diodes 
which O p e r a t e as synchronous switches. On the 
a s s u m p t i o n that the circuit o p e r a t e s in the s o -

called "continuous conduction" mode in which the 
instantaneous inductor current does not fall to 
zero at any point in the cycle, there are only 
two different "states" of the circuit. Each state, 
however, can be represented by a linear circuit 
model (as shown in block lb of Fig. 1) or by a 
corresponding set of state-space equations (block 
la). Even though any set of linearly independent 
variables can be chosen as the state variables, 
it is customary and convenient in electrical 
networks to adopt the inductor currents and capa­
citor voltages. The total number of storage 
elements thus determines the order of the system. 
Let us denote such a choice of a vector of state-
variables by x. 

It then follows that any switching dc-to-
dc converter operating in the continuous conduc­
tion mode can be described by the state-space 
equations for the two switched models: 
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(i) interval Td: 

χ = A-χ + b,v 1 l g 

(ii) interval Td f: 

χ = A 0x + b 0v 2 2 g 
( D 

yl 
where Td denotes the interval when the switch is 
in the on state and T(l-d) Ξ Td1 is the interval 
for which it is in the off state, as shown in 
Fig. 2. The static equations y-̂  - c^x and 
y 9 - c 2 ^ x a r e necessary in order to account for 
tne case when the output quantity does not 

switch 

on 

Td 

off 

ti>y>e 

Fig. 2. Definition of the two switched intervals 
Td and Td 1. 

coincide with any of the state variables, but 
is rather a certain linear combination of the 
state variables^ 

Our objective now is to replace the state-
space description of the two linear circuits 
emanating from the two successive phases of the 
switching cycle Τ by a single state-space des­
cription which represents approximately the beha­
viour of the circuit across the whole period T. 
We therefore propose the following simple avera­
ging step: take the average of both dynamic and 
static equations for the two switched intervals 
(1) , by summing the equations for interval Td 
multiplied by d and the equations for interval 
Tdf multiplied by d'. The following linear 
continuous system results : 

χ - dCA-x+b-v ) + d'(A0x+b0v ) 1 1 g 2 L g 

y = dy. + d'y9 = (dc- T+d fc 9
T)x 

(2) 

After rearranging (2) into the standard 
linear continuous system state-space description, 
we obtain the basic averaged state-space descrip­
tion (over a single period T): 

χ - (dA-+d?A0)x +(db-+dfb0)v 1 2 1 l g 

y = (dcZ+d'cĴx (3) 

This model is the basic averaged model which 
is the starting model for all other derivations 
(both state-space and circuit oriented). 

Note that in the above equations the duty 
ratio d is considered constant; it is not a time 
dependent variable (yet), and particularly not a 
switched discontinuous variable which changes 
between 0 and 1 as in [1] and [2], but is merely 
a fixed number for each cycle. This is evident 
from the model derivation in Appendix A. In 
particular, when d - 1 (switch constantly on) 
the averaged model (3) reduces to switched 
model (li) , and when d = 0 (switch off) it 
reduces to switched model (Iii), 

In essence, comparison between (3) and (1) 
shows that the system matrix of the averaged 
model is obtained by taking the average of two 
switched model matrices A- and its control is 
the average of two control vectors b-, and b 0 , and vectors b^ and , 
its output is the average of two outputs y^ and 
y 2 over a period T. 

The justification and the nature of the 
approximation in substitution for the two switched 
models of (1) by averaged model (3) is indicated 
in Appendix A and given in more detail in [6]. 
The basic approximation made, however, is that 
of approximation of the fundamental matrix 
eAt = ι + At + ·* * by its first-order linear 
term. This is, in turn,shown in Appendix Β to 
be the same approximation necessary to obtain the 
dc condition independent of the storage element 
values (L,C) and dependent on the dc duty ratio 
only. It also coincides with the requirement for 
low output voltage ripple, which is shown in 
Appendix C to be equivalent to f /f « 1, 
namely the effective filter corner frequency 
much lower than the switching frequency. 

The model represented by (3) is an averaged 
model over a single period T. If we now assume 
that the duty ratio d is constant from cycle to 
cycle, namely, d = D (steady state dc duty ratio), 
we get : 

Ax + bv 

where 
Τ 

y = c χ 

g (4) 

(5) 
A - DA X + D fA 2 

b - Db 1 + D*b2 

c T = D c ^ + D f c 2
T 

Since (4) is a linear system, superposition 
holds and it can be perturbed by introduction of 
line voltage variations ν as ν • V + ν , where 
V is the dc line input voltage? cauling § 
corresponding perturbation in the state vector 
χ • X + x, where again X is the dc value of the 
state vector and χ the superimposed ac pertur­
bation. Similarly, y = Y + y, and 

χ = ΑΧ + bV + Αχ + bv g g 
Τ Τ Λ 

Y + y = c X + c x 
(6) 
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Separation of the steady-state (dc) part 
from the dynamic (ac) part then results in the 
steady state (dc) model 

AX + bV = 0; g 
Τ 
c Χ Φ· Υ -c TA "4>ν (7) 

and the dynamic (ac) model 

χ = Ax + bv 

y - c χ 
g (8) 

It is interesting to note that in (7) the 
steady state (dc) vector X will in general only 
depend on the dc duty ratio D and resistances 
in the original model, but not on the storage 
element values (Lfs and C !s). This is so 
because X is the solution of the linear system 
of equations 

AX + bV 
g 

(9) 

in which L fs and C!s are proportionality con­
stants. This is in complete agreement with the 
first-order approximation of the exact dc 
conditions shown in Appendix B, which coincides 
with expression (7). 

From the dynamic (ac) model, the line 
voltage to state-vector transfer functions can 
be easily derived as : 

4 ^ = (el-ATH 
v g(s) 

y(s) 
v g(s) 

(10) 

Τ -1 
c (si-Α) b 

Hence at this stage both steady-state 
(dc) and line transfer functions are available, 
as shown by block 6a in the Flowchart of Fig. 1. 
We now undertake to include the duty ratio 
modulation effect into the basic averaged 
model (3). 

Υ + y — c Χ + c χ + (c x -c 2
A)Xd + (c± -c 2 )xd 

dc ac 
term term 

ac term nonlinear term 

The perturbed state-space description is 
nonlinear owing to the presence of the product 
of the two time dependent quantities χ and d. 

2.3 Linearization and Final State-Space Averaged 
Model 

Let us now make the small-signal approxima­
tion, namely that departures from the steady state 
values are negligible compared to the steady state 
values themselves: 

ν 
_£ 
V 
g 

« 1, (12) 

Then, using approximations (12) we neglect all 
nonlinear terms such as the second-order terms in 
(11) and obtain once again a linear system, but 
including duty-ratio modulation d. After sepa­
rating steady-state (dc) and dynamic (ac) parts 
of this linearized system we arrive at the follow­
ing results for the final state-space averaged 
model. 

Steady-state (dc) model: 

Y X = -A 1bV 
g 

c TX = - c V ^ b V (13) g 

Dynamic (ac small-signal) model: 

χ = Ax + bv + [(A-AJX + (b-b 9)V J d g 1 2 1 l g 

Τ , Τ Τ " y = c χ + (c 1 -c 2 )Xd 

(14) 

In these results, A, b and c are given as before 
by (5). 

Equations (13) and (14) represent the small-
signal low-frequency model of any two-state 
switching dc-to-dc converter working in the con­
tinuous conduction mode. 

2.2 Perturbation 

Suppose now that the duty ratio changes from 
cycle to cycle, that is, d(t) = D + â where D 
is the steady-state (dc) duty ratio as before and 
d is a superimposed (ac) variation. With the 
corresponding perturbation definition χ - X + χ, 
y = Y + y and v„ = ν σ + íó the basic model (3) 
b O Ο 6 

ecomes : 

k = AX+bV 4- Ax+bv + [(A -A9)X + (b..-b9)V ]d 
o g LZ. . I Ζ g 

de term line duty ratio variation 
variation 

+ [(A^A^x + (b 1-b 2)v g]d (11) 

nonlinear second-order term 

It is important to note that by neglect of 
the nonlinear term in (11) the source of harmonics 
is effectively removed. Therefore, the linear 
description (14) is actually a linearized 
describing function result that is the limit of 
the describing^function as the amplitude of the 
input signals ν and/or d becomes vanishingly 
small. The significance of this is that the 
theoretical frequency response obtained from (14) 
for line to output and duty ratio to output 
transfer functions can be compared with experi­
mental describing function measurements as 
explained in [1], [2], or [8] in which small-
signal assumption (12) is preserved. Very good 
agreement up to close to half the switching 
frequency has been demonstrated repeatedly 
([1], [2], [3], [7]). 
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2. 4  Example :  Boos t  Powe r  Stag e  wit h  Parasitic s 

W e  no w  illustrat e  th e  metho d  fo r  th e  boos t 
powe r  stag e  show n  i n  Fig .  3 . 

Re 
- O F -

_ J 
Td Td' 

Fig .  3 .  Exampl e  fo r  th e  s t a t e — s p a c e  average d 
modelling :  boos t  powe r  stag e  wit h  para ­
sitic s  included . 

W ï h l ι w, " r ^ v ^ s m ^ 
R, L <• \ I 3 R' L * I 

Rc 

Φ*; 

in which I is the dc inductor current, V is 
the dc capacitor voltage, and Y is the dc output 
voltage. 
Dynamic (ac small signal) model: 

(l-D)R 

d_ 
dt 

R £+(l-D) ( R J R ) 

(l-y)R 
(R+R )C c 

L(R+R ) c 

< R + R c ) C j 

1 R (D TR+R ) c 
L ν + L R+R 

c g 
0 

R 
0 (R+R )C 

V d 
_g_ 
R' 

(18) 

[(l-D ) ( R c | | « ^ ] 
R R v — d g R' 

in which R' = (1-D) 2R + R 0 + D(l-D) (R ||R) . 
x, c 

We now look more closely at the dc voltage 
transformation ratio in (17): 

Fig. 4. Two switched circuit models of the 
circuit in Fig. 3 with assumption of ideal 
switches. All elements in the final state-
space averaged modej (13) and (14) are 
obtained: A-jb-^c from a) for interval 
Td, and A^b^cjT from b) for interval Td\ 

With assumption of ideal switches, the two 
switched models are as shown in Fig. 4. For choice 
of stδte-space vector x T = (i ν), the state space 
equations become: 

(i) interval Td: 
χ = A-x + bv 

1 g 

(ii) interval Td': 
χ = Ά_χ + bv 2 g 

where 

A l = 

Τ 
cl x 

-* 0 

(15) 
y 2 = c 2 χ 

(R+R )CJ c 

y - R c l l R 
L 
R 

L (R+R C )C 

L(R+Rc) 

(*+Rc)C, 

R+R 

(16) 

Note that (15) is the special case of (1) in 
which b1 = b 2 - b = [1/L 0 ] T . 

Using (16) and (5) in the general result 
(13) and (14), we obtain the following final 
stδte-space averaged model. 
Steady-state (dc) model: 

LvJ Rf l̂ -̂ J' 
V (l-D)R 

Y - - S t- (17) 
R' 

(19) 
• V o 1-D (1-D)ZR + R p + D(1-D)(R ||R) 

g g v _ ^ _ y ν 9L J 
ideal correction factor 

dc gain 

This shows that the ideal dc voltage gain is 1/D? 

when all parasitics are zero (R« = 0, R = 0 ) and 
that in their presence it is slightly reduced by 
a correction factor less than 1. Also we observe 
that nonzero esr of the capacitance (R 4 0) (with 
consequent discontinuity of the output voltage) 
affects the dc gain and appears effectively as a 
resistance R-ĵ  « DD ?(R ||̂ ) in series with the 
inductor resistance R^. This effect due to 
discontinuity of output voltage was not included 
in [2], but was correctly accounted for in [1]. 

From the dynamic model (18) one can find the 
duty ratio to output and line voltage to output 
transfer functions, which agree exactly with those 
obtained in [1] by following a different method of 
averaged model derivation based on the equivalence 
of circuit topologies of two switched networks. 

The fundamental result of this section is the 
development of the general state-space averaged 
model represented by (13) and (14) , which can be 
easily used to find the small-signal low-frequency 
model of any switching dc-to-dc converter. This 
was demonstrated for a boost power stage with 
parasitics resulting in the averaged model (17) 
and (18). It is important to emphasize that, 
unlike the transfer function description, the 
state-space description (13) and (L4) gives the 
complete system behaviour. This is very useful 
in implementing two-loop and multi-loop feedback 
when two or more states are used^in a feedback 
path to modulate the duty ratio d. For example, 
both output voltage and inductor current may 
be returned in a feedback loop. 
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3 .  HYBRI D  MODELLIN G 

I n  thi s  sectio n  i t  wil l  b e  show n  tha t  fo r  an y 
specifi c  converte r  a  usefu l  circui t  realizatio n 
o f  th e  basi c  average d  mode l  give n  b y  (3 )  ca n 
alway s  b e  found .  The n ,  i n  th e  followin g  section , 
th e  perturbatio n  an d  linearizatio n  step s  wil l  b e 
carrie d  ou t  o n  th e  circui t  mode l  finall y  t o 
arriv e  a t  th e  circui t  mode l  equivalen t  o f  (13 )  an d 
( 1 4 ) . 

Th e  circui t  realizatio n  wil l  b e  demonstrate d 
fo r  th e  sam e  boos t  powe r  stag e  example,fo r  whic h 
th e  basi c  state-spac e  average d  mode l  (3 )  becomes : 

~ d i ~ 
d t 

d v -dt-

\  + d ' ( R c I Ï R ) d ' R 

L ( R + R c ) 

d f R 
(R+ R  ) C (R+ R  ) C 

ρ — " I " 
i — 

L 
+ 

V 0 
_ «. -

y = |d'(Rc|| R) 

(20) 

Re dd'(RJR) 

Φ di +r~ 

- f 

Fig. 5. Circuit realization of the basic state-
space averaged model (20) through hybrid 
modelling. 

Re L dd'fRM 

He 

J' : 1 

Fig. 6. Basic circuit averaged model for the 
boost circuit example in Fig. 3. Both dc-
to-dc conversion and line variation are 
modelled when d(t)sD. 

In order to "connect" the circuit, we 
express the capacitor voltage ν in terms of the 
desired output quantity y as: 

R+R 

or, in matrix form 

(l-d)R i c 

0 

R+R 
R J 

(21) 

Substitution of (21) into (20) gives 

L ^ L dt 

C ^ dt 

-(R +dd'(R R ) 
%
 ' £ ' 

additionally 
resistance] 

-d f 

i 
ideal 

transformer 

1 
R 

(22) 

From (22) one can easily reconstruct the circuit 
representation shown in Fig. 5. 

As before, we find that the circuit model in 
Fig. 6 reduces for d s 1 to switched model in Fig. 
4a, and for d = 0 to switched model in Fig. 4b. 
In both cases the additional resistance R^ = 
dd'iR^R) disappears, as it should. 

If the duty ratio is constant so d - D, the 
dc regime can be found easily by considering 
inductance L to be short and capacitance C to be 
O p e n for dc, and the transformer to have a D f:l 
ratio. Hence the dc voltage gain (19) can be 
directly seen from Fig. 6. Similarly, all line 
transfer functions corresponding to (10) can be 
easily found from Fig. 6. 

It is interesting now to compare this ideal 
d':l transformer with the usual ac transformer. 
While in the latter the turns ratio is fixed, the 
one employed in our model has a dynamic turns ratio 
d T:l which changes when the duty ratio is a func­
tion of time, d(t). It is through this ideal 
transformer that the actual controlling function is 
achieved when the feedback loop is closed. In 
addition the ideal transformer has a dc trans­
formation ratio d*:l, while a real transformer 
works for ac signals only. Nevertheless, the 
concept of the ideal transformer in Fig. 6 with 
such properties is a very useful one, since after 
all the switching converter has the overall 
property of a dc-to-dc transformer whose turns 
ratio can be dynamically adjusted by duty ratio 
modulation to achieve the controlling function. 
We will, however, see in the next section how 
this can be more explicitly modelled in terms of 
duty-ratio dependent generators only. 

The basic model (22) is valid for the dc 
regime, and the two dependent generators can be 
modeled as an ideal d f:l transformer whose range 
extends down to dc, as shown in Fig. 6. 

Following the procedure outlined in this 
section one can easily obtain the basic averaged 
circuit models of three common converter power 
stages, as shown in the summary of Fig. 7. 
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a) buck power s/o^e : 

Re L 

averaged model's; 

6) êoost power s/oye : 

Re L 

:) ùucr- boost pou/sr : 

F i g . 7. Summary of b a s i c c i r c u i t averaged models 
f o r three common power s t a g e s : buck , 
b o o s t , and b u c k - b o o s t . 

The two swi tched c i r c u i t s t a t e - s p a c e models 
f o r the power s t a g e s i n F i g . 7 are such t h a t the 
g e n e r a l e q u a t i o n s (1) reduce to the s p e c i a l c a s e s 
Αι β A 2

 s A, b i 4 b£ - 0 (zero v e c t o r ) f o r the 
buck power s t a g e , and k\ 4 A 2 , b^ = b 2

 s b f o r the 
b o o s t power s t a g e , whereas f o r tne b u c k - b o o s t 
power s t a g e Α, f A 2 and b-̂  ö b£ = 0 so t h a t the 
g e n e r a l c a s e I s r e t a i n e d . 

C IRCUIT AVERAGING 

s e c t i o n the a l t e r n a t i v e pa th b i n the F lowchar t 
of F i g . 1 w i l l be f o l l o w e d , and e q u i v a l e n c e 
w i t h the p r e v i o u s l y developed pa th a f i r m l y 
e s t a b l i s h e d . The f i n a l c i r c u i t averaged model 
f o r the same example o f the b o o s t power s t a g e 
w i l l be a r r i v e d a t , which i s e q u i v a l e n t to i t s 
c o r r e s p o n d i n g s t a t e - s p a c e d e s c r i p t i o n g i v e n by 
(17) and (18) . 

The averaged c i r c u i t models shown i n F i g . 
7 cou ld have been ob ta ined a s i n [2] by d i r e c t l y 
a v e r a g i n g the c o r r e s p o n d i n g components of the two 
swi tched m o d e l s . However, even f o r some s i m p l e 
c a s e s such a s the b u c k - b o o s t or tapped i n d u c t o r 
b o o s t [1] t h i s p r e s e n t s some d i f f i c u l t y owing to 
the requirement of h a v i n g two swi tched c i r c u i t 
models t o p o l o g i c a l l y e q u i v a l e n t , w h i l e there i s 
no such requirement i n the o u t l i n e d p r o c e d u r e . 

I n t h i s s e c t i o n we proceed w i t h the p e r t u r b a ­
t i o n and l i n e a r i z a t i o n s t e p s a p p l i e d to the c i r ­
c u i t model , c o n t i n u i n g w i t h the b o o s t power s t a g e 
a s an example i n order to i n c l u d e e x p l i c i t l y the 
duty r a t i o modu la t ion e f f e c t . 

4 . 1 P e r t u r b a t i o n 

I f the averaged model i n F i g . 7b i s per tu rbed 
a c c o r d i n g to v R

 β V e + v \ , i = I + ξ , d « D f β , 
d f = D'-a, ν « V+v\ y Μ Y+y 
i n F i g . 8 r e s u l t s . 

Y+y the n o n l i n e a r model 

l Cn'JJ f d)(L'-d)(HcllR)(Iu*) 
? 

' i r i 

>Rc 

F i g . 8 . P e r t u r b a t i o n o f the b a s i c averaged c i r c u i t 
model i n F i g . 6 i n c l u d e s the duty r a t i o 
m o d u l a t i o n e f f e c t ξ , but r e s u l t s i n t h i s 
n o n l i n e a r c i r c u i t model . 

4.2 L i n e a r i z a t i o n 

Under the s m a l l - s i g n a l a p p r o x i m a t i o n ( 1 2 ) , 
the f o l l o w i n g l i n e a r a p p r o x i m a t i o n s are o b t a i n e d : 

e„% DD»(R U R ) ( I + i ) + d ( D ' - D ) ( R | | R ) E c ci 

( D ' - d ) ( Y + y ) D»(Y+Η) - dY 

( D V d ) ( I + i ) % D ' d + i ) d l 

and the f i n a l averaged c i r c u i t model of F i g . 9 
r e s u l t s . I n t h i s c i r c u i t model we have f i n a l l y 
o b t a i n e d the c o n t r o l l i n g f u n c t i o n s e p a r a t e d i n 
terms of duty r a t i o β dependent g e n e r a t o r s e, 
and j t j w h i l e the t rans fo rmer t u r n s r a t i o i s 
dependent on the dc duty r a t i o D o n l y . The 
c i r c u i t model o b t a i n e d i n F i g . 9 i s e q u i v a l e n t to 
the s t a t e - s p a c e d e s c r i p t i o n g i v e n by (17) and (18 ) , 

<Zf[V+(D-a(Rj/?)l]â 

F i g . 9 . Under s m a l l - s i g n a l a s s u m p t i o n ( 1 2 ) , the 
model i n F i g . 8 i s l i n e a r i z e d and t h i s 
f i n a l averaged c i r c u i t model o f the b o o s t 
s t a g e i n F i g . 3 i s o b t a i n e d . 

5 . THE CANONICAL C IRCUIT MODEL 

Even though the g e n e r a l f i n a l s t a t e - s p a c e 
averaged model i n (13) and (14) g i v e s the complete 
d e s c r i p t i o n o f the s y s t e m b e h a v i o u r , one might s t i l l 
w i s h to d e r i v e a c i r c u i t model d e s c r i b i n g i t s 
i n p u t - o u t p u t and c o n t r o l p r o p e r t i e s a s i l l u s t r a t e d 
i n F i g . 10 . 
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Ο) 

input 

state - space 
overayed model 

vi ο 
A<, Az, è.Ji 

ft-0*5 

control 

à) 

output 

circuit model 
on 

an input-output 
oasis 

1 ^ 
control 

> 
output 

Fig .  1 0 .  Definitio n  o f  th e  modellin g  objective : 
circui t  average d  mod e l  describin g  input -
outpu t  an d  contro l  properties . 

I n  goin g  fro m  th e  mode l  o f  Fig .  10 a  t o  tha t  o f 
Fig .  10 b  som e  informatio n  abou t  th e  interna l 
behaviou r  o f  som e  o f  th e  state s  wil l  certainl y  b e 
lost>but ,  o n  th e  othe r  han d ,  importan t  advantage s 
wil l  b e  gaine d  a s  wer e  briefl y  outline d  i n  th e 
Introduction ,  an d  a s  thi s  sectio n  wil l  illustrate . 

an d  als o  a  "modulation "  resistanc e  tha t  arise s 
fro m  a  modulatio n  o f  th e  switchin g  transisto r 
storag e  tim e  [ 1 ] . 

5. 1  Derivatio n  o f  th e  Canonica l  Mode l  throug h 
State-Spac e 

Fro m  th e  genera l  state-spac e  average d  mode l  (13 ) 
an d  ( 1 4 ) ,  w e  obtai n  directl y  usin g  th e  Laplac e 
transform : 

x(s) = ( s I - A ) " 1 v  ( s ) + ( s I ^ A ) " 1 [ ( A 1 - A 9 ) X + ( b 1 - b 9 ) V o ] d ( s ) 
g 1 1 1 Ć g 

ß ( 8)=ο Τχ ( 8)+( ε ι
Τ-ο 2

Τ)Χα( 8) 
(23) 

We propose the following fixed topology 
circuit model, shown in Fig. 11, as a realization 

control function 
via ct 

Sosic dc - to - dc 
transformation 

effective low - poss 
fitter network. 

Φ 
ZtifiÛ 

Re U 
- w — 

Fig .  1 1 .  Canonica l  circui t  mode l  realizatio n  o f  th e 
"blac k  bo x "  i n  Fig .  10b ,  modellin g  th e 
thre e  essentia l  function s  o f  an y  dc-to-d c 
converter :  control ,  basi c  d c  conversion , 
an d  low-pas s  filtering . 

o f  th e  "blac k  bo x "  i n  Fig .  10b .  W e  cal l  thi s  mode l 
th e  canonica l  circui t  mo d e l ,  becaus e  an y  switchin g 
converte r  input-outpu t  mo d e l ,  regardles s  o f  it s 
detaile d  configuration ,  coul d  b e  represente d  i n 
thi s  form .  Differen t  converter s  ar e  represente d 
simpl y  b y  a n  appropriat e  se t  o f  formula s  fo r  th e 
fou r  element s  e(s )  ,  j ( s ) ,  μ, H e(s) in the general 
equivalent circuit. The polarity of the ideal 
μ:1 transformer is determined by whether or not 
the power stage is polarity Inverting. Its turns 
ratio μ is dependent on the dc duty ratio D, and 
since for modelling purposes the transformer is 
assumed to operate down to dc, it provides the 
basic dc-to-dc level conversion. The single-sec­
tion low-pass L eC filter is shown in Fig. 11 
only for illustration purposes, because the actual 
number and configuration of the L's and C fs in the 
effective filter transfer function realization 
depends on the number of storage elements in the 
original converter. 

The resistance R is included in the model 
of Fig. 11 to represent the damping properties 
of the effective low-pass filter. It is an 
"effective" resistance that accounts for various 
series ohmic resistances in the actual circuit 
(such as Rί in the boost circuit example), the 
additional "switching" resistances due to dis­
continuity of the output voltage (such as 
Rl β DDT(R û R )  i n  th e  boos t  circui t  e x a m p l e ) , 

N o w ,  fro m  th e  complet e  se t  o f  transfe r  function s 
w e  singl e  ou t  thos e  whic h  describ e  th e  converte r 
input-outpu t  properties ,  namel y 

y ( s )  =  G v g  V g ( s )  +  G v d  d ( s ) 

i(s )  =  G i g  v g ( s )  +  G i d  d(s ) 
(24 ) 

i n  whic h  th e  G f s  ar e  know n  explicitl y  i n  term s  o f 
th e  matri x  an d  vecto r  element s  i n  (2 3 ) . 

Equation s  (24 )  ar e  analogou s  t o  th e  two-por t 
networ k  representatio n  o f  th e  termina l  propertie s 
o f  th e  networ k  (outpu t  voltag e  y(s )  an d  inpu t 
curren t  i ( s ) ) .  Th e  subscript s  designat e  th e 
correspondin g  transfe r  functions .  Fo r  exampl e  Λ 

G is the source voltage ν to output voltage y 
transfer function, Gi(j is tfie duty ratio β to 
input current i(s) transfer function, and so on. 

For the proposed canonical circuit model in 
Fig. 11, we directly get: 

y(s) = (vg+ed) i H e(s) 

i(s) = j β + (ed+v ) 
(25) 

g V i 2 Z e i < s > 

or, after rearrangement into the form of (24): 

y(s) - ̂  H e(s) v g(s) + e i He(s)d(s) 

i(s) 
P 2 Z e l ( s ) g 

ν (s) + 
L y z e i (s)J 

(26) 
d(s) 

Direct comparison of (24) and (36) provides the 
solutions for H e(s) , e(s) , and j(s) in terms of 
the known transfer functions G , G ,, G. and 
r vg' vd ig G l d as: 

e(s) ^ K s T » J<S> = G i d ( 8 ) - e ( S ) G i g ( 8 ) 

vg (27) 

H (s) « \iG (s) e vg 
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Note that in (27) the parameter l/μ represents 
the ideal dc voltage gain when all the parasitics 
are zero. For the previous boost power stage 
example, from (19) we get μ s 1-D and the correc­
tion factor in (19) is then associated with the 
effective filter network H (s). However, y 
could be found from 

Υ Τ — L. 1 

— = -c A D s — X (correction factor) (28) 

g μ 

by setting all parasitics to zero and reducing 
the correction factor to 1. 

in which the output voltage y coincides with the 
state-variable capacitance voltage v. 

From (28) and (29) one obtains μ = DVD . 
With use of (29) to derive transfer functions, and 
upon substitution into (27) , there results 

e(s) 

H (s) 

~2 ß 1 - * - ^ ) , j(s) 

1 + s/RC + s L C 

-V 

(1-D)2R 

(30) 
1-D 
D 

The physical significance of the ideal dc 
gain μ is that it arises as a consequence of the 
switching action, so it cannot be associated with 
the effective filter network which at dc has a 
gain (actually attenuation) equal to the cor­
rection factor. 

The procedure for finding the four elements 
in the canonical model of Fig. 11 is now briefly 
reviewed. First, from (28) the basic dc-to-dc 
conversion factor μ is found as a function of dc 
duty ratio D. Next, from the set of all transfer 
functions (23) only those defined by (24) are 
actually calculated. Then, by use of these 
four transfer functions G ,, G , G.,, G. in 

V Q νκ id is 
(27) the frequency dependent generators ets) 
and j(s) as well as the low-pass filter transfer 
function H (s) are obtained, 

e 

The two generators could be further put 
into the form 

e(s) = Ef^s) 

j(s) - Jf2(s) 

where f^(0) β f2(0) β 1> such that the parameters 
Ε and J could be identified as dc gains of the 
frequency dependent functions e(s) and j(s). 

Finally, a general synthesis procedure [10] 
for realization of L,C transfer functions 
terminated in a single load R could be used to 
obtain a low-pass ladder-network circuit 
realization of the effective low-pass network 
H e(s). Though for the second-order example of 
H e(s) this step is trivial and could be done by 
inspection, for higher-order transfer functions 
the orderly procedure of the synthesis [10] is 
almost mandatory. 

5.2 Example: Ideal Buck-boost Power Stage 

For the buck-boost circuit shown in Fig. 7c 
with R£ - 0, R c « 0, the final state-space 
averaged model is: 

0 - f-

1 
RG 

(29) 

in which V is the dc output voltage. 

The effective filter transfer function is 
easily seen as a low-pass LC filter with L • 
L/D f 2 and with load R, The two generatorsein the 
canonical model of Fig, 11 are identified by 

-V , N _ DL 
-y , f-(s) = 1 - s 
D D' 2R 

(31) 

(l-D)V 
f2(s) Ξ 1 

We now derive the same model but this time 
using the equivalent circuit transformations and 
path b in the Flowchart of Fig. 1. 

After perturbation and linearization of the 
circuit averaged model in Fig. 7c (with R*-0, 
Fc-0) the series of equivalent circuits of Fig. 12 
is obtained. 

pig. 12. Equivalent circuit transformations of the 
final circuit averaged model (a), leading 
to its canonical circuit realization (c) 
demonstrated on the buck-boost example of 
Fig. 7c (with R/-0 , R -0 ). 
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The objective of the transformations is to 
reduce the original four duty-ratio dependent gen­
erators in Fig. 12a to just two generators (volt­
age and current) in Fig. 12c which are at the in­
put port of the model. As these circuit trans­
formations unfold, one sees how the frequency de­
pendence in the generators arises naturally, as 
in Fig. 12b. Also, by transfer of the two gen­
erators in Fig. 12b from the secondary to the 
primary of the 1:D transformer, and the inductance 
L to the secondary of the D*:l transformer, the 
cascade of two ideal transformers is reduced to 
the single transformer with equivalent turns 
ratio D f:D. At the same time the effective filter 
network L e, C, R is generated. 

Expressions for the elements in the canonical 
equivalent circuit can be found in a similar way 
for any converter configuration. Results for the 
three familiar converters, the buck, boost, and 
buck-boost power stages are summarized in Table I. 

Ε D it 

buck 1 
D 

V 
Όχ ι V 

R 
1 L 

ιoost V 1 
L 

buck-
Soost ř -V 

Ό1 

- V 
(/-Dj'R 

1 L 

Table I Definition of the elements in the 
canonical circuit model of Fig. 11 
for the three common power stages 
of Fig. 7. 

It may be noted in Table I that, for the buck-
boost power stage, parameters Ε and J have negative 
signs, namely Ε = -V/D2 and J - -V/(D* 2R). 
However, as seen from the polarity of the ideal 
D f:D transformer in Fig. 12c this stage is an 
inverting one. Hence, for positive input dc 
voltage V g, the output dc voltage V is negative 
(V < 0) since V/V g « -D/D'. Therefore Ε > 0, 
J > 0 and consequently the polarity of the voltage 
and current duty-ratio dependent generators is 
not changed but is as shown in Fig. 12c. More^ 
over, this is true in general: regardless of 
any inversion property of the power stage, the 
polarity of two generators stays the same as 
in Fig. 11. 

5.3 Significance of the Canonical Circuit Model 
and Related Generalizations 

The canonical circuit model of Fig. 11 in­
corporates all three basic properties of a dc-to-
dc converter: the dc-to-dc conversion function 
(represented by the ideal μ:1 transformer); control 
(via duty ratio β dependent generators); and low-
pass filtering (represented by the effective low-
pass filter network H e(s)). Note also that the 
current generator j(s) β in the canonical circuit 
model, eyen though superfluous when the source 
voltage ν (s) is ideal, is necessary to reflect 
the influence of a nonideal source generator (with 
some internal impedance) or of an input filter [7] 

upon the behaviour of the converter. Its presence 
enables one easily to include the linearized cir­
cuit model of a switching converter power stage in 
other linear circuits, as the next section will 
illustrate. 

Another significant feature of the canon­
ical circuit model is that any switching dc-to-dc 
converter can be reduced by use of (23), (24), 
(27) and (28) to this fixed topology form, at 
least as far as its input-output and control prop­
erties are concerned. Hence the possibility 
arises for use of this model to compare in an easy 
and unique way various performance characteristics 
of different converters. Some examples of such 
comparisons are given below. 

1. The filter networks can be compared with 
respect to their effectiveness throughout the 
dynamic duty cycle D range, because in general 
the effective filter elements depend on the 
steady state duty ratio D. Thus, one has the 
opportunity to choose the configuration and to 
optimize the size and weight. 

2. Basic dc-to-dc conversion factors y^(D) and 
U2(D) can be compared as to their effective 
range. For some converters, traversal of the 
range of duty ratio D from 0 to 1 generates 
any conversion ratio (as in the ideal buck-
boost converter), while in others the conver­
sion ratio might be restricted (as in the 
Weinberg converter [4],for which i<U<l). 

2 
3. In the control section of the canonical 
model one can compare the frequency dependences 
of the generators e(s) and j(s) for different 
converters and select the configuration that 
best facilitates stabilization of a feedback 
regulator. For example, in the buck-boost con­
verter e(s) is a polynomial, containing 
actually a real zero in the right half-plane, 
which undoubtedly causes some stability 
problems and need for proper compensation. 

4. Finally, the canonical model affords a 
very convenient means to store and file infor­
mation on various dc-to-dc converters in a com­
puter memory in a form comparable to Table I. 
Then, thanks to the fixed topology of the 
canonical circuit model, a single computer pro­
gram can be used to calculate and plot various 
quantities as functions of frequency (input and 
output impedance, audio susceptibility, duty 
ratio to output transfer response, and so on). 
Also, various input filters and/or additional 
output filter networks can easily be added if 
desired. 

We now discuss an important issue which has 
been intentionally skipped so far. From (27) it 
is concluded that in general the duty ratio 
dependent generators e(s) and j(s) are rational 
functions of complex frequency s. Hence, in 
general both some new zeros and poles are intro­
duced into the duty ratio to output transfer 
function owing to the switching action, in 
addition to the poles and zeros of the effective 
filter network (or line to output transfer fun­
ction) . However, in special cases, as in all 
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those shown in Table I, the frequency dependence 
might reduce simply to polynomials, and even fur­
ther it might show up only in the voltage 
dependent generators (as in the boost, or buck-
boost) and reduce to a constant (f«(s) Ξ 1) 
for the current generator. Nevertheless, this 
does not prevent us from modifying any of these 
circuits in a way that would exhibit the general 
result — introduction of both additional zeros as 
well as poles. 

Let us now illustrate this general result on 
a simple modification of the familiar boost cir­
cuit, with a resonant L^C-j^ circuit in series with 
the input inductance L, as shown in Fig. 13. 

Fig. 13. Modified boost circuit as an illustration 
of general frequency behaviour of the 
generators in the canonical circuit model 
of Fig. 11. 

By introduction of the canonical circuit 
model for the boost power stage (for the circuit 
to the right of cross section AA 1) and use of data 
from Table I, the equivalent averaged circuit 
model of Fig. 14a is obtained. Then, by applica^ 
tion of the equivalent circuit transformation as 
outlined previously, the averaged model in the 
canonical circuit form is obtained in Fig. 14b. 
As can be seen from Fig. 14b, the voltage 
generator has .a double pole at the resonant fre­
quency 0 > r = l//Lj[Cj[ of the parallel L-ĵ Ĉ  net­
work. However, the effective filter transfer 
function has a double zero (null in magnitude) at 
precisely the same location such that the two 

- c < 

Fig. 14. Equivalent circuit transformation leading 
to the canonical circuit model (b) of the 
circuit in Fig. 13. 

pairs effectively cancel. Hence, the resonant 
null in the magnitude response, while present in 
the line voltage to output transfer function, is 
not seen in the duty ratio-to output transfer func­
tion. Therefore, the positive effect of rejection 
of certain input frequencies around the resonant 
frequency ω is not accompanied by a detrimental 
effect on tSe loop gain, which will not con­
tain a null in the magnitude response. 

This example demonstrates yet another impor­
tant aspect of modelling with use of the averaging 
technique. Instead of applying it directly to the 
whole circuit in Fig. 13, we have instead imple­
mented it only with respect to the storage element 
network which effectively takes part in the switch­
ing action, namely L, C, and R. Upon substitution 
of the switched part of the network by the averaged 
circuit model, all other linear circuits of the 
complete model are retained as they appear in the 
original circuit (such as L̂ ,Cj[ in Fig. 14a). 
Again, the current generator in Fig. 14a is the 
one which reflects the effect of the input resonant 
circuit. 

In the next section, the same property is 
clearly displayed for a closed-loop regulator-
converter with or without the input filter. 

6. SWITCHING MODE REGULATOR MODELLING 

This section demonstrates the ease with 
which the different converter circuit models 
developed in previous sections can be incorporated 
into more complicated systems such as a switching-
mode regulator. In addition, a brief discussion 
of modelling of modulator stages in general is 
included, and a complete general switching-mode 
regulator circuit model is given. 

A general representation of a switching-mode 
regulator is shown in Fig. 15. For concreteness, 
the switching-mode converter is represented by a 
buck-boost power stage, and the input and possible 
additional output filter are represented by a 

- unreyutoted input regulated output 

η odu la tor 

I dc reference 

Fig. 15. General switching-mode regulator with 
input and output filters. The block dia­
gram is general, and single-section LC 
filters and a buck-boost converter are 
shown as typical realizations. 
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single-section low-pass LC configuration, but the 

discussion applies to any converter and any 

filter configuration. 

The main difficulty in analysing the switch­
ing mode regulator lies in the modelling of its non­
linear part, the switching-mode converter. How­
ever, we have succeeded in previous sections in 
°btaining the small-signal low-frequency circuit 
model of any "two-state 1 1 switching dc-to-dc con­
verter, operating in the continuous conduction 
mode, in the canonical circuit form. The output 
filter is shown separately, to emphasize the fact 
that in averaged modelling of the switching-mode 
converter only the storage elements which are 
actually involved in the switching action need 
be taken into account, thus minimizing the effort in 
its modelling. 

The next step in development of the regula­
tor equivalent circuit is to obtain a model for 
the modulator. This is easily done by writing an 
expression for the essential function of the modu­
lator, which is to convert an (analog) control 
voltage V c to the switch duty ratio D. This ex­
pression can be written D • V /V m in which, by 
definition, V m is the range of control signal 
required to sweep the duty ratio over its full 
range from 0 to 1. A small variation v c super­
imposed upon V c therefore produces a correspon­
ding variation β - v c / V m in D, which can be 
generalized to account for a nonuniform frequency 
response as 

- unregulated input converter and modulator model regulated output η 

d = 
m 

(32) 

in which f m(0) * 1. Thus, the control voltage to 
duty ratio small-signal transmission character­
istic of the modulator can be represented in gen­
eral by the two parameters V m and f m(s), regard­
less of the detailed mechanism by which the modu­
lation is achieved. Hence, by substitution for 
β from (32) the two generators in the canonical 
circuit model of the switching converter can be 
expressed in terms of the ac control voltage v c , 
and the resulting model is then a linear ac equi­
valent circuit that represents the small-signal 
transfer properties of the nonlinear processes 
in the modulator and converter. 

It remains simply to add the linear ampli­
fier and the input and output filters to obtain 
the ac equivalent circuit of the complete closed-
loop regulator as shown in Fig. 16. 

The modulator transfer function has been in­
corporated in the generator designations, and the 
generator symbol has been changed from a circle 
to a square to emphasize the fact that, in the 
closed-loop regulator, the generators no longer 
are independent but are dependent on another sig­
nal in the same system. The connection from 
point Y to the error amplifier, via the reference 
voltage summing -node, represents the basic vol­
tage feedback necessary to establish the system 
as a voltage regulator. The dashed connection 
from point Ζ indicates a possible additional 
feedback sensing; this second feedback signal may 

dc reference 

Fig. 16. General small-signal ac equivalent 

circuit for the switching-mode regulator 

of Fig. 15. 

be derived, for example, from the inductor flux, 

inductor current, or capacitor current, as in 

various "two-loop" configurations that are in use 

[9]. 

Once again the current generator in Fig. 16 

is responsible for the interaction between the 

switching-mode regulator-converter and the input 

filter, thus causing performance degradation and/ 

or stability problems when an arbitrary input 

filter is added. The problem of how properly to 

design the input filter is treated in detail in 

[7]. 

As shown in Fig. 16 we have succeeded in ob­
taining the linear circuit model of the complete 
switching mode-regulator. Hence the well-known 
body of linear feedback theory can be used for 
both analysis and design of this type of regula­
tor. 

7. CONCLUSIONS 

A general method for modelling power stages 
of any switching dc-to-dc converter has been 
developed through the state-space approach. The 
fundamental step is in replacement of the state-
space descriptions of the two switched networks 
by their average over the single switching period 
T, which results in a single continuous state-
space equation description (3) designated the 
basic averaged state-space model. The essential 
approximations made are indicated in the Appen­
dices, and are shown to be justified for any 
practical dc-to-dc switching converter. 

The subsequent perturbation and lineari­
zation step under the small-signal assumption 
(12) leads to the final state-space averaged 
model given by (13) and (14). These equations 
then serve as the basis for development of the 
most important qualitative result of this work, 
the canonical circuit model of Fig. 11. Different 
converters are represented simply by an appropri­
ate set of formulas ((27) and (28)) for four 
elements in this general equivalent circuit. Be­
sides its unified description, of which several 
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examples are given in Table I, one of the advan­
tages of the canonical circuit model is that 
various performance characteristics of different 
switching converters can be compared in a quick 
and easy manner. 

Although the state-space modelling approach 
has been developed in this paper for two-state 
switching converters, the method can be extended 
to multiple-state converters. Examples of three-
state converters are the familiar buck, boost, 
and buck-boost power stages operated in the dis­
continuous conduction mode, and dc-to-ac switch­
ing inverters in which a specific output wave­
form is "assembled" from discrete segments are 
examples of multiple-state converters. 

In contrast with the state-space modelling 
approach, for any particular converter an alter­
native path via hybrid modelling and circuit 
transformation could be followed, which also ar­
rives first at the final circuit averaged model 
equivalent of (13) and (14) and finally, after 
equivalent circuit transformations, again arrives 
at the canonical circuit model. 

Regardless of the derivation path, the 
canonical circuit model can easily be incorpora­
ted into an equivalent circuit model of a com­
plete switching regulator, as illustrated in Fig. 
16. 

Perhaps the most important consequence of 
the canonical circuit model derivation via the 
general state-space averaged model (13), (14), 
(23) and (24) is its prediction through (27) of 
additional zeros as well as poles in the duty 
ratio to output transfer function. In addition 
frequency dependence is anticipated in the duty 
ratio dependent current generator of Fig. 11, 
even though for particular converters considered 
in Table I, it reduces merely to a constant. 
Furthermore for some switching networks which 
would effectively involve more than two storage 
elements, higher order polynomials should be ex­
pected in fj/s) and/or f2(s) of Fig. 11. 

The insights that have emerged from the 
general state-space modelling approach suggest 
that there is a whole field of new switching dc-
to-dc converter power stages yet to be conceived. 
This encourages a renewed search for innovative 
circuit designs in a field which is yet young, 
and promises to yield a significant number of in­
ventions in the stream of its full development. 
This progress will naturally be fully supported 
by new technologies coming at an ever increasing 
pace. However, even though the efficiency and 
performance of currently existing converters will 
increase through better, faster transistors, more 
ideal capacitors (with lower esr) and so on, it 
will be primarily the responsibility of the cir­
cuit designer and inventor to put these components 
to best use in an optimal topology. Search for 
new circuit configurations, and how best to use 
present and future technologies, will be of prime 
importance in achieving the ultimate goal of near-
ideal general switching dc-to-dc converters. 
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APPENDICES χ = (dA 1+d tA 2)x (38) 

In this sequence of Appendices several of the 
questions related to substitution of the two 
switched models (1) by the state-space descrip­
tion (3) are discussed. 

In Appendix A it is briefly indicated for 
a simplified autonomous example how the correla­
tion between the state-space averaging step and 
the linear approximation of the fundamental matrix 
is established. In Appendix Β the exact dc 
conditions, which are generally dependent on the 
storage element values, are shown to reduce 
under the same linear approximation to those 
obtained from (7). In Appendix C it is demon­
strated both analytically and quantitatively 
(numerically), for a typical set of parameter 
values for a boost power stage, that the linear 
approximation of the fundamental matrix is 
equivalent to f c << f , where f c is the effective 
corner frequency of t S e lowr-pass filter and f g 

is the switching frequency. This inequality is 
in turn connected with the condition for low 
output voltage ripple, and hence does not impose 
any significant restriction on the outlined 
modelling procedure. 

APPENDIX A 

The last model (38) is, therefore, the averaged 
model obtained from the two switched models given 
by (33) and is valid provided approximation (36) is 
well satisfied. This is so if the following 
linear approximations of the fundamental matrices 
hold: 

dA Τ 
e 1 Jfc I + d^T 
d'A Τ 
e % I + d'A0T 

(39) 

In essence, (-36) is the first approximation to 
the more general result Baker-Campbell-Hausdorff 
series [5]: 

AT = (dAj+d'A^T + d d ^ A ^ - A ^ T + 

where 
AT D ' V D V 

e = e e 

(40) 

(41) 

Hence, when two matrices are commutative, that is 
AjA-2 = A^A^, then A = dA^ + ^*^2 a n (* ^ becomes 
an exact result. 

The fundamental approximation in the state-space 
averaging approach 

Let the two linear systems be described by 

(i) interval Td, 0<t<t : ii) interval Td't <t<T: ' ο 9 ο 
χ - A 2x (33) χ = A^x 

The exact solutions of these state-space equations 
are: 

A t 
x(t) = e 1 x(0), t € [0,tQ] 

A,(t-t ) x(t) = e 2 ° x(t ) , t e [t ,T] 
Ο ο 

(34) 

APPENDIX Β 

Derivation of the exact dc conditions and their 
simplification under linear approximation of the 
fundamental matrices 

We now derive the exact steady-state (dc) 
condition from the general state-space description 
of the two switched circuit models. Let χ = x^ 
be the state-variable vector for interval TD 
(0<t<to) and χ = x 0 that for interval TD!(t <t<T). " 2 ο 

i) interval TD,(0<t<to): ii) interval TD*(t <t<T) : 

The state—variable vector x(t) is continuous 
across the switching instant t Q, and so: 

A9(T-Td) d fA 9T dA Τ 
x(T) = e x(t Q) = e e x(0) (35) 

Suppose that the following approximation is 
now introduced into (35): 

d !A 9T dA, Τ (dA 1+d TA 9)T 
e e £ e 1 1 (36) 

resulting in an approximate solution 
(dA-.+d'A 9)T 

x(T) % e Z x(0) (37) 

However, this is the same as the solution 
of the following linear system equation for 
x(T) : 

x- = A-x + bv 1 1 g 
The respective solutions are: 

X 2 = A 2 X + b V g ( 4 2 ^ 

A t 
x.(t) - e 1 χ,(Ο) + V B-(t)b 1 1 g l 

A t 
x 2(t) = e x 2(t Q) + V gB 2(t^t o)b 

(43) 

where 
F V - ι V 

±(t) = J e 1 dx = A ±
 1(e 1 - -I) for i = 1,2 (44) 

provided inverse matrices A^ \ exist. 

Solutions (43) contain two yet undetermined 
constants, x^(0) and x 2(t Q). We therefore impose 
two boundary conditions: 
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a) the vector of state variables is 
continuous across the switching instant t0, 
since the inductor currents and capacitor 
voltages cannot change instantaneously. 
Hence 

x 2(t o) (45) 

b) from the steady state requirement, 
all the state variables should return after 
period Τ to their initial values. Hence: 

χχ(0) = x2(T) 

The boundary conditions (45) and (46) are 
illustrated in Fig. 17, where v(0) = v(T), 
1(0) - i(T) and i(t) and v(t) are continuous 
across the switching instant t Q. 

(46) 

capacitor vottaye inductor current 
(Volts) (A m paras) 

^ capacitor vottacje 'o(t) nXT) 

- <,0 ' 
DT 1 

— • «1 
/ c - 230 Hz 

* -

- 30 1 

^.inductor current lit) 
3 -

- 20 1 2 -

i(T{ 
l(O) \ 

- 10 1 é -

\ 0.2ST Ö Ľ •0.25 

0 ι ι | / | ι 1 1 1 1 1 0 

Fig. 17. Typical state-variable time dependence 
over a single period Τ in the steady-state, 
for the boost circuit numerical example 
with f =lkHz. 

s 

are plotted as functions of switching frequency 
f s - 1/T in Fig. 18 via a computer program. 
As seen from Fig. 18, the point where the initial 
inductor current becomes zero determines the 
boundary between continuous and discontinuous 

η due tor current 
(A mperqs) 

IOKHZ switching 
frequency ft 

Fig. 18. Typical dependence of the steady-state 
(dc) conditions (output voltage) on the 
switching frequency f in the continuous 
conduction region (to the right of the 
dotted line). 

conduction regions. It is also evident from Fig. 
18 that the output dc voltage changes with switch­
ing frequency f g 

close to f c 

quency. 

particularly when f becomes 
the effective filter corner fre-

If the linear approximations (39) are 
substituted into (49), the first-order approxi­
mation of the dc state-vector X becomes indepen­
dent of T, namely 

Insertion of (45) and (46) into (43) results 
in solution for the initial condition: 

D'A Τ DA T D'A Τ 
χχ(0) = Vg(I-e e 1 )"1(e 1 B^DD+B^DVt) )b 

(47) 

X « -(DA1+D'A2)^
1b V g (50) 

which is equivalent to the state-space averaged 
result (13). 

As seen from Fig. 17, the average values of 
inductor current and capacitor voltage could be 
found by integration over the period T; in 
general, the steady-state vector X is found from: 

χ - i I XjdOdx + J x 2 (T)dx 

0 εο 

(48) 

Hence, by use of (43) through (47) in (48), the 
integration could be carried out and the explicit 
solution obtained as 

X(T) = g(A rA 2,D,T) (49) 

in which the actual expression could easily be 
found [6]. 

For the boost circuit example of Fig. 3, 
and with parameter values V • 37.5V, D a 0.25, 
% - 0.46Ω, R c - 0.28Ω, L «

g6mH, C - 45yf, and 
R • 30Ω, the output dc voltage obtained from (49) 
and the initial inductor current i(0) from (47) 

For a given switching frequency, one can find 
the initial condition χχ(0) and, with use of (43), 
plot the time dependence of the state variables 
during a period Τ to obtain the steady state 
switching ripple. For the same numerical example 
for the boost power stage, and with switching 
frequency f s

 s 1 kHz (point A on Fig. 18), 
substantial ripple in the output voltage and 
inductor current is observed as demonstrated by 
Fig. 17. However, if all conditions are retained 
but the switching frequency is increased to 
f s = 10 kHz (point Β on Fig. 18), the plot of 
Fig. 19 is obtained, from which it is evident that 
the switching ripple is substantially reduced. 
Moreover the state variables show very strong 
linearity in the two intervals Td and Td', This 
is by no means an accident, but a consequence 
of the fact that linear approximations (39) are 
well satisfied at point Β since f g/f c

 s 43.5 » 1, 
as verified in Appendix C. 
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inductor Current 

- 50 

( Volts) ( A mptrts) 

• ^capacitor voltaje V(t) 

- şĎ h-

- 30 
fc = 230 Hz 

ηducior current iff) 

3-

- Ι ο 
! 
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A DT 
e y I + A, DT 

^ 1 

A 2D
fT 

e y I + AnD'T 

(54) 

For the typical numerical values in Appendix B, and 
for f s

 88 10kHz, replacement of the fundamental 
matrices by their linear approximations introduces 
insignificant error (less than 2%) since conditions 
(52) are well satisfied. Furthermore, since 
usually ω ο » α (as also in this case) , condition 
(52) becomes 

Fig. 19. Same as Fig. 17 but with f -10kHz. Strong 
linearity and small ripple exhibited by 
the curves are consequences of e Δ S I + AT, 
since f /f « 1 . 

c s 

APPENDIX C 

On the linear .approximation of the fundamental 
matrix 

We now demonstrate the linear approximations 
(39) for the boost circuit example (16), in which 
for simplicity of presentation R^ s 0 and R c = 0 
is assumed. The two exponential (fundamental) 
matrices are: 

ω Τ « 1 
c 

(55) 

or, with an even greater degree of inequality, 

f « f (56) 
c s 

where 2πί £ -ω = Df/̂ Ec is the effective filter 
corner frequency. 

A^DT 

A 2DT -aD'Τ 
e =e 

where 

-2aDT 

cosu) D'T+^-sinu) D'T 
ο ω ο 

ο 

(51) 

sink) D fT 
ο 

ω L 
ο 

sinό) D fT 
ο 
ω c 
ο 

cosu D ?T- sinu) D*T 
ο ω o 1 

o 

1 A 2 
2RC ' ωο

 =/ïc " α 

Suppose now that the switching frequency 
f s « 1/T is much greater than the natural fre­
quencies α and ω 0 of the converter, such that 

ω οϋ·Τ« 1 and oD'T « 1 (52) 

Then, by introduction of the linear approximations 

—oD'T 

e fyl-aD'T, cosu) D ! T ^ 1 , sinu) D fT ̂  ω D TT 

° ° (53) 

equations (51) reduce to: 
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