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Abstract—We study the rate-distortion relationship in the set
of permutations endowed with the Kendall τ-metric and the
Chebyshev metric. Our study is motivated by the applicationof
permutation rate-distortion to the average-case and worst-case
analysis of algorithms for ranking with incomplete information
and approximate sorting algorithms. For the Kendall τ-metric we
provide bounds for small, medium, and large distortion regimes,
while for the Chebyshev metric we present bounds that are
valid for all distortions and are especially accurate for small
distortions. In addition, for the Chebyshev metric, we provide a
construction for covering codes.

I. I NTRODUCTION

In the analysis of sorting and ranking algorithms, it is
often assumed that complete information is available, thatis,
the answer toevery question of the form “isx > y?” can
be found, either by query or computation. A standard and
straightforward result in this setting is that, on average,one
needs at leastlog2 n! pairwise comparisons to sort a randomly-
chosen permutation of lengthn. In practice, however, it is
usually the case that only partial information is available. One
example is the learning-to-rank problem, where the solutions
to pairwise comparisons are learned from data, which may
be incomplete, or in big-data settings, where the number of
items may be so large as to make it impractical to query every
pairwise comparison. It may also be the case that only an
approximately-sorted list is required, and thus one does not
seek the solutions to all pairwise comparisons. In such cases,
the question that arises is what is the quality of a ranking
obtained from incomplete data, or an approximately-sortedlist.

One approach to quantify the quality of an algorithm that
ranks with incomplete data is to find the relationship between
the number of comparisons and the average, or worst-case,
quality of the output rankings, as measured via a metric on the
space of permutations. To explain, consider a deterministic al-
gorithm for rankingn items that makesnR queries and outputs
a ranking of lengthn. Suppose that the true ranking isπ. The
information aboutπ is available to the algorithm only through
the queries it makes. Since the algorithm is deterministic,the
output, denoted asf (π), is uniquely determined byπ. The
“distortion” of this output can be measured with a metricd

asd(π, f (π)). The goal is to find the relationship betweenR
andd(π, f (π)) when π is chosen at random and when it is
chosen by an adversary.

A general way to quantify the best possible performance
by such an algorithm is to use the rate-distortion theory on
the space of permutations. In this context, the codebook is the
set{ f (π) : π ∈ Sn}, whereSn is the set of permutations of
lengthn, and the rate is determined by the number of queries.
For a given rate, no algorithm can have smaller distortion than
what is dictated by rate-distortion.

With this motivation, we study rate distortion in the space of
permutations under the Kendallτ-metric and the Chebyshev
metric. Previous work on this topic includes [17], which
studies permutation rate-distortion with respect to the Kendall
τ-metric and theℓ1-metric of inversion vectors, and [7] which
considers Spearman’s footrule.

In this work we study rate distortion in the Kendallτ-metric,
which counts the number of pairs that are ranked incorrectly,
and the Chebyshev metric, which is the largest error in the rank
of any item. Our results on the Kendallτ-metric improve upon
those presented in [17]. In particular, for the small distortion
regime, as defined later in the paper, we eliminate the gap
between the lower bound and the upper bound given in [17];
for the large distortion regime, we provide a stronger lower
bound; and for the medium distortion regime, we provide
upper and lower bounds with error terms. Our study includes
both worst-case and average-case distortions as both measures
are frequently used in the analysis of algorithms. We also note
that permutation rate-distortion results can also be applied
to lossy compression of permutations, e.g., rank-modulation
signals [8]. Finally, we also present covering codes for the
Chebyshev metric, where covering codes for the Kendallτ-
metric were already presented in [17]. The codes are the
covering analog of the error-correcting codes already presented
in [2], [9], [11], [16].

The rest of the paper is organized as follows. In Section II,
we present preliminaries and notation. Section III contains
non-asymptotic results valid for both metrics under study.
Finally, Section IV and Section V focus on the Kendallτ-
metric and the Chebyshev metric, respectively.

II. PRELIMINARIES AND DEFINITIONS

For a nonnegative integern, let [n] denote the set
{1, . . . , n}, and letSn denote the set of permutations of[n].
We denote a permutationσ ∈ Sn as σ = [σ1, σ2, . . . , σn],
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where the permutation setsσ(i) = σi. We also denote the
identity permutation byId = [1, 2, . . . , n].

The Kendallτ-distance between two permutationsπ, σ ∈
Sn is the number of transpositions of adjacent elements needed
to transformπ into σ, and is denoted bydK(π, σ). In contrast,
the Chebyshev distance betweenπ andσ is defined as

dC(π, σ) = max
i∈[n]

|π(i)− σ(i)|.

Additionally, let d(π, σ) denote a generic distance measure
betweenπ andσ.

BothdK anddC are invariant; the former is left-invariant and
the latter is right-invariant [6]. Hence, the size of the ball of a
given radius in either metric does not depend on its center. The
size of a ball of radiusr with respect todK, dC, andd, is given,
respectively, byBK(r), BC(r), andB(r). The dependence of
the size of the ball onn is implicit.

A code C is a subsetC ⊆ Sn. For a codeC and a
permutationπ ∈ Sn, let

d(π, C) = min
σ∈C

d(π, σ)

be the (minimal) distance betweenπ andC.
We useM̂(D) to denote the minimum number of codewords

required for a worst-case distortionD. That is,M̂(D) is the
size of the smallest codeC such that for allπ ∈ Sn, we
haved(π, C) 6 D. Similarly, let M̄(D) denote the minimum
number of codewords required for an average distortionD
under the uniform distribution onSn, that is, the size of the
smallest codeC such that

1

n! ∑
π∈Sn

d(π, C) 6 D.

Note thatM̄(D) 6 M̂(D). In what follows, we assume that
the distortionD is an integer. For worst-case distortion, this
assumption does not lead to a loss of generality as the metrics
under study are integer valued.

We also define

R̂(D) =
1

n
lg M̂(D), R̄(D) =

1

n
lg M̄(D),

Â(D) =
1

n
lg

M̂(D)

n!
, Ā(D) =

1

n
lg

M̄(D)

n!
,

where we uselg as a shorthand forlog2. It is clear that
R̂(D) = Â(D) + lg n!/n, and that a similar relationship holds
betweenR̄(D) andĀ(D). The reason for defininĝA andĀ is
that they sometimes lead to simpler expressions compared to
R̂ and R̄. Furthermore,Â (resp.Ā) can be interpreted as the
difference between the number of bits per symbol required to
identify a codeword in a code of sizêM (resp.M̄) and the
number of bits per symbol required to identify a permutation
in Sn.

Throughout the paper, for̂M, M̄, Â, Ā, R̂, andR̄, subscripts
K and C denote that the subscripted quantity corresponds to
the Kendallτ-metric and the Chebyshev metric, respectively.
Lack of subscripts indicates that the result is valid for both
metrics.

In the sequel, the following inequalities [5] will be useful,

2nH(p)

√

8np(1− p)
6

(

n

pn

)

6
2nH(p)

√

2πnp(1 − p)
, (1)

√
2πn(n/e)n

< n! <
√

2πn(n/e)ne1/(12n), (2)

where H(·) is the binary entropy function, and0 < p < 1.
Furthermore, to denotelimx→∞

f (x)
g(x)

= 1, we use

f (x) ∼ g(x) as x → ∞,

or if the variablex is clear from the context, we simply write
f ∼ g.

III. N ON-ASYMPTOTIC BOUNDS

In this section, we derive non-asymptotic bounds, that is,
bounds that are valid for all positive integersn and D. The
results in this section apply to both the Kendallτ-distance and
the Chebyshev distance as well as any other invariant distance
on permutations.

The next lemma gives two basic lower bounds forM̂(D)
andM̄(D).

Lemma 1.For all n, D ∈ N,

M̂(D) >
n!

B(D)
, M̄(D) >

n!

B(D)(D + 1)
.

Proof: Since the first inequality is well known and its
proof is clear, we only prove the second one. Fixn and D.
Consider a codeC ⊆ Sn of size M and suppose the average
distortion of this codes is at mostD. There are at mostMB(D)
permutationsπ such thatd(π, C) 6 D and at leastn! −
MB(D) permutationsπ such thatd(π, C) > D + 1. Hence,
D > (D + 1)(1 − MB(D)/n!). The second inequality then
follows.

In the next lemma, we use a simple probabilistic argument
to give an upper bound on̂M(D).

Lemma 2.For all n, D ∈ N, M̂(D) 6 ⌈n! ln n!/B(D)⌉.
Proof: Suppose that a sequence ofM permutations,

π1, . . . , πM, is drawn by choosing eachπi i.i.d. with uniform
distribution overSn. DenoteC = {π1, . . . , πM} ⊆ Sn. The
probability Pf that there existsσ ∈ Sn with d(σ, C) > D is
bounded by

Pf 6 ∑
σ∈Sn

P(∀i : d(πi, σ) > D) = n!(1 − B(D)/n!)M

< n!e−MB(D)/n! = eln n!−MB(D)/n!.

Let M = ⌈n! ln n!/B(D)⌉ so thatPf < 1. Hence, a code of
size M exists with worst-case distortionD.

The following theorem by Stein [15], which can be used to
obtain existence results for covering codes (see, e.g., [5]), to
improve the above upper bound. We use a simplified version
of this theorem, which is sufficient for our purpose.

Theorem 3. [15] Consider a setX and a family{Ai}N
i=1 of

sets that coverX. Suppose there are integersN and Q such
that, |X| = N, |Ai| 6 Q for all i, and each element ofX is



in at leastQ of the setsAi. Then there is subfamily of{Ai}N
i=1

containing at most(N/Q)(1+ ln Q) sets that coverX.

In our contextX is Sn, Ai are the balls of radiusD centered
at each permutation,N = n! and Q = B(D). Hence, the
theorem implies that

M̂(D) 6
n!

B(D)
(1 + lnB(D)).

The following theorem summarizes the results of this section.

Theorem 4.For all n, D ∈ N,

n!

B(D)
6 M̂(D) 6

n!

B(D)
(1 + lnB(D)), (3)

n!

B(D)(D + 1)
< M̄(D) 6 M̂(D). (4)

IV. T HE KENDALL τ-METRIC

The goal of this section is to consider the rate-distortion
relationship for the permutation space endowed by the Kendall
τ-metric. First, we find non-asymptotic upper and lower
bounds on the size of the ball in the Kendallτ-metric. Then,
in the following subsections, we consider asymptotic bounds
for small, medium, and large distortion regimes. Throughout
this section, we assume1 6 D <

1
2 (

n
2) and n > 1. Note

that the case ofD > 1
2 (

n
2) leads to the trivial codes, e.g.,

{Id, [n, n − 1, . . . , 1]} and{Id}.

A. Non-asymptotic Results

Let Xn be the set of integer vectorsx = x1, x2, . . . , xn of
lengthn such that0 6 xi 6 i − 1 for i ∈ [n]. It is well known
(for example, see [9]) that there is a bijection betweenXn and
Sn such that for corresponding elementsx ∈ Xn andπ ∈ Sn,
we have

dK (π, Id) =
n

∑
i=2

xi.

Hence

BK(r) =

∣

∣

∣

∣

∣

{

x ∈ Xn :
n

∑
i=2

xi 6 r

}
∣

∣

∣

∣

∣

, (5)

for 1 6 r 6 (n
2). Thus, the number of nonnegative integer

solutions to the equation∑n
i=2 xi 6 r is at leastBK(r), i.e.,

BK(r) 6

(

r + n − 1

r

)

. (6)

Furthermore, forδ ∈ Q, δ > 0, such thatδn is an integer,
it can also be shown that

BK (δn) > ⌊1 + δ⌋!⌊1 + δ⌋n−⌊1+δ⌋, (7)

by noting the fact that the right-hand side of (7) counts the
elements ofXn such that

{

0 6 xi 6 i − 1, for i 6 ⌊1 + δ⌋,

0 6 xi 6 ⌊δ⌋, for i > ⌊1 + δ⌋,

and that∑i6⌊1+δ⌋ (i − 1) + (n − ⌊1 + δ⌋) ⌊δ⌋ 6 ⌊δ⌋n 6 δn.

Next we find a lower bound onBK(r) with r < n. Let
I (n, r) denote the number of permutations inSn that are at
distancer from the identity. We have [3, p. 51]

I (n, r) =

(

n + r − 1

r

)

−
((

n + r − 2

r − 1

)

+

(

n + r − 3

r − 2

))

+
∞

∑
j=2

(−1)j f j,

where

f j =

(

n + r − (uj − j)− 1

r − (uj − j)

)

+

(

n + r − uj − 1

r − uj

)

,

and uj = (3j2 + j)/2. For j > 2, we have f j > f j+1. Thus,
for r < n,

I (n, r) >

(

n + r − 1

r

)(

1 − r

n + r − 1

(

1 +
r − 1

n + r − 2

))

>
1

4

(

n + r − 1

r

)

.

Hence, forr < n, we have

BK(r) >
1

4

(

n + r − 1

r

)

. (8)

In the next two theorems, we use the aforementioned bounds
on BK(r) to derive lower and upper bounds on̂A(D) and
Ā(D).

Theorem 5.For all n, D ∈ N, andδ = D/n,

Â(D) > − lg
(1 + δ)1+δ

δδ
,

Ā(D) > − lg
(1 + δ)1+δ

δδ
− lg n

n
.

Proof: For the worst-case distortion, we have

BK(D)
(a)
6

(

n + δn − 1

δn

)

6

(

(1 + δ) n

δn

)

(b)
6

2n(1+δ)H( 1
1+δ )

√

2πnδ/ (1 + δ)

(c)
6 2n(1+δ)H( 1

1+δ ),

where (a) follows from (6), (b) follows from (1), and(c)
follows from the facts thatδ > 1/n and n > 1. The first
result then follows from (3).

For the case of average distortion, we proceed as follows:

BK(D)(D + 1) 6 BK(δn) (δn + 1)

6

(

n + δn − 1

δn

)

(δn + 1)

=

(

n + δn

δn

)

δn + 1

1 + δ

(a)
6 2n(1+δ)H( 1

1+δ ) δn + 1
√

2πnδ(1 + δ)

= 2n(1+δ)H( 1
1+δ )

√

2δn

π

1 + 1/(δn)

2
√

nδ(1 + δ)
(b)
6 2n(1+δ)H( 1

1+δ )
√

2δn/π,



where(a) follows from (1) and(b) is proved as follows. The
expression 1+1/(δn)

2
√

nδ(1+δ)
is decreasing inδ for positiveδ and so

it is maximized by lettingδ = 1/n. Hence,

1 + 1/(δn)

2
√

nδ(1 + δ)
6

1√
1 + 1/n

6 1.

Now, using (4) leads to (a stronger version of) the statement
in the theorem.

Theorem 6.Assumen, D ∈ N, and letδ = D/n. We have

Ā(D) 6 Â(D) 6 − lg
(1 + δ)1+δ

δδ
+

3 lg n + 12

2n
.

for δ < 1, and

Ā(D) 6 Â(D) 6 − lg⌊1 + δ⌋+ 1

n
lg
(

ne⌊1+δ⌋ ln⌊1 + δ⌋
)

,

for δ > 1.

Proof: For δ < 1, we have

BK(D) = BK (δn) >
1

4

(

n + δn − 1

δn

)

>
n

4 (n + δn)

(

n + δn

δn

)

>
1

4 (1 + δ)
· 2n(1+δ)H( 1

1+δ )
√

8nδ/ (1 + δ)

=
1

4
· 2n(1+δ)H( 1

1+δ )
√

8nδ(1 + δ)
>

2n(1+δ)H( 1
1+δ )

16
√

n
,

where the first inequality follows from (8) and the last step
follows from the fact thatδ 6 1, and soδ(1 + δ) 6 2.

Since 1+ln x
x is a decreasing function forx > 1, we can

substitute the lower bound onBK(D) in (3) to obtain

M̂(D) 6
n!16

√
n

2n(1+δ)H( 1
1+δ )

ln

(

e2n(1+δ)H( 1
1+δ )

16
√

n

)

(a)
6

n!16n3/2

2n(1+δ)H( 1
1+δ )

(1 + δ) H

(

1

1 + δ

)

ln 2

(b)
6

n!64n3/2

2n(1+δ)H( 1
1+δ )

,

where(a) follows from the facte 6 16
√

n and (b) from the

fact that forδ 6 1, we have(1 + δ) H
(

1
1+δ

)

ln 2 6 2 ln 2 6

4. Thus

Â(D) 6 − lg
(1 + δ)1+δ

δδ
+

3 lg n + 12

2n
.

For δ > 1, by (7) and (2) we have

BK(D) = BK(δn) > ⌊1 + δ⌋!⌊1 + δ⌋n−⌊1+δ⌋
>

⌊1 + δ⌋n

e⌊1+δ⌋ ,
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Figure 1. Upper bound and lower bounds forn = 50 from Theorems 5 and
6.

implying

Â(D) 6
1

n
lg

1 + lnBK(δn)

BK(δn)

6
1

n
lg

e⌊1+δ⌋

⌊1 + δ⌋n
+

1

n
lg (1 + n ln⌊1 + δ⌋ − ⌊1 + δ⌋)

6
1

n
lg

e⌊1+δ⌋

⌊1 + δ⌋n
+

1

n
lg (n ln⌊1 + δ⌋)

6 − lg⌊1 + δ⌋+ 1

n
lg
(

ne⌊1+δ⌋ ln⌊1 + δ⌋
)

.

The plots for the expressions given in Theorems 5 and 6 are
given in Figure 1.

B. Small Distortion

In this subsection, we consider small distortion, that is,D =
O (n).

First, supposeD < n, or equivalently,δ = D/n < 1. The
next lemma follows from Lemmas 5 and 6.

Lemma 7.For δ = D/n < 1, we have that

Â(D) = − lg
(1 + δ)1+δ

δδ
+ O

(

lg n

n

)

, (9)

and thatĀ(D) satisfies the same equation.

Next, let us consider the case ofD = Θ (n). From (5), it
follows that

BK(k) =
[

zk
] 1

1 − z

n

∏
i=2

1 − zi

1 − z
=
[

zk
] ∏

n
i=2

(

1 − zi
)

(1 − z)n .

Let

g (k, n) =

(

n + k − 1

k

)−1

BK(k),

γ (z, n) =
∞

∑
i=0

Γi (n) zi =
n

∏
i=2

(

1 − zi
)

, (10)

and

f (z, n) =
∞

∑
i=0

Fi (n) zi =
1

(1 − z)n ,



where

Fi (n) =

(

n + i − 1

i

)

,

so that

g (k, n) =
1

Fk (n)

[

zk
]

f (z, n) γ (z, n) .

We use the following theorem to find the asymptotics
of g (k, n) and BK(k) using the asymptotics ofγ (z, n) in
Theorem 9.

Theorem 8.[12, Theorem 3.1] Letf (z, n) andγ (z, n) be two
functions with Taylor series for alln,

f (z, n) =
∞

∑
i=0

Fi (n) zi, γ (z, n) =
∞

∑
i=0

Γi (n) zi,

whereFi (n) > 0 for all sufficiently largen. Suppose

g (k, n) =
1

Fk (n)

[

zk
]

f (z, n) γ (z, n) ,

and letn = n (k) be a function ofk such that the limitρ =

limk→∞
Fk−1(n(k))

Fk(n(k))
exists. We have

g (k, n (k)) ∼ γ (ρ, n (k)) ask → ∞,

provided that

1) for all sufficiently largek and for alli,
∣

∣

∣

∣

Γi (n (k))

γ (ρ, n (k))

∣

∣

∣

∣

6 pi,

where∑
∞
i=0 piρ

i < ∞, and
2) there exists a constantc, such that for all sufficiently large

i 6 k and largek,
∣

∣

∣

∣

Fk−i (n (k))

Fk (n (k))

∣

∣

∣

∣

6 cρi.

Theorem 9.Let n = n (k) = k
c + O (1) for a constantc > 0.

Then

BK(k) ∼ Kc

(

n + k − 1

k

)

(11)

as k, n → ∞, where Kc is a positive constant equal to
limn→∞ γ (c/ (1 + c) , n).

Proof: To prove the theorem, we use Theorem 8. To do
this, we first let

ρ = lim
k→∞

(n(k)+k−2
k−1

)

(n(k)+k−1
k )

= lim
k→∞

k

n (k) + k − 1
=

c

1 + c
.

We now turn our attention to Condition 1 of Theorem 8. First,
we show thatγ (ρ, n (k)) is bounded away from 0. We have

ln γ (ρ, n (k)) >
∞

∑
i=2

ln
(

1 − ρi
)

> −
∞

∑
i=2

ρi

1 − ρi

> −
∞

∑
i=2

ρi

1 − ρ
= − ρ2

(1 − ρ)2
,

where the second inequality follows from the fact that

ln (1 − x) = −
∞

∑
i=1

xi

i
> −

∞

∑
i=1

xi =
x

1 − x
,

for 0 < x < 1. Hence,

γ (ρ, n (k)) > e
−
(

ρ
1−ρ

)2

> 0.

To satisfy Condition 1 of Theorem 8, it thus suffices to find
p′i such that|Γi (n (k))| 6 p′i and ∑

∞
i=0 p′iρ

i < ∞. For all
positive integersm, we have

|Γi (m)| =
∣

∣

∣

∣

[

zi
] m

∏
j=2

(

1 − zj
)

∣

∣

∣

∣

6

∣

∣

∣

∣

[

zi
] m

∏
j=2

(

1 + zj
)

∣

∣

∣

∣

6

∣

∣

∣

∣

[

zi
] ∞

∏
j=1

(

1 + zj
)

∣

∣

∣

∣

< eπ
√

2/3
√

i,

where the last inequality follows from the facts that
∏

∞
j=1

(

1 + zj
)

is the generating function for the number of
partitions of a positive integer into distinct parts and that the
number of partitions of a positive integeri is bounded by
eπ

√
2/3

√
i [1, p. 316].

We let p′i = eπ
√

2/3
√

i and apply the ratio test to the sum
∑

∞
i=0 p′iρ

i to prove its convergence. Since

lim
i→∞

(

p′iρ
i
)1/i

= lim
i→∞

eπ
√

2/3/
√

iρ < 1,

the sum converges and Condition 1 of Theorem 8 is satisfied.
Hence,

BK(k)

(n+k−1
k )

∼ γ

(

c

1 + c
, n

)

.

To complete the proof, we show that the limit
limn→∞ γ (c/ (1 + c) , n) exists and is positive. This is ev-
ident asγ (c/ (1 + c) , n) is decreasing and, as shown before,
bounded away from 0.

For D = cn +O (1), we have

1

n
lgBK(D) =

1

n
lg

(

n + D − 1

D

)

+O

(

1

n

)

=
n + cn +O (1)

n
H

(

c

1 + c
+O

(

1

n

))

+O

(

lg n

n

)

= (1 + c) H

(

c

1 + c

)

+ O

(

1

n

)

+O

(

lg n

n

)

= (1 + c) H

(

c

1 + c

)

+ O

(

lg n

n

)

,

where we used (11) for the first step. Using (3), forD =
cn +O (1), we find

Â(D) > − 1

n
lgBK(D) = (1 + c) H

(

c

1 + c

)

+O

(

lg n

n

)



and

Â(D) 6 − 1

n
lgBK(D) +

1

n
lg (1 + lnBK(D))

= − (1 + c) H

(

c

1 + c

)

+ O

(

lg n

n

)

The derivation forĀ(cn +O(1)) is similar. We thus have the
following lemma.

Lemma 10.For a constantc > 0 andD = cn+O(1), we have

Â (cn + O (1)) = − lg
(1 + c)1+c

cc
+ O

(

lg n

n

)

, (12)

Furthermore,̄A(cn +O(1)) satisfies the same equation.

The results given in (9) and (12) are given as lower bounds
in [17, Equation (14)]. We have thus shown that these lower
bounds in fact match the quantity under study. Furthermore,
we have shown that̄A(D) satisfies the same relations.

C. Medium Distortion

We next consider the medium distortion regime, that is,D =
cn1+α + O (n) for constantsc > 0 and 0 < α < 1. For this
case, from [17], we have

Â(D) ∼ − lg nα,

In this subsection, we improve upon this result by providing
upper and lower bound with error terms.

Lemma 11. For D = cn1+α + O(n), where α and c are
constants such that0 < α < 1 andc > 0, we have

− lg (ecnα) +O
(

n−α
)

6 Â(D)

6 − lg (cnα) +O
(

n−α + nα−1
)

Proof: Note that from Theorem 5, we have

Â(D) > − lg
(1 + δ)1+δ

δδ
= lg

1

1 + δ
+ lg

(

1 +
1

δ

)−δ

> − lg (e (1 + δ)) .

Let δ = D/n = cnα +O (1). We find

Â(D) > − lg (e (1 + δ)) = − lg e − lg (cnα +O (1))

= − lg (ecnα) + O
(

n−α
)

.

On the other hand, from Theorem 6,

Â(D) 6 − lg (cnα +O (1)) +
1

n
lg eO(nα)

= − lg (cnα) + O
(

n−α + nα−1
)
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Figure 2. Bounds onÂ(D) + lg n for D = cn2 + O(n) where the error
terms are ignored. The bounds denoted by [W] are those from [17].

D. Large Distortion

In the large distortion regime, we haveD = cn2 + O(n)
andδ = cn +O (1).

Lemma 12.SupposeD = cn2 +O(n) for a constant0 < c <
1
2 . We have

− lg (ecn) + O

(

1

n

)

6 Â(D) 6

− lg (ecn) + (1 + c) lg e +O

(

lg n

n

)

.

Proof: Let δ = cn + O (1). Similar to the proof of the
lower bound in Lemma 11, we havêA(D) > − lg (e (1 + δ)),
and thus

Â(D) > − lg (ecn + O (1)) > − lg (ecn) + O

(

1

n

)

.

On the other hand, from Theorem 6,

Â(D) 6 − lg (ecn) + (1 + c) lg e +O

(

lg n

n

)

.

From [17], we have

− lg (ecn)− 1 +O

(

lg n

n

)

6 Â(D) 6

− lg
n

e ⌈1/ (2c)⌉ + O

(

lg n

n

)

. (13)

These bounds are compared in Figure 2, where we added the
term lg n to remove dependence onn.

V. THE CHEBYSHEV METRIC

We now turn to consider the rate-distortion function for the
permutation space under the Chebyshev metric. We start by
stating lower and upper bounds on the size of the ball in the
Chebyshev metric, and then construct covering codes.



A. Bounds

For an n × n matrix A, the permanent ofA = (Ai,j) is
defined as,

per(A) = ∑
π∈Sn

n

∏
i=1

ai,π(i).

It is well known [10], [14] thatBC(r) can be expressed as the
permanent of then × n binary matrixA for which

Ai,j =

{

1 |i − j| 6 r

0 otherwise.
(14)

According to Brégman’s Theorem (see [4]), for anyn × n
binary matrixA with ri 1’s in the i-th row

per(A) 6
n

∏
i=1

(ri!)
1
ri .

Using this bound we can state the following lemma (partially
given in [10] and extended in [16]).

Lemma 13. [16] For all0 6 r 6 n − 1,

BC(r) 6

{

((2r + 1)!)
n−2r
2r+1 ∏

2r
i=r+1(i!)

2
i , 0 6 r 6 n−1

2 ,

(n!)
2r+2−n

n ∏
n−1
i=r+1(i!)

2
i , n−1

2 6 r 6 n − 1.

The following lower bound was given in [10].

Lemma 14.[10] For all 0 6 r 6 n−1
2 ,

BC(r) >
(2r + 1)n

22r

n!

nn
.

We extend this lemma to the full range of parameters.

Lemma 15.For all 0 6 r 6 n − 1,

BC(r) >

{

(2r+1)n

22r
n!
nn , 0 6 r 6 n−1

2 ,
n!

22(n−r) ,
n−1

2 6 r 6 n − 1.

Proof: Only the second claim requires proof, so suppose
that(n− 1)/2 6 r 6 n− 1. The proof follows the same lines
as the one appearing in [10]. LetA be defined as in (14), and
let B be ann × n matrix with

Bi,j =











2, i + j 6 n − r,

2, i + j > n + r + 2,

Ai,j, otherwise.

We observe thatB/n is doubly stochastic. It follows that

BC(r) = per(A) >
per(B)

22(n−r)
>

nn

22(n−r)
per

(

B

n

)

>
n!

22(n−r)
,

where the last inequality follows from Van der Waerden’s
Theorem [13].

Theorem 16.Let n ∈ N, and let0 < δ < 1 be a constant
rational number such thatδn is an integer. Then

R̂C(D) >

{

lg 1
2δ + 2δ lg e

2 + O(lg n/n), 0 < δ 6 1
2

2δ lg δ + 2(1 − δ) lg e + O(lg n/n), 1
2 6 δ 6 1

and

R̂C(D) 6

{

lg 1
2δ + 2δ +O(lg n/n), 0 < δ 6 1

2

2(1 − δ) + O(lg n/n), 1
2 6 δ 6 1

Furthermore, the same bounds also hold forR̄C(D).

Proof: First, we prove the lower bound for̂RC(D)
using Theorem 4, which stateŝMC(D) > n!/BC(D), and
Lemma 13. Let

T1 = ((2D + 1)!)(n−2D)/(2D+1) ,

T2 =
2D

∏
i=D+1

(i!)2/i.

We have

lg T1 =
n − 2δn

2δn + 1
lg(2δn + 1)!

=
n − 2δn

2δn + 1

(

(2δn + 1) lg

(

2δn + 1

e

)

+O(lg n)

)

= (n − 2δn) lg

(

2δn + 1

e

)

+ O(lg n)

= (n − 2δn) lg(2δn/e) +O(lg n),

and

lg T2 = 2
2δn

∑
i=δn+1

1

i
lg i! = 2

2δn

∑
i=δn+1

(

lg
i

e
+O

(

lg i

i

))

= 2
2δn

∑
i=δn+1

lg i − 2δn lg e +O(lg n)

= 2 lg
(2δn)!

(δn)!
− 2δn lg e +O(lg n)

= 2δn + 2δn lg(2δn/e)− 2δn lg e + O(lg n).

From these expressions and Lemma 13, it follows that

1

n
lgBC(D) 6 lg(2δn/e) + 2δ lg(2/e) + O(lg n/n).

The lower bound for0 < δ 6 1/2 then follows from
Theorem 4. The proof of the lower bound for1/2 < δ 6 1
is similar.

Next, we prove the upper bound forR̂C(D). From Lemma 2,
we have

M̂C(D) 6
n! ln n!

BC(D)
.

Hence, for0 6 D 6 (n − 1)/2,

R̂C(D) 6
1

n
lg

(

n! ln n!

BC(δn)

)

6
1

n
lg

(

22δnnn

(2δn + 1)n

)

+ O

(

lg n

n

)

6 lg
1

2δ
+ 2δ ++O

(

lg n

n

)

(15)

where we have used Lemma 15 for the second inequality.
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Figure 3. Rate-distortion in the Chebyshev metric: The lower and upper
bounds of Theorem 16, (a) and (b), and the rate of the code construction,
given in Theorem 19, (c).

Similarly, for (n − 1)/2 < D 6 n,

R̂C(D) 6
1

n
lg 22n(1−δ)+ O

(

lg n

n

)

6 2(1 − δ) + O

(

lg n

n

)

. (16)

The proof of the lower bound for̄RC(D) is similar to that of
R̂C(D) except that we usēM(D) > n!/(B(D)(D+ 1)) from
Theorem 4. The proof of the upper bound forR̄C(D) follows
from the fact thatR̄C(D) 6 R̂C(D).

B. Code Construction

Let A = {a1, a2, . . . , am} ⊆ [n] be a subset of indices,
a1 < a2 < · · · < am. For any permutationσ ∈ Sn we define
σ|A to be the permutation inSm that preserves the relative
order of the sequenceσ(a1), σ(a2), . . . , σ(am). Intuitively, to
computeσ|A we keep only thecoordinates of σ from A, and
then relabel the entries to[m] while keeping relative order. In
a similar fashion we define

σ|A =
(

σ−1|A
)−1

.

Intuitively, to calculateσ|A we keep only thevalues of σ from
A, and then relabel the entries to[m] while keeping relative
order.

Example 17.Let n = 6 and consider the permutation

σ = [6, 1, 3, 5, 2, 4].

We takeA = {3, 5, 6}. We then have

σ|A = [2, 1, 3],

since we keep positions3, 5, and6, of σ, giving us[3, 2, 4], and
then relabel these to get[2, 1, 3].

Similarly, we have

σ|A = [3, 1, 2],

since we keep the values3, 5, and6, of σ, giving us[6, 3, 5],
and then relabel these to get[3, 1, 2]. ✷

Construction 1. Let n and d be positive integers,1 6 d 6

n − 1. Furthermore, we define the sets

Ai = {i(d + 1) + j | 1 6 j 6 d + 1} ∩ [n],

for all 0 6 i 6 ⌊(n − 1)/(d + 1)⌋. We now construct the code
C defined by

C =
{

σ ∈ Sn

∣

∣

∣
σ|Ai = Id for all i

}

.

We note that this construction may be seen as a dual of the
construction given in [17].

Theorem 18.Let n andd be positive integers,1 6 d 6 n − 1.
Then the codeC ⊆ Sn of Construction1 has covering radius
exactlyd and size

M =
n!

(d + 1)!⌊n/(d+1)⌋(n mod (d + 1))!
.

Proof: Let σ ∈ Sn be any permutation. We letIi denote
the indices in which the elements ofAi appear inσ. Let us
now construct a new permutationσ′ in which the elements of
Ai appear in indicesIi, but they sorted in ascending order.
Thus

σ′|Ai = Id,

for all i, and soσ′ is a codeword inC.
We observe that ifσ(j) ∈ Ai, then σ′(j) ∈ Ai as well. It

follows that
∣

∣σ(j)− σ′(j)
∣

∣ 6 d

and so
dC(σ, σ′) 6 d.

Finally, we contend the permutationσ = [n, n − 1, . . . , 1]
is at distance exactlyd from the codeC. We note we already
know that there is a codewordσ′ ∈ C such thatdC(σ, σ′) 6 d.
We now show there is no closer codeword inC. Let us attempt
to build such a permutationσ′′. Considerσ(n) = 1. The value
of σ′′(n) is in Ai for some i, and sinceσ′′ is a codeword,
σ′′(n) must be the largest inAi. Thus

σ′′(n) ∈ {max(Ai) | 1 6 i 6 ⌈n/(d + 1)⌉} > d + 1.

It follows that
∣

∣σ′′(n)− σ(n)
∣

∣ = d

and so
dC(σ, σ′′) > d.

The code construction has the following asymptotic form:

Theorem 19.The code from Construction1 has the following
asymptotic rate,

R = H

(

δ

⌊

1

δ

⌋)

+ δ

⌊

1

δ

⌋

lg

⌊

1

δ

⌋

,

whereH is the binary entropy function.

The bounds given in Theorem 16 and the rate of the code
construction, given in Theorem 19, are shown in Figure 3.
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