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Abstract—We study the rate-distortion relationship in the set A general way to quantify the best possible performance
of permutations endowed with the Kendall t-metric and the py such an algorithm is to use the rate-distortion theory on
Chebyshev metric. Our study is motivated by the applicationof the space of permutations. In this context, the codebodieis t

permutation rate-distortion to the average-case and worstase ) . .
analysis of algorithms for ranking with incomplete information set {f(”) 1 7T € Sp}, whereS,, is the set of permutations of

and approximate sorting algorithms. For the Kendall T-metric we  1€ngthn, and the rate is determined by the number of queries.
provide bounds for small, medium, and large distortion regimes, For a given rate, no algorithm can have smaller distorti@mth
While for the .Chellnyshev metric we present bounds that are \what is dictated by rate-distortion.
valid for all distortions and are especially accurate for snall With this motivation, we study rate distortion in the spate o
distortions. In addition, for the Chebyshev metric, we provde a . .
construction for covering codes. permutatlons_ under the Kendqllmet_nc_and the Chebysh_ev
metric. Previous work on this topic includes _[17], which
|. INTRODUCTION studies permutation rate-distortion with respect to thadé!
In the analysis of sorting and ranking algorithms, it ig-metric and the/;-metric of inversion vectors, and![7] which
often assumed that complete information is available, iat considers Spearman’s footrule.
the answer toevery question of the form “isx > y?” can In this work we study rate distortion in the Kendatimetric,
be found, either by query or computation. A standard amhich counts the number of pairs that are ranked incorrectly
straightforward result in this setting is that, on averagge and the Chebyshev metric, which is the largest error in thke ra
needs at leadbg, ! pairwise comparisons to sort a randomlyef any item. Our results on the KendaHmetric improve upon
chosen permutation of length. In practice, however, it is those presented i [1L7]. In particular, for the small discor
usually the case that only partial information is availal®@e regime, as defined later in the paper, we eliminate the gap
example is the learning-to-rank problem, where the sahstiobetween the lower bound and the upper bound giveriid [17];
to pairwise comparisons are learned from data, which mé&yr the large distortion regime, we provide a stronger lower
be incomplete, or in big-data settings, where the number lbéund; and for the medium distortion regime, we provide
items may be so large as to make it impractical to query evaupper and lower bounds with error terms. Our study includes
pairwise comparison. It may also be the case that only &oth worst-case and average-case distortions as both resasu
approximately-sorted list is required, and thus one dods rave frequently used in the analysis of algorithms. We alg¢e no
seek the solutions to all pairwise comparisons. In suchsgasthat permutation rate-distortion results can also be agdpli
the question that arises is what is the quality of a rankirig lossy compression of permutations, e.g., rank-mocdarati
obtained from incomplete data, or an approximately-sdised signals [8]. Finally, we also present covering codes for the
One approach to quantify the quality of an algorithm thaZhebyshev metric, where covering codes for the Kendall
ranks with incomplete data is to find the relationship betweenetric were already presented in_[17]. The codes are the
the number of comparisons and the average, or worst-caseyering analog of the error-correcting codes alreadygries]
quality of the output rankings, as measured via a metric en tm [2], [9], [L1], [16].
space of permutations. To explain, consider a determirggti ~ The rest of the paper is organized as follows. In Sedfibn I,
gorithm for rankingz items that makesR queries and outputs we present preliminaries and notation. Sectiof Il corgtain
a ranking of lengthz. Suppose that the true rankingzis The non-asymptotic results valid for both metrics under study.
information aboutr is available to the algorithm only throughFinally, Section[TV and Sectiofh]V focus on the Kendah
the queries it makes. Since the algorithm is determinitiie, metric and the Chebyshev metric, respectively.
output, denoted ag(7), is uniquely determined byr. The
“distortion” of this output can be measured with a metdic
asd(7, f(7r)). The goal is to find the relationship betweBn  For a nonnegative integern, let [n] denote the set
andd(r, f(7r)) whenr is chosen at random and when it is{1,...,n}, and letS,, denote the set of permutations fof].
chosen by an adversary. We denote a permutatiom € S, aso = [0q,09,...,04],

Il. PRELIMINARIES AND DEFINITIONS
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where the permutation sets(i) = ¢;. We also denote the In the sequel, the following inequalities! [5] will be useful
identity permuta‘uc_)n byd =11,2,...,n]. . nH(p) " nH(p)

The Kendallt-distance between two permutationso € — = < ( ) < — (1)
S, is the number of transpositions of adjacent elements needed  V 8np(1—p) pn v 2mnp(l—p)
to transformyr into o, and is denoted bk (77, o). In contrast, V2mn(n/e)" < n! < ‘/27m(n/e)nel/(12n), 2)

the Chebyshev distance betweerandoc is defined as ) ) )
where H(+) is the binary entropy function, an@l < p < 1.

de(m,0) = 112%‘ |72(i) — o (D). Furthermore, to denotbm; fg% =1, we use
Additionally, let d(7t,c) denote a generic distance measure f(x) ~ g(x) asx — oo,

betweenr ando.

Bothdk anddc are invariant; the former is left-invariant and
the latter is right-invariant]6]. Hence, the size of thellndila fr~s
given radius in either metric does not depend on its centes. T I1l. NON-ASYMPTOTIC BOUNDS
size of a ball of radius with respect tal, dc, andd, is given, In this section, we derive non-asymptotic bounds, that is,
respectively, byB (1), Bc(r), andB(r). The dependence of s that are valid for all positive integersand D. The
the size of the ball om is implicit. results in this section apply to both the Kendattlistance and

A code C is a subsetC C S,. For a codeC and a o chebyshev distance as well as any other invariant distan
permutationt € S, let on permutations.

d(7,C) = mind(r, o) The next lemma gives two basic lower bounds fo(D)
veC andM(D).

be the (miAnimaI) distance betweenand C. Lemma 1.Foralln. D € N

We useM (D) to denote the minimum number of codewords ’ '

or if the variablex is clear from the context, we simply write

n! _ n!

required for a worst-case distortidd. That is, M(D) is the (D) > , M(D) > )
size of the smallest cod€ such that for allwr € S,, we (D) B(D) (D) B(D)(D+1)
haved(7,C) < D. Similarly, letM(D) denote the minimum Proof: Since the first inequality is well known and its

number of codewords required for an average distorfidn proof is clear, we only prove the second one. Fixand D.
under the uniform distribution o6, that is, the size of the Consider a cod€ C S, of size M and suppose the average

smallest codeC such that distortion of this codes is at moBt. There are at mos¥IB(D)
1 permutationsrt such thatd(7r,C) < D and at least! —
n! g d(7,C) < D. MB(D) permutationst such thatd(7r,C) > D + 1. Hence,
e D > (D +1)(1— MB(D)/n!). The second inequality then
Note thatM(D) < M(D). In what follows, we assume thatfollows. [

the distortionD is an integer. For worst-case distortion, this In the next lemma, we use a simple probabilistic argument
assumption does not lead to a loss of generality as the mettic give an upper bound okl (D).

under study are integer valued. Lemma?2.Foralln,D € N, I\7I(D) < [n!lnn!/B(D)].
We also define

Proof: Suppose that a sequence M permutations,

N 1, - - 1. -

R(D) =~ 1gM(D), R(D) = —1gM(D), m, ..., Ty, is drawn by choosing eachy i.i.d. with uniform

A 1 I\7I(D) ) 1. M(D) distribution overS,,. DenoteC = {my,..., Ty} € Sy,. The

A(D)=-1g , A(D)=-1g , probability P that there existsr € S, with d(o,C) > D is
" m " m bounded by

where we uselg as a shorthand fotog,. It is clear that
R(D) = A(D) +lgn!/n, and that a similar relationship holds P < ) P(Vi:d(m;,c) > D) = n!(1—-B(D)/n)"
betweenR(D) andA(D). The reason for defining andA is 7E€Sn
that they sometimes lead to simpler expressions compared to < nle™

R and R. FurthermoreA (resp.A) can be interpreted as the _
difference between the number of bits per symbol required lr(?t M = [n!lnr.z!/B(Dﬂ S0 thatpf < 1. Hence, a code of
size M exists with worst-case distortioD. [ |

identify a codeword in a code of siZé (resp.M) and the . ; .
number of bits per symbol required to identify a permutation Th_e foII_owmg theorem by StenE_[lS], which can be used to
ins,. obtain existence results for covering codes (see, €.9,, t{®]

Throughout the paper, fd#l, M, A, A, R, andR, subscripts improve the above upper bound. We use a simplified version

K and C denote that the subscripted quantity corresponds % this thearem, which is sufficient for our purpose.

the Kendallt-metric and the Chebyshev metric, respectivelftheorem 3. [15] Consider a seK and a family{Ai}fi1 of
Lack of subscripts indicates that the result is valid forhbotsets that coveK. Suppose there are integéxs and Q such
metrics. that,|X| = N, |A;] < Q for all i, and each element of is

MB(D)/n! _ e]nn!—MB(D)/n!.



in at leasyQ of the setsA;. Then there is subfamily dfA;} N, Next we find a lower bound ok (r) with r < n. Let
containing at mostN /Q)(1 +1In Q) sets that coveX. I (n,r) denote the number of permutationsSp that are at

In our contextX is S,;, A; are the balls of radiuB® centered distancer from the identity. We have[3, p. 51]
at each permutationN = n! and Q = B(D). Hence, the I(nr) = <n +r— 1> - ((n+r— 2> <n +r —3))

theorem implies that r r—1 r—2
. ! E -
N(D) < == (1+InB(D)). +Y. (=1 f;,
B(D) j=2
The following theorem summarizes the results of this sectiovhere
fio (n+r— (u]-—j)—1> N <n+r—uj—1)
Theorem 4.Foralln,D € N, a r—(uj— ) r—u ’
n! . n! du; = (32 +7)/2. Forj > 2, we havef; > fi,;. Thus
<N(D) < 1+1InB(D)), 3) andu; = (3j~+j)/2. Forj >2,w fj = fi+1. Thus,
sp) <MD < gy HIBED @
n! - N
< M(D) < NM(D). (4) n+r—1 o r—1
ZIGES VR 100> (") (1= (s
IV. THE KENDALL T-METRIC < 1<n—|—r—1>
The goal of this section is to consider the rate-distortion ~ 4 r '
relationship for the permutation space endowed by the Kéndgence, forr < 1, we have
T-metric. First, we find non-asymptotic upper and lower 1/ntr—1
bounds on the size of the ball in the Kendaimetric. Then, By (r) > 71( . ) (8)

in the following subsections, we consider asymptotic baund )

this section, we assume < D < 1(2) andn > 1. Note ON Bk(r) to derive lower and upper bounds @¥(D) and

that the case oD > 1(4) leads to the trivial codes, e.g.,A

{Id, [n,n—1,...,1]} and{Id}. Theorem5.Foralln,D € N, andd = D/n,
. 1+6

A. Non-asymptotic Results A(D) > g (1+ f;) )

Let X,, be the set of integer vectors= x1,x5,...,x;, Of o 146
lengthn such tha < x; <i—1fori € [n]. Itis well known A(D) > —lg (1+ 5) -~ 18_"
(for example, see [9]) that there is a bijection betw&gnand - 60 n
S, such that for corresponding elements X, andr € S, Proof: For the worst-case distortion, we have
we have n @ (n+on—1 (14+d)n

dK (7'[, Id) = in. BK(D) < on S on
=2
b n(1+8)H(

Hence (<) & (2 on(1+6)H( i5)

S \2mns/ (1+96) ’

where (a) follows from (8), (b) follows from (), and(c)

" o follows from the facts that > 1/n andn > 1. The first
for 1 < r < (3). Thus, the number of nonnegative integefag it then follows from({3).

solutions to the equatiop/’, x; < r is at leastBk (r), i.e.,

BK(r)—HxEXn:Xn:xigr} , (5)

i=2

For the case of average distortion, we proceed as follows:

Bk (1) < (’+” - 1). 6)  Bk(D)(D+1) < By(én) (6n+1)
r < (" +on—1 5 1
Furthermore, fob € Q, § > 0, such thatdn is an integer, = on (on +1)
it can also be shown that B <n + (Sn> Sn+1
Bk (1) > |1+ 611+ 4" 1+, @) on ) 1+é
. : . (@) 1+8)H( on—+1
by noting the fact that the right-hand side bf (7) counts the < 21(1+9) () T2
elements ofX,, such that 27tné(1+90)
0<xi<i—1, fori<|1+4], _ gn(1+0)H (k) /20 141/(0n)
T
0<x<|é], fori> |14, 2y/né(1+9)

(b) sve( 1
and thatZié[lMJ (i—1)+(n—|1+46]) 8] < [6]n < dn. < 2”(1+0)H(1+a)\/2§n/7t,



where(a) follows from (@) and(b) is proved as follows. The

expressmnM is decreasing i for positived and so

24/né(149)
it is maximized by lettingd = 1/n. Hence,

1+1/(6n) _ 1
2y/nd(1+6)  Vi+1/n

Now, using [(#) leads to (a stronger version of) the statemesst-

in the theorem. [ |

Theorem 6.Assumen, D € IN, and leth) = D /n. We have
AD) < A(D) < —1g Jr(;;)”‘s . 3lggn+ 12

foré <1, and

A(D) < A(D) < —Ig|1+46] + %lg (neLH‘SJ In|1 -+ 5J) )

fors > 1

Proof: Foré < 1, we have

n+§n—1>

B(D) = Bic (o) > (" 75

n n+on
>
4(n+5n)( on )
1 on (1+0)H (1+z>)
4(1+9) 8nd/ (1+9)

1 2n(1+5)H(1+0) 2n(l+§)H(ﬁ)
T4 \/8nd(1+9) 164/n
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F|gure 1. Upper bound and lower bounds far= 50 from Theorem§]5 and

implying

A 1, 1+1InBgk(én)
< Zlog L TR\

AD) < n g Bk (6n)
<11 el 1l 1 In|149¢ 1+6
\nng—i—(SJ" ng(+nnL+J_L+J)
<1 el1+ 11 In|1+6
S gL1+5J" o 18 (Inl1+4])
<—lgL1+(5J+Elg(neU+‘”1nL1+(5J).

|

The plots for the expressions given in Theordms 5[dnd 6 are
given in Figurell.

B. Small Distortion

where the first inequality follows fronf]8) and the last step In this subsection, we consider small distortion, thabis=

follows from the fact that < 1, and sod(1+6) <2
Since 1”1”‘ is a decreasing function far > 1, we can
substitute the lower bound dB (D) in (3) to obtain

() < MOV ()
b n (1+5)H<1+0) 16\/ﬁ
(@) nl16m3/? 1
< — (1+6)H|(——)In2
o) L <1+5) n
(b) 1’1'641’13/2

N

7

2n(1+0)H(ri7)

where (a) follows from the facte < 164/n and (b) from the
fact that foré < 1, we have(1+6) H (1+5) In2<2In2 <
4. Thus

A 1+ 3ign+12
< - .
A(D) < —lg 5 + =
Foré > 1, by (@) and[(2) we have
o n
Bk(D) = Bk (dn) > [1+4]1[1+ 6] 1) > [ER] )
o[1+9)

O (n).
First, suppose < n, or equivalentlyé = D/n < 1. The
next lemma follows from Lemmdd 5 afdl 6.

Lemma7.Foré = D/n < 1, we have that
140
040~ 4o(lr),
50 n
and that\(D) satisfies the same equation.
Next, let us consider the case bf = © (n). From [3), it

AD) = —1lg 9)

follows that
1 17 M7, (12
Bl = |#] = 17— =[] "5
Let
-1
g<k,n>—(”+’,j‘1) Bk (K),
— wri T(1- 10
m=Lhm:=11(1-=), o
and - .
f(zn)=) F(n)z =



where where the second inequality follows from the fact that

Pi(n):<n+:_l)' ln(l—x)z—ixj>_ixi: ~—

so that i=1 iz 1-x
1
g (kn) = {Zk} flzn)y(zn). for 0 < x < 1. Hence,
Fk (1’!) p 2
We use the following theorem to find the asymptotics v (o, n(k)) 26‘(@) > 0.
of ¢(k,n) and Bk (k) using the asymptotics of (z,n) in ) N ) ] ]
Theoren{®. To satisfy Condition 1 of Theorem 8, it thus suffices to find

p! such that|T; (n (k))| < pi and 2, pip’ < oo. For all
Theorem 8.[12, Theorem 3.1] Lef (z,n) andy (z,n) be two positive integersn, we have
functions with Taylor series for afl,

o . © IT; (m)| = z! 1-2/ ‘é 4 142
A SO R (IR O
whereF; (n) > 0 for all sufficiently largen. Suppose < {Zl} I (1 +72 ) < V2RI
j=1
T 1k
8 (kn) = Fe (n) {Z }f(z,n)'y(z,n), where the last inequality follows from the facts that
] o H;";l (1 +zf) is the generating function for the number of
and letn = (’:(}({é‘)) be_ a function ok such that the limip = partitions of a positive integer into distinct parts andtttie
imy, e Xists. Vi number of partitions of a positive integéris bounded by
li F((k))estsWehae ber of partiti f itive i sris bounded b

e™V2/3Vi [ p. 318].
k,n(k)) ~ k k :

g (ko (k)) ~ 7 (o, (k) ask — co, We let pj = e™V2/3Vi and apply the ratio test to the sum
provided that Y2, pio' to prove its convergence. Since

1) for all sufficiently largec and for alli, .
lim (pgpl) = lim ¢™V2/3/Vip < 1,

}M < pi i—00 i—00
~ 17

7 (o, 1 (k) the sum converges and Condition 1 of Theofém 8 is satisfied.

wherey° ; pip’ < oo, and Hence,

2) there exists a constantsuch that for all sufficiently large Bk(k) c_
i < k and largek, (nﬂz*l) 1+¢’
M‘ < cp'. To complete the proof, we show that the limit
Fie (n (k) lim, 007 (¢/ (14 c),n) exists and is positive. This is ev-
Theorem9.Letn = n (k) = IE< +0 (1) for a constant > 0. ident asy (¢/ (1+c),n) is decreasing and, as shown before,
Then bounded away from 0. [ |
n+k—1 For D = cn+ O (1), we have
Btk ~ k(") (11) @)
1 n+D—1 1

ask,n — oo, whereK, is a positive constant equal to ;; lg Bk (D) = ;lg D +0 n
limy—e0 7y (¢/ (1+C) n). n+cn+0(1) c o1

Proof: To prove the theorem, we use Theorgm 8. To do - n H (1 +c * (E))
this, we first let lgn

+0
<n(k)+k72) c ( n )
= lim — KL — = i =—
07 e ety T k=1 T _(1+c)H<lfr >+o<1>+o(lg”)
n

We now turn our attention to Condition 1 of TheorEn 8. First, _q (€ 0 lgn
we show thaty (p, 7 (k)) is bounded away from 0. We have =(1+¢) 14¢ T n )’

B > o where we used[(11) for the first step. Usihg (3), for=
Iny (o, Zln (1 ) 12221 0! cn+ 0 (1), we find

l p R

_21—9 :_(1—p)2' A(D)>_%1gBK(D):(1+C)H<14C_ >+O<lin)




and
" 1 1 Lower Bound[W
A(D) < —=1gBk(D) + —1g (1 +InBk(D 8
( ) n & K( )+n g( o K( )) Lower bounc
1
=—(1+4+¢H <L> +0 <ﬂ) 5 Upper boundW]
I+c n s Upper bount

The derivation forA(cn + O(1)) is similar. We thus have the
following lemma. 4

Lemma 10.For a constant > 0 andD = cn +O(1), we have [

lgn
+0 (T) , (12)

FurthermoreA(cn + O(1)) satisfies the same equation.

(1 + C)1+C

A(cn+O(1)):—lg =

-
-------

Figure2. Bounds onA(D) +Ign for D = cn? + O(n) where the error
. . ) terms are ignored. The bounds denoted by [W] are those frafjp [1
The results given i {9) an@{lL2) are given as lower bounds

in [17, Equation (14)]. We have thus shown that these lower

bounds in fact match the quantity under study. Furthermots, | arge Distortion

we have shown thaA (D) satisfies the same relations.

C. Medium Distortion

We next consider the medium distortion regime, thabiss
cn!*® + O (n) for constants > 0 and0 < a < 1. For this
case, from[[1]7], we have

~

A(D) ~ —1gn",

In this subsection, we improve upon this result by providing

upper and lower bound with error terms.

Lemmall. For D = cn'*® + O(n), wherex andc are
constants such th@t< o« < 1 andc > 0, we have

—1lg (ecn®) +0 (n™*) <A(D)
< —lg(en*)+0 (n_“ + n"‘_l)

1)—5

1

Proof: Note that from Theoreml 5, we have
(1 +5)1+5
50
> —lg(e(1+9)).

Leté =D/n =cn*+ 0O (1). We find

AD) = —1g(e(1+6)) = —lge —Ig(cn* +0(1))
—lg (ecn*) + 0O (n™%).

On the other hand, from Theordrh 6,

N

A(D) < —Ig(en* +0 (1)) + - 1)

—lg(en*)+0 (n*"‘ + n"‘*l)

In the large distortion regime, we haw@ = cn? + O(n)
ando =cn+ 0 (1).

Lemma 12. Supposé = cn? + O(n) for a constand < ¢ <
1. We have

—lg (ecn) + O (%) <A(D) <

lgn
).

Proof: Let § = cn+ O (1). Similar to the proof of the
lower bound in Lemm&1, we ha¥g D) > — g (e (1 +9)),
and thus

—lg(ecn)+(1+c)lge+o<

n

A(D) > —Ilg(ecn + 0O (1)) = —lg (ecn) + O (1> .
On the other hand, from Theordrh 6,

A(D) < —1g(ecn) + (1+¢c)lge+O <lg7n) .

From [17], we have

—lg(ecn) =140 (1‘%111

>s;AUD)<

n Ign

These bounds are compared in Figlure 2, where we added the
termlgn to remove dependence on

V. THE CHEBYSHEV METRIC

We now turn to consider the rate-distortion function for the
permutation space under the Chebyshev metric. We start by
stating lower and upper bounds on the size of the ball in the
Chebyshev metric, and then construct covering codes.



A. Bounds and

For ann x n matrix A, the permanent oA = (A;;) is . Ig & +26+0(gn/n), 0<35<}
. () 7 ~
defined as, c(D) 2(1—6)+O(gn/n), L<o<i
Per Z Haz 7'( z _
nES, i= Furthermore, the same bounds also holde(D).
It is well known [10], [14] thatB¢ (r) can be expressed as the  Proof: First, we prove the lower bound foRc(D)
permanent of the: x n binary matrixA for which using Theoreni]4, which statdd-(D) > n!/Bc(D), and
. Lemma[IB. Let
A — 1 Ji—jlsr (14)
v 0 otherwise. Ty = ((2D + 1)1)("=2P)/(2D+1)
According to Bregman’'s Theorem (seé [4]), for amy n T, — H (it)2/1
binary matrix A with r; 1's in the i-th row 2 b4t
n 1
per(A) < H(,,l|)r We have y
i=1 n— n
lgeTh = — 1g(26 1)!
Using this bound we can state the following lemma (partially 5517 25m +1 g(20n +1)
given in [10] and extended ||ED.6]). _ 7215— 2(5711 <(25n +1)lg (2571 + 1> +0(lg n))
Lemma13. [16] Forall0 <r <n —1, n+ _— ¢
n+
Be(r) < { (2 H D! )mﬂzrm('l)%/ 0<r <y, = (n—2m)g ( e > Folls)
C ~ s n
(n) 7 TS, ()7, 1l <r<n— 1. = (n—20n)1g(26n/e) + O(lgn),
The following lower bound was given in_[10]. and
Lemma 14.[I0] For all0 < r < 51, 20n 20n ; loi
; gh=2 ) lgl':2 y (1—+o(g)>
BC(T) > (2r+ 1) n_' i:5n+1 i=on+1
= 22r n" 26n
We extend this lemma to the full range of parameters. =2 ) lgi—2nlge+0O(Ign)
i=on+1
Lemmal5.Forall0 <r<n-—1, . og{sn)
(2r+1)” nog<yc sl =2lg o)1 —20nlge+ O(lgn)
22r nts X X 2 7
Be(r) > {22<”—'_> 1l <r<n—1. = 20n + 26nlg(20n/e) — 26nlge + O(lgn).

Proof: Only the second claim requires proof, so supposgom these expressions and Lemmé 13, it follows that
that(n —1)/2 < r < n — 1. The proof follows the same lines
as the one appearing inJ10]. Lét be defined as if{14), and —1gBc(D) <1g(2dn/e) +261g(2/e) + O(lgn/n).
let B be ann x n matrix with "
. The lower bound for0 < 6 < 1/2 then follows from
2, itjsSn-r, Theoreni#. The proof of the lower bound foy2 < 6 < 1

Bij=12 i+]>n+r+2 is similar.
A;j, otherwise. Next, we prove the upper bound fRg (D). From Lemm&R,
We observe thaB/n is doubly stochastic. It follows that we have
per(B) _ " B Mo (D) < M
C X .
Belr) = per(4) 2 5555 2 220 Per <Z) Be(D)
. n! Hence, for0 < D < (n—1)/2,
~ 22(n-) A 1 n!lnn!
where the last inequality follows from Van der Waerden's Re(D) < ;lg (Bdén))
Theorem [[1B]. u 1 020 Ign
Theorem 16.Letn € IN, and let0 < § < 1 be a constant < Elg <(2(5n+1)”) +0 ( n >
rational number such that is an integer. Then 1 Ign
<lg=—=+20++40 <—> (15)
Re(D) > Ig 55 +201g 5 + O(lgn/n), 0<o<i 26 n
¢ 201g6+2(1—06)1lge+O(lgn/n), % <6<1 where we have used Lemral 15 for the second inequality.



0

0.5

Figure 3.
bounds of Theoreri 16, (a) and (b), and the rate of the codetraotisn,
given in Theoreni 19, (c).

Similarly, for (n —1)/2 <D <n

A

Re(D) < %1g22"<1*5> +0 lg”)

< _ melis
<20-0)+0( ). (16)
The proof of the lower bound fdRc (D) is similar to that of
Rc(D) except that we usBl(D) > n!/(B(D)(D + 1)) from
Theoren#. The proof of the upper bound fag (D) follows

from the fact thaR¢(D) < Re(D). |

B. Code Construction

Let A = {al,az,...,
am < ap < --- < ay. For any permutatior € S,, we define

0|4 to be the permutation it%,, that preserves the relative

order of the sequence(a;),0(az),...,0(ay). Intuitively, to
computer|, we keep only theoordinates of o from A, and

then relabel the entries fan] while keeping relative order. In

a similar fashion we define

-1
o4 = (0_1\A) .

Intuitively, to calculater|* we keep only thevalues of ¢ from
A, and then relabel the entries ] while keeping relative
order.

Example 17.Letn = 6 and consider the permutation
c=1[6,1,3,5,2,4].
We takeA = {3,5,6}. We then have
ola=1[213],

since we keep positior®s 5, ande, of o, giving us|[3, 2,4], and
then relabel these to gg, 1, 3].
Similarly, we have

ot =13,1,2],

Rate-distortion in the Chebyshev metric: The lower andeupp

an} C [n] be a subset of indices,

since we keep the valués 5, ande, of o, giving us|6,3,5],
and then relabel these to g8t1,2].

Construction 1. Let n andd be positive integersl <
n — 1. Furthermore, we define the sets

Ai={ild+1)4+j|1<j<d+1}N[n],

O
d <

forall0 <i< |(n—1)/(d+ 1)J. We now construct the code
C defined by
C={res, ot =1dforalli}.

We note that this construction may be seen as a dual of the
construction given in[J17].

Theorem 18.Letn andd be positive integerd, < d < n — 1.
Then the cod& C S,, of Constructioifll has coverlng radius
exactlyd and size

n!
C(d+ 1)) (n mod (d + 1))
Proof: Let o € S, be any permutation. We |d denote
the indices in which the elements df; appear inc. Let us
now construct a new permutatior in which the elements of

A; appear in indiced;, but they sorted in ascending order.
Thus

o4 =1d,
for all i, and so¢’ is a codeword irC.
We observe that it’(j) € A;, theno’(j) € A; as well. It
follows that
o(j) =o' (j)| < d
and so
dc(o,0’) <d.

Finally, we contend the permutatian= [n,n —1,...,1]
is at distance exactly from the codeC. We note we already
know that there is a codeword € C such thatlc (o, ') < d.
We now show there is no closer codewordinLet us attempt
to build such a permutation”. Considei () = 1. The value
of ¢’(n) is in A; for somei, and sincec” is a codeword,
o (n) must be the largest id;. Thus

o’ (n) € {max(A;) |1<i< [n/(d+1)]} >d+1.

It follows that
|o"(n) —o(n)|=d
and so
dc(o,0") > d.
|
The code construction has the following asymptotic form:

Theorem 19. The code from Constructid has the following
asymptotic rate,

e o) o2l

whereH is the binary entropy function.

The bounds given in Theorem]16 and the rate of the code
construction, given in Theorem119, are shown in Fiddre 3.
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