Meyer, Mark and Desbrun, Mathieu and Schröder, Peter and Barr, Alan H. (2003) Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In: Visualization and Mathematics III. Mathematics and Visualization. Springer , Berlin, pp. 35-57. ISBN 978-3-642-05682-6. https://resolver.caltech.edu/CaltechAUTHORS:20191009-101951616
![]() |
PDF
- Submitted Version
See Usage Policy. 5MB |
Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20191009-101951616
Abstract
This paper proposes a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Voronoi cells and the mixed Finite-Element/Finite-Volume method, and compare them to existing formulations. Building upon previous work in discrete geometry, these operators are closely related to the continuous case, guaranteeing an appropriate extension from the continuous to the discrete setting: they respect most intrinsic properties of the continuous differential operators. We show that these estimates are optimal in accuracy under mild smoothness conditions, and demonstrate their numerical quality. We also present applications of these operators, such as mesh smoothing, enhancement, and quality checking, and show results of denoising in higher dimensions, such as for tensor images.
Item Type: | Book Section | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Related URLs: |
| ||||||||||||||||||||||||||||||
ORCID: |
| ||||||||||||||||||||||||||||||
Additional Information: | © 2003 Springer-Verlag Berlin Heidelberg. This work was supported in part by the STC for Computer Graphics and Scientific Visualization (ASC-89-20219), IMSC - an NSF Engineering Research Center (EEC-9529152), an NSF CAREER award (CCR-0133983), NSF (DMS-9874082, ACI-9721349, DMS-9872890, and ACI-9982273), the DOE (W-7405-ENG-48/B341492), Intel, Alias-Wavefront, Pixar, Microsoft, and the Packard Foundation. | ||||||||||||||||||||||||||||||
Funders: |
| ||||||||||||||||||||||||||||||
Subject Keywords: | Gaussian Curvature; Voronoi Cell; Triangle Mesh; Discrete Operator; Voronoi Region | ||||||||||||||||||||||||||||||
Series Name: | Mathematics and Visualization | ||||||||||||||||||||||||||||||
DOI: | 10.1007/978-3-662-05105-4_2 | ||||||||||||||||||||||||||||||
Record Number: | CaltechAUTHORS:20191009-101951616 | ||||||||||||||||||||||||||||||
Persistent URL: | https://resolver.caltech.edu/CaltechAUTHORS:20191009-101951616 | ||||||||||||||||||||||||||||||
Usage Policy: | No commercial reproduction, distribution, display or performance rights in this work are provided. | ||||||||||||||||||||||||||||||
ID Code: | 99186 | ||||||||||||||||||||||||||||||
Collection: | CaltechAUTHORS | ||||||||||||||||||||||||||||||
Deposited By: | Tony Diaz | ||||||||||||||||||||||||||||||
Deposited On: | 09 Oct 2019 17:30 | ||||||||||||||||||||||||||||||
Last Modified: | 10 Feb 2023 22:13 |
Repository Staff Only: item control page