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Abstract—Convex optimization is a well-established research
area with applications in almost all fields. Over the decades, mul-
tiple approaches have been proposed to solve convex programs.
The development of interior-point methods allowed solving a
more general set of convex programs known as semi-definite
programs and second-order cone programs. However, it has been
established that these methods are excessively slow for high
dimensions, i.e., they suffer from the curse of dimensionality.
On the other hand, optimization algorithms on manifold have
shown great ability in finding solutions to nonconvex problems
in reasonable time. This paper is interested in solving a subset
of convex optimization using a different approach. The main
idea behind Riemannian optimization is to view the constrained
optimization problem as an unconstrained one over a restricted
search space. The paper introduces three manifolds to solve
convex programs under particular box constraints. The mani-
folds, called the doubly stochastic, symmetric and the definite
multinomial manifolds, generalize the simplex also known as the
multinomial manifold. The proposed manifolds and algorithms
are well-adapted to solving convex programs in which the
variable of interest is a multidimensional probability distribution
function. Theoretical analysis and simulation results testify the
efficiency of the proposed method over state of the art methods. In
particular, they reveal that the proposed framework outperforms
conventional generic and specialized solvers, especially in high
dimensions.

Index Terms—Riemannian manifolds, symmetric doubly
stochastic matrices, positive matrices, convex optimization.

I. INTRODUCTION

Numerical optimization is the foundation of various engi-

neering and computational sciences. Consider a mapping f
from a subset D of Rn to R. The goal of the optimization

algorithms is to find an extreme point x∗ ∈ D such that

f(x∗) ≤ f(y) for all point y ∈ Nx∗ in the neighborhood of

x∗. Unconstrained Euclidean1 optimization refers to the setup

in which the domain of the objective function is the whole

space, i.e., D = Rn. On the other hand, constrained Euclidean

optimization denotes optimization problem in which the search

set is constrained, i.e., D ( Rn.

Convex optimization is a special case of constrained opti-

mization problems in which both the objective function and

the search set are convex. Historically initiated with the study

of least-squares and linear programming problems, convex

optimization plays a crucial role in optimization algorithm

thanks to the desirable convergence property it exhibits. The

development of interior-point methods allowed solving a more

general set of convex programs known as semi-definite pro-

grams and second-order cone programs. A summary of convex

optimization methods and performance analysis can be found

in the seminal book [1].
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1The traditional optimization schemes are identified with the word Eu-
clidean in contrast with the Riemannian algorithm in the rest of the paper.

Another important property of convex optimization is that

the interior of the search space can be identified with a

manifold that is embedded in a higher-dimensional Euclidean

space. Using advanced tools to solve the constrained opti-

mization, e.g., [2], requires solving on the high dimension

space which can be excessively slow. Riemannian optimization

takes advantage of the fact that the manifold is of lower

dimension and exploits its underlying geometric structure.

The optimization problem is reformulated from a constrained

Euclidean optimization into an unconstrained optimization

over a restricted search space, a.k.a., a Riemannian manifold.

Thanks to the aforementioned low-dimension feature, opti-

mization over Riemannian manifolds is expected to perform

more efficiently [3]. Therefore, a large body of literature ded-

icated to adapting traditional Euclidean optimization methods

and their convergence properties to Riemannian manifolds.

This paper introduces a framework for solving optimization

problems in which the optimization variable is a doubly

stochastic matrix. Such framework is particularly interesting

for clustering applications. In such problems ,e.g., [4]–[7], one

wishes to recover the structure of a graph given a similarity

matrix. The recovery is performed by minimizing a prede-

fined cost function under the constraint that the optimization

variable is a doubly stochastic matrix. This work provides a

unified framework to carry such optimization.

A. State of the Art

Optimization algorithms on Riemannian manifolds appeared

in the optimization literature as early as the 1970’s with the

work of Luenberger [8] wherein the standard Newton’s opti-

mization method has been adapted to problems on manifolds.

A decade later, Gabay [9] introduces the steepest descent and

the quasi-Newton algorithm on embedded submanifolds of

Rn. The work investigates the global and local convergence

properties of both the steepest descent and the Newton’s

method. The analysis of the steepest descent and the Newton

algorithm is extended in [10], [11] to Riemannian manifolds.

By using exact line search, the authors concluded the conver-

gence of their proposed algorithms. The assumption is relaxed

in [12] wherein the author provides convergence rate and

guarantees for the steepest descent and Newton’s method for

Armijo step-size control.

The above-mentioned works substitute the concept of the

line search in Euclidian algorithms by searching along a

geodesic which generalizes the idea of a straight line. While

the method is natural and intuitive, it might not be practical.

Indeed, finding the expression of the geodesic requires com-

puting the exponential map which may be as complicated as

solving the original optimization problem [13]. To overcome

the problem, the authors in [14] suggest approximating the

exponential map up to a given order, called a retraction,
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and show quadratic convergence for Newton’s method under

such setup. The work initiated more sophisticated optimization

algorithm such as the trust region methods [3], [15]–[18].

Analysis of the convergence of first and second order methods

on Riemannian manifolds, e.g., gradient and conjugate gradi-

ent descent, Newton’s method, and trust region methods, using

general retractions are summarized in [13].

Thanks to the theoretical convergence guarantees mentioned

above, the optimization algorithms on Riemannian manifolds

are gradually gaining momentum in the optimization field [3].

Several successful algorithms have been proposed to solve

non-convex problems, e.g., the low-rank matrix completion

[19]–[21], online learning [22], clustering [23], [24] and

tensor decomposition [25]. It is worth mentioning that these

works modify the optimization algorithm by using a general

connection instead of the genuine parallel vector transport to

move from a tangent space to the other while computing the

(approximate) Hessian. Such approach conserves the global

convergence of the quasi-Newton scheme but no longer en-

sures their superlinear convergence behavior [26].

Despite the advantages cited above, the use of optimization

algorithms on manifolds is relatively limited. This is mainly

due to the lack of a systematic mechanism to turn a constrained

optimization problem into an optimization over a manifold

provided that the search space forms a manifold, e.g., convex

optimization. Such reformulation, usually requiring some level

of understanding of differential geometry and Riemannian

manifolds, is prohibitively complex for regular use. This paper

addresses the problem by introducing new manifolds that

allow solving a non-negligible class of optimization problem

in which the variable of interest can be identified with a

multidimensional probability distribution function.

B. Contributions

In [25], in a context of tensor decomposition, the authors

propose a framework to optimize functions in which the

variable are stochastic matrices. This paper proposes extending

the results to a more general class of manifolds by proposing a

framework for solving a subset of convex programs including

those in which the optimization variable represents a doubly

stochastic and possibly symmetric and/or definite multidimen-

sional probability distribution function. To this end, the paper

introduces three manifolds which generalize the multinomial

manifold. While the multinomial manifold allows represent-

ing only stochastic matrices, the proposed ones characterize

doubly stochastic, symmetric and definite arrays, respectively.

Therefore, the proposed framework allows solving a subset of

convex programs. To the best of the author’s knowledge, the

proposed manifolds have not been introduced or studied in the

literature.

The first part of the manuscript introduces all relevant

concepts of the Riemannian geometry and provides insights

on the optimization algorithms on such manifolds. In an effort

to make the content of this document accessible to a larger

audience, it does not assume any prerequisite on differential

geometry. As a result, the definitions, concepts, and results in

this paper are tailored to the manifold of interest and may not

be applicable for abstract manifolds.

The paper investigates the first and second order Rieman-

nian geometry of the proposed manifolds endowed with the

Fisher information metric which guarantees that the manifolds

have a differentiable structure. For each manifold, the tangent

space, Riemannian gradient, Hessian, and retraction are de-

rived. With the aforementioned expressions, the manuscript

formulates first and a second order optimization algorithms

and characterizes their complexity. Simulation results are

provided to further illustrate the efficiency of the proposed

method against state of the art algorithms.

The rest of the manuscript is organized as follows: Section II

introduces the optimization algorithms on manifolds and lists

the problems of interest in this paper. In Section III, the doubly

stochastic manifold is introduced and its first and second

order geometry derived. Section IV iterate a similar study

to a particular case of doubly stochastic matrices known as

the symmetric manifold. The study is extended to the definite

symmetric manifold in Section V. Section VI suggests first and

second order algorithms and analyze their complexity. Finally,

before concluding in Section VIII, the simulation results are

plotted and discussed in Section VII.

II. OPTIMIZATION ON RIEMANNIAN MANIFOLDS

This section introduces the numerical optimization methods

on smooth matrix manifolds. The first part introduces the

Riemannian manifold notations and operations. The second

part extends the first and second order Euclidean optimization

algorithm to the Riemannian manifolds and introduces the

necessary machinery. Finally, the problems of interest in this

paper are provided and the different manifolds identified.

A. Manifold Notation and Operations

The study of optimization algorithms on smooth manifolds

engaged a significant attention in the previous years. However,

such studies require some level of knowledge of differen-

tial geometry. In this paper, only smooth embedded matrix

manifolds are considered. Hence, the definitions and theorems

may not apply to abstract manifolds. In addition, the authors

opted for a coordinate free analysis omitting the chart and the

differentiable structure of the manifold. For an introduction

to differential geometry, abstract manifold, and Riemannian

manifolds, we refer the readers to the following references

[27]–[29], respectively.

An embedded matrix manifold M is a smooth subset of a

vector space E included in the set of matrices Rn×m. The set

E is called the ambient or the embedding space. By smooth

subset, we mean that the M can be mapped by a bijective

function, i.e., a chart, to an open subset of Rd where d is

called the dimension of the manifold. The dimension d can

be thought of as the degree of freedom of the manifold. In

particular, a vector space E is a manifold.

In the same line of though of approximating a function

locally by its derivative, a manifold M of dimension d can be

approximated locally at a point X by a d-dimensional vector

space TXM generated by taking derivatives of all smooth

curves going through X. Formally, let γ(t) : I ⊂ R −→ M

2
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Fig. 1. Tangent space of a 2-dimensional manifold embedded in R3. The
tangent space TXM is computed by taking derivatives of the curves going
through X at the origin.

be a curve on M with γ(0) = X. Define the derivative of

γ(t) at zero as follows:

γ′(0) = lim
t→0

γ(t)− γ(0)

t
. (1)

The space generated by all γ′(0) represents a vector space

TXM called the tangent space of M at X. Figure 1 shows

an example of a two-dimension tangent space generated by a

couple of curves. The tangent space plays a primordial role in

the optimization algorithms over manifold in the same way

as the derivative of a function plays an important role in

Euclidean optimization. The union of all tangent spaces T M
is referred to as the tangent bundle of M, i.e.,:

T M =
⋃

X∈M

TXM. (2)

As shown previously, the notion of tangent space generalizes

the notion of directional derivative. However, to optimize

functions, one needs the notion of directions and lengths which

can be achieved by endowing each tangent space TXM by a

bilinear, symmetric positive form 〈., .〉X, i.e., an inner product.

Let g : T M×TM −→ R be a smoothly varying bilinear form

such that its restriction on each tangent space is the previously

defined inner product. In other words:

g(ξX, ηX) = 〈ξX, ηX〉X, ∀ ξX, ηX ∈ TXM (3)

Such metric, known as the Riemannian metric, turns the

manifold into a Riemannian manifold. Any manifold (in this

paper) admits at least a Riemannian metric. Lengths of tangent

vectors are naturally induced from the inner product. The norm

on the tangent space TXM is denoted by ||.||X and defined

by:

||ξX||X =
√

〈ξX, ξX〉X, ∀ ξX ∈ TXM (4)

Both the ambient space and the tangent space being vector

spaces, one can define the orthogonal projection ΠX : E −→
TXM verifying ΠX ◦ΠX = ΠX. The projection is said to be

orthogonal with respect to the restriction of the Riemannian

metric to the tangent space, i.e., ΠX is orthogonal in the 〈., .〉X
sens.

B. First and Second Order Algorithms

The general idea behind unconstrained Euclidean numerical

optimization methods is to start with an initial point X0 and

to iteratively update it according to certain predefined rules in

order to obtain a sequence {Xt} which converges to a local

minimizes of the objective function. A typical update strategy

is the following:

X
t+1 = X

t + αtpt, (5)

where αt is the step size and pt the search direction. Let

Grad f(X) be the Euclidean gradient2 of the objective func-

tion defined as the unique vector satisfying:

〈Grad f(X), ξ〉 = Df(X)[ξ], ∀ ξ ∈ E , (6)

where 〈., .〉 is the inner product on the vector space E and

Df(X)[ξ] is the directional derivative of f given by:

Df(X)[ξ] = lim
t→0

f(X+ tξ)− f(X)

t
(7)

In order to obtain a descent direction, i.e., f(Xt+1) <
f(Xt) for a small enough step size αt, the search direction pt

is chosen in the half space spanned by −Grad f(X). In other

words, the following expression holds:

〈Grad f(Xt), pt〉 < 0. (8)

In particular, the choices of the search direction satisfying

pt = − Grad f(Xt)

||Grad f(Xt)|| (9)

Hess f(Xt)[pt] = Grad f(X) (10)

yield the celebrated steepest descent (9) and the Newton’s

method (10), wherein Hess f(X)[ξ] is the Euclidean Hessian3

of f at X defined as an operator from E to E satisfying:

1) 〈Hess f(X)[ξ], ξ〉 = D2f(X)[ξ, ξ] = D(Df(X)[ξ])[ξ],
2) 〈Hess f(X)[ξ], η〉 = 〈ξ,Hess f(X)[η]〉, ∀ ξ, η ∈ E .

After choosing the search direction, the step size αt is

chosen so as to satisfy the Wolfe conditions for some constant

c1 ∈ (0, 1) and c2 ∈ (c1, 1), i.e.,

1) The Armijo condition:

f(Xt + αtpt)− f(Xt) ≤ c1α
t〈Grad f(Xt), pt〉 (11)

2) The curvature condition:

〈Grad f(Xt + αtpt), pt〉 ≥ c2. (12)

The Riemannian version of the steepest descent, called the

line-search algorithm, follows a similar logic as the Euclidean

one. The search direction is obtained with respect to the

Riemannian gradient which is defined in a similar manner

as the Euclidean one with the exception that it uses the

Riemannian geometry, i.e.,:

Definition 1. The Riemannian gradient of f at X denoted by

grad f(X) of a manifold M, is defined as the unique vector

in TXM that satisfies:

〈grad f(X), ξX〉X = Df(X)[ξX], ∀ ξX ∈ TXM. (14)

2The expression of the Euclidean gradient (denoted by Grad) is explicitly
given to show the analogy with the Riemannian gradient (denoted by grad).
The nabla symbol ∇ is not used in the context of gradient as it is reserved
for the Riemannian connection. Similar notations are used for the Hessian.

3The Euclidean Hessian is seen as an operator to show the connection with
the Riemanian Hessian. One can show that the proposed definition matches
the “usual” second order derivative matrix for ξ = I.
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Algorithm 1 Line-Search Method on Riemannian Manifold

Require: Manifold M, function f , and retraction R.

1: Initialize X ∈ M.

2: while ||grad f(X)||X ≥ ǫ do

3: Choose search direction ξX ∈ TXM such that:

〈grad f(X), ξX〉X < 0. (13)

4: Compute Armijo step size α.

5: Retract X = RX(αξX).
6: end while

7: Output X.

After choosing the search direction as mandated by (8), the

step size is selected according to Wolfe’s conditions similar

to the one in (11) and (12). A more general definition of a

descent direction, known as gradient related sequence, and the

Riemannian Armijo step expression can be found in [13].

While the update step X
t+1 = X

t + αtpt is trivial in the

Euclidean optimization thanks to its vector space structure, it

might result on a point Xt+1 outside of the manifold. Moving

on a given direction of a tangent space while staying on the

manifold is realized by the concept of retraction. The ideal

retraction is the exponential map Exp
X

as it maps point a

tangent vector ξX ∈ TXM to a point along the geodesic

curve (straight line on the manifold) that goes through X

in the direction of ξX. However, computing the geodesic

curves is challenging and may be more difficult that the

original optimization problem. Luckily, one can use a first-

order retraction (called simply retraction in this paper) without

compromising the convergence property of the algorithms. A

first-order retraction is defined as follows:

Definition 2. A retraction on a manifold M is a smooth

mapping R from the tangent bundle T M onto M. For all

X ∈ M, the restriction of R to TXM, called RX satisfy the

following properties:

• Centering: RX(0) = X.

• Local rigidity: The curve γξX(τ) = RX(τξX) satisfy

dγξX(τ)

dτ

∣

∣

∣

τ=0
= ξX, ∀ ξX ∈ TXM.

For some predefined Armijo step size, the procedure above

is guaranteed to converge for all retractions [13]. The general-

ization of the steepest descent to the Riemannian manifold is

obtained by finding the search direction that satisfies similar

equation as in the Euclidean scenario (9) using the Rieman-

nian gradient. The update is then retracted to the manifold.

The steps of the line-search method can be summarized in

Algorithm 1 and an illustration of an iteration of the algorithm

is given in Figure 2.

Generalizing the Newton’s method to the Riemannian set-

ting requires computing the Riemannian Hessian operator

which requires taking a directional derivative of a vector

field. As the vector field belong to different tangent spaces,

one needs the notion of connection ∇ that generalizes the

notion of directional derivative of a vector field. The notion

of connection is intimately related to the notion of vector

transport which allows moving from a tangent space to the

x
t

αtξt
x

Rxt(αtξt
x
)

x
t+1

x
t + TxtM

M

γ(t)

Expxt(αtξt
x
)

Fig. 2. The update step for the two-dimensional sphere embedded in R3.
The update direction ξt

X
and step length αt are computed in the tangent

space TXtM. The point X
t + αtξt

X
lies outside the manifold and needs

to be retracted to obtain the update X
t+1. The update is not located on the

geodesic γ(t) due to the use of a retraction instead of the exponential map.

M

x + TxM

Rx(ξx) + TRx(ξx)M

Rx(ξx)

ξx

ηRx(ξx)
x

T

Fig. 3. An illustration of a vector transport T on a two-dimensional manifold
embedded in R3 that connects the tangent space of X with tangent vector
ξX with the one of its retraction RX(ξX). A connection ∇ can be obtained
from the speed at the origin of the inverse of the vector transport T −1.

other as shown in Figure 3. The definition of a connection is

given below:

Definition 3. An affine connection ∇ is a mapping from

T M×T M to T M that associate to each (η, ξ) the tangent

vector ∇ηξ satisfying for all smooth f, g : M −→ R,

a, b ∈ R:

• ∇f(η)+g(χ)ξ = f(∇ηξ) + g(∇χξ)
• ∇η(aξ + bϕ) = a∇ηξ + b∇ηϕ
• ∇η(f(ξ)) = ξ(f)η + f(∇ηξ),

wherein the vector field ξ acts on the function f by derivation,

i.e., ξ(f) = D(f)[ξ] also noted as ξf in the literature.

On a Riemannian manifold, the Levi-Civita is the canonical

choice as it preserve the Riemannian metric. The connection

is computed as:

4



Algorithm 2 Newton’s method on Riemannian Manifold

Require: Manifold M, function f , retraction R, and affine

connection ∇.

1: Initialize X ∈ M.

2: while ||grad f(X)||X ≥ ǫ do

3: Find descent direction ξX ∈ TXM such that:

hess f(X)[ξX] = −grad f(X), (17)

wherein hess f(X)[ξX] = ∇ξXgrad f(X)
4: Retract X = RX(ξX).
5: end while

6: Output X.

Definition 4. The Levi-Civita connection is the unique affine

connection on M with the Reimannian metric 〈., .〉 that satisfy

for all η, ξ, χ ∈ T M:

1) ∇ηξ −∇ξη = [η, ξ]

2) χ〈η, ξ〉 = 〈∇χη, ξ〉+ 〈η,∇χξ〉,
where [ξ, η] is the Lie bracket, i.e., a function from the set of

smooth function to itself defined by [ξ, η]g = ξ(η(g))−η(ξ(g)).

For the manifolds of interest in this paper, the Lie bracket

can be written as the implicit directional differentiation

[ξ, η] = D(η)[ξ]− D(ξ)[η]. The expression of the Levi-Civita

can be computed using the Koszul formula:

2〈∇χη, ξ〉 = χ〈η, ξ〉 + η〈ξ, χ〉 − ξ〈χ, η〉
− 〈χ, [η, ξ]〉+ 〈η, [ξ, χ]〉 + 〈ξ, [χ, η]〉 (15)

Note that connections and particularity the Levi-Civita, are

defined for all vector fields on M. However for the purpose

of this paper, only the tangent bundle is of interest. With the

above notion of connection, the Riemannian Hessian can be

written as:

Definition 5. The Riemannian Hessian of f at X, denoted by

hess f(X), of a manifold M is a mapping from TXM into

itself defined by:

hess f(X)[ξX] = ∇ξXgrad f(X), ∀ ξX ∈ TXM, (16)

where grad f(X) is the Riemannian gradient and ∇ is the

Riemannian connection on M.

It can readily be verified that the Riemannian Hessian verify

similar property as the Euclidean one, i.e. for all ξX, ηX ∈
TXM, we have

〈hess f(X)[ξX], ηX〉X = 〈ξX, hess f(X)[ηX]〉X,

Remark 1. The name of Riemannian gradient and Hessian is

due to the fact that the function f can be approximated in a

neighborhood of X by the following:

f(X+ δX) = f(X) + 〈grad f(X),Exp−1
X

(δX)〉X (18)

+
1

2
〈hess f(X)[Exp−1

X
(δX)],Exp−1

X
(δX)〉X.

Using the above definitions, the generalization of Newton’s

method to Riemannian optimization is done by replacing both

the Euclidean gradient and Hessian by their Riemannian coun-

terpart in (10). Hence, the search direction is the tangent vector

ξX that satisfies hess f(X)[ξX] = −grad f(X). The update

is found by retraction the tangent vector to the manifold. The

steps of the algorithm are illustrated in Algorithm 2.

C. Problems of Interest

As shown in the previous section, computing the Rieman-

nian gradient and Hessian for a given function over some

manifold M allows the design of efficient algorithms that

exploit the geometrical structure of the problem. The paper’s

main contribution is to propose a framework for solving

a subset of convex programs including those in which the

optimization variable represents a doubly stochastic and pos-

sibly symmetric and/or definite multidimensional probability

distribution function.

In particular, the paper derives the relationship between

the Euclidean gradient and Hessian and their Riemannian

counterpart for the manifolds of doubly stochastic matri-

ces, symmetric stochastic matrices, and symmetric positive

stochastic matrices. In other words, for a convex function

f : Rn×m −→ R, the paper proposes solving the following

problem:

min f(X) (19a)

s.t. Xij > 0, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m, (19b)
m
∑

j=1

Xij = 1, ∀ 1 ≤ i ≤ n, (19c)

n
∑

i=1

Xij = 1, ∀ 1 ≤ j ≤ m, (19d)

X = X
T , (19e)

X ≻ 0, (19f)

wherein constraints (19b)-(19c) produce a stochastic matrix,

(19b)-(19d) a doubly stochastic one, (19b)-(19e) a symmetric

stochastic one, and (19b)-(19f) a definite symmetric matrix.

While the first scenario is studied in [25], the next sections

study each problem, respectively. Let 1 be the all ones vector

and define the multinomial, doubly stochastic multinomial,

symmetric multinomial, and definite multinomial, respectively,

as follows:

P
m
n =

{

X ∈ R
n×m

∣

∣Xij > 0, X1 = 1
}

DPn =
{

X ∈ R
n×n

∣

∣Xij > 0, X1 = 1, X
T
1 = 1

}

SPn =
{

X ∈ R
n×n

∣

∣Xij > 0, X1 = 1, X = X
T
}

SP
+
n =

{

X ∈ R
n×n

∣

∣Xij > 0, X1 = 1, X = X
T , X ≻ 0

}

For all the above manifolds, the paper uses the Fisher infor-

mation as the Riemannian metric g those restriction on TXM
is defined by:

g(ξX, ηX) = 〈ξX, ηX〉X = Tr((ξX ⊘X)(ηX)T ) (20)

=

n
∑

i=1

m
∑

j=1

(ξX)ij(ηX)ij

Xij

, ∀ ξX, ηX ∈ TXM.

Endowing the multinomial with the Fisher information as

Riemannian metric gives the manifold a differential structure

that is invariant over the choice of coordinate system. More

information about the Fisher information metric and its use

in information goemetry can be found in [30]. Using the

5



manifold definition above, the optimization problems can be

reformulated over the manifolds as:

min
X∈Pm

n

f(X), min
X∈DPn

f(X), min
X∈SPn

f(X), min
X∈SP

+
n

f(X).

In the rest of the paper, the notation A ⊘ B refers to the

Hadamard, i.e., element-wise, division of A by B. Similarly,

the symbol ⊙ denotes the Hadamard product.

III. THE DOUBLY STOCHASTIC MULTINOMIAL MANIFOLD

This section studies the structure of the doubly stochastic

manifold DPn and provides the expressions of the necessary

ingredients to design Riemannian optimization algorithms over

the manifold.

A. Manifold Geometry

The set of doubly stochastic matrices is the set of square

matrices with positive entries such that each column and row

sums to 1. It can easily be shown that only a square matrix

can verify such property. As a consequence of the Birkhoff-

von Neumann theorem, DPn is an embedded manifold of

Rn×n. A short proof of the Birkhoff-von Neumann theorem

using elementary geometry concepts can be found in [31].

The dimension of DPn is (n − 1)2 which can be seen from

the fact that the manifold is generated from 2n − 1 linearly

independent equations specifying that the rows and columns

all sums to one. The dimension of the manifold would be

clearer after deriving the tangent space which is a linear space

with the same dimension as the manifold.

Let X ∈ DPn be a point on the manifold, the tangent space

TXDPn is given by the following preposition.

Preposition 1. The tangent space TXDPn is defined by:

TXDPn =
{

Z ∈ R
n×n

∣

∣Z1 = 0, Z
T
1 = 0

}

, (21)

wherein 0 is the all zeros vector.

Proof. The technique of computing the tangent space of the

manifolds of interest in this paper can be found in Appendix A.

The complete proof of the expression of the tangent space of

doubly stochastic matrices is located in the first subsection of

Appendix A.

From the expression of the tangent space, it is clear that the

equations Z1 = 0 and Z
T
1 = 0 yield only 2n − 1 linearly

independent constraints as the last column constraint can be

written as the sum of all rows and using the fact that the

previous (n − 1) columns sum to zero. Let ΠX : Rn×n −→
TXDPn be the orthogonal, in the 〈., .〉X sens, projection of

the ambient space onto the tangent space. The expression of

such operator is given in the upcoming theorem:

Theorem 1. The orthogonal projection ΠX has the following

expression:

ΠX(Z) = Z− (α1T + 1βT )⊙X, (22)

wherein the vectors α and β are obtained through the follow-

ing equations:

α = (I−XX
T )†(Z −XZ

T )1 (23)

β = Z
T
1−X

Tα, (24)

with Y
† being the left-pseudo inverse that satisfy Y

†
Y = I.

Proof. Techniques for computing the orthogonal projection on

the tangent space for the manifolds of interest in this paper

can be found in Appendix B. The projection on the tangent

space of the doubly stochastic matrices can be found in the

first subsection of Appendix B.

The projection ΠX is of great interest as it would allow

in the next subsection to relate the Riemannian gradient and

Hessian to their Euclidean equivalent.

Remark 2. The above theorem gives separate expressions of α
and β for ease of notations in the upcoming computation of the

Hessian. However, such expressions require squaring matrix

X, i.e., XX
T which might not be numerically stable. For

implementation purposes, the vectors α and β are obtained

as one of the solutions (typically the left-pseudo inverse) to

the linear system:
(

Z1

Z
T
1

)

=

(

I X

X
T

I

)(

α
β

)

(25)

B. Riemannian Gradient and Retraction Computation

This subsection first derives the relationship between the

Riemannian gradient and its Euclidean counterpart for the

manifold of interest. The equation relating these two quantities

is first derived in [25] for the multinomial manifold, but

no proof is provided therein. For completeness purposes, we

provide the lemma with its proof in this manuscript.

Lemma 1. The Riemannian gradient grad f(X) can be

obtained from the Euclidean gradient Grad f(X) using the

identity:

grad f(X) = ΠX(Grad f(X)⊙X) (26)

Proof. As shown in Section II, the Riemannian gradient is

by definition the unique element of TXDPn that is related to

the directional derivative through the Riemannian metric as

follows:

〈grad f(X), ξX〉X = Df(X)[ξX], ∀ ξX ∈ TXDPn. (27)

Since the Riemannian gradient is unique, then finding an

element of the tangent space that verifies the equality for

all tangent vectors is sufficient to conclude that it is the

Riemannian gradient. Now note that the Euclidean gradient

can be written as a function of the directional derivative using

the usual scalar product as:

〈Grad f(X), ξ〉 = Df(X)[ξ], ∀ ξ ∈ R
n×n, (28)

In particular, by restriction the above equation to TXDPn ⊂
Rn×n and converting the usual inner product to the Rieman-

nian one, we can write:

〈Grad f(X), ξX〉 = 〈Grad f(X)⊙X, ξX〉X
= Df(X)[ξX], ∀ ξX ∈ TXDPn. (29)

Finally, projecting the scaled Euclidean gradient onto

the tangent space and its orthogonal complement, i.e.,

Grad f(X)⊙X = ΠX(Grad f(X)⊙X)+Π⊥
X
(Grad f(X)⊙

X) yields

〈Grad f(X)⊙X, ξX〉X = 〈ΠX(Grad f(X)⊙X), ξX〉X,
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wherein, by definition of the projection on the orthogonal

complement of the tangent space, the following holds

〈Π⊥
X
(Grad f(X)⊙X), ξX〉X = 0 (30)

The element ΠX(Grad f(X)⊙X) being a tangent vector that

satisfy (27), we conclude that:

grad f(X) = ΠX(Grad f(X)⊙X) (31)

Note that the result of Lemma 1 depends solely on the

expression of the Riemannian metric and thus is applicable

to the three manifolds of interest in this paper. Combining

the expression of the orthogonal projection with the one of

Lemma 1, we conclude that the Riemannian gradient has the

following expression:

grad f(X) = γ − (α1T + 11
Tγ − 1αT

X)⊙X

α = (I−XX
T )†(γ −XγT )1

γ = Grad f(X)⊙X. (32)

For numerical stability, the term α is computed in a similar

fashion as the procedure described in Remark 2 wherein Z is

replaced by γ.

As shown in Section II, one needs only to define a retraction

from the tangent bundle to the manifold instead of the com-

plex exponential map to take advantage of the optimization

algorithms on the Riemannian manifolds. Among all possible

retractions, one needs to derive one that have low-complexity

in order to obtain efficient optimization algorithms. Therefore,

the canonical choice is to exploit the linear structure of the

embedding space in order to derive a retraction that does not

require a projection on the manifold. Such canonical retraction

is given in the following theorem:

Theorem 2. The mapping R : T DPn −→ DPn whose

restriction RX to TXDPn is given by:

RX(ξX) = X+ ξX, (33)

represents a well-defined retraction on the doubly stochastic

multinomial manifold provided that ξX is in the neighborhood

of 0X, i.e., Xij > − (ξX)ij , 1 ≤ i, j ≤ n.

Proof. The proof of this theorem relies on the fact that the

manifold of interest is an embedded manifold of an Euclidean

space. For such manifold, one needs to find a matrix decom-

position with desirable dimension and smoothness properties.

The relevant theorem and techniques for computing the canon-

ical retraction on embedded manifold are given in Appendix C.

The proof of Theorem 2 is accomplished by extending the

Sinkhorn’s theorem [32] and can be found in the first section

of Appendix C.

The performance of the above retraction are satisfactory

as long as the optimal solution X does not have vanishing

entries, i.e., some Xij that approach 0. In such situations, the

update procedure results in tiny steps which compromises the

convergence speed of the optimization algorithms. Although

the projection on the set of doubly stochastic matrices is

difficult [33], this paper proposes a highly efficient retraction

that take advantage of the structure of both the manifold and

its tangent space. Define the set of entry-wise positive matrices

R
n×n

= {X ∈ Rn×n | Xij > 0} and let P : R
n×n −→ DPn

be the projection onto the set of doubly stochastic matri-

ces obtained using the Sinkhorn-Knopp algorithm [32]. The

proposed retraction, using the element-wise exponential of a

matrix exp(.), is given in the following lemma

Lemma 2. The mapping R : T DPn −→ DPn whose

restriction RX to TXDPn is given by:

RX(ξX) = P (X⊙ exp(ξX ⊘X)) , (34)

is a retraction on the doubly stochastic multinomial manifold

for all ξX ∈ T DPn.

Proof. To show that the operator represents a well-defined re-

traction, one needs to demonstrate that the centering and local

rigidity conditions are satisfied. The fact that the mapping is

obtained from the smoothness of the projection onto the set of

doubly stochastic matrices which is provided in Appendix C.

The centering property is straightforward, i.e.,:

RX(0) = P (X⊙ exp(0)) = P (X) = X, (35)

wherein the last inequality is obtained from the fact that X is

a doubly stochastic matrix.

To prove the local rigidity condition, one needs to study the

perturbation of P(X) around a “small” perturbation ∂X in the

tangent space T DPn wherein small refers to the fact that X+

∂X ∈ R
n×n

. First note from the Sinkhorn-Knopp algorithm

that P(X) = D1XD2. However, since X is already doubly

stochastic, then D1 = D2 = I. The first order approximation

of the P can be written as:

P(X+ ∂X) = (D1 + ∂D1)(X+ ∂X)(D2 + ∂D2)

≈ D1XD2 +D1∂XD2 + ∂D1XD2 +D1X∂D2

≈ X+ ∂X+ ∂D1X+X∂D2 (36)

Since P(X+ ∂X) and X are doubly stochastic and ∂X is in

the tangent space, then we obtain:

P(X+ ∂X)1 = (X+ ∂X+ ∂D1X+X∂D2)1 ⇒
∂D1X1+X∂D21 = ∂D11+X∂D21 = 0 (37)

Similarly, by post multiplying by 1
T , we obtain 1

T∂D1X+
1
T∂D2 = 0

T . For easy of notation, let ∂D11 = ∂d1, i.e.,

∂d1 is the vector created from the diagonal entries of ∂D1

and the same for ∂D2. Combining both equations above, the

perturbation on the diagonal matrices satisfy the condition:
(

I X

X
T

I

)(

∂d1

∂d2

)

=

(

0

0

)

(38)

In other words,

(

∂d1

∂d2

)

is the null space of the above matrix

which is generated by

(

1

−1

)

from the previous analysis. As a

result, ∂d1 = −∂d2 = c1 which gives ∂D1X+X∂D2 = 0.

Therefore, P(X+ ∂X) ≈ X+ ∂X. Now, consider the curve

γξX(τ) = RX(τξX). The derivative of the curve at the origin

can be written as:
dγξX(τ)

dτ

∣

∣

∣

τ=0
= lim

τ→0

γξX(τ) − γξX(0)

τ

= lim
τ→0

P(X⊙ exp(τξX ⊘X))−X

τ
(39)

A first order approximation of the exponential allows to

express the first term in the denominator as:

P(X⊙ exp(τξX ⊘X)) = P(X+ τξX) = X+ τξX (40)

wherein the last equality is obtained from the previous analy-
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sis. Plugging the expression in the limit expression shows the

local rigidity condition, i.e.,:

dγξX(τ)

dτ

∣

∣

∣

τ=0
= ξX (41)

Therefore, RX(ξX) is a retraction on the doubly stochastic

multinomial manifold.

Note that the above retraction resembles the one proposed

in [25] (without proof) for the trivial case of the multinomial

manifold. The projection on the set of doubly stochastic

matrices is more involved as shown in the lemma above.

Further, note that the retraction does not require the tangent

vector ξX to be in the neighborhood of X as the one derived

in Theorem 2. However, it is more expensive to compute as it

requires projecting the update onto the manifold.

Remark 3. The local rigidity condition of the retraction in

(39) is particularly interesting as it shows that the canonical

retraction X + ξX is the first order approximation of the

retraction P (X⊙ exp(ξX ⊘X)) around the origin.

C. Connection and Riemannian Hessian Computation

As shown in Section II, the computation of the Riemannian

Hessian requires the derivation of the Levi-Civita connection

∇ηX
ξX. Using the result of [13], the Levi-Civita connection

of a submanifold M of the Euclidean space Rn×n can be ob-

tained by projecting the Levi-Civita ∇ηX
ξX of the embedding

space onto the manifold, i.e., ∇ηX
ξX = ΠX(∇ηX

ξX). From

the Koszul formula (15), the connection ∇ηX
ξX on Rn×n

solely depends on the Riemannian metric. In other words,

the connection ∇ηX
ξX on the embedding space is the same

for all the considered manifolds in this paper. For manifolds

endowed with the Fisher information as metric, the Levi-Civita

connection on Rn×n is given in [25] as follows:

Proposition 1. The Levi-Civita connection on the Euclidean

space Rn×n endowed with the Fisher information is given by:

∇ηX
ξX = D(ξX)[ηX]− 1

2
(ηX ⊙ ξX)⊘X (42)

Proof. The Levi-Civita connection is computed in [25] using

the Koszul formula. For completeness, this short proof shows

that the connection do satisfy the conditions proposed in

Definition 4. Since the embedding space is a Euclidean space,

the Lie bracket can be written as directional derivatives as

follows:

[ηX, ξX] = D(ξX)[ηX]− D(ηX)[ξX]

= D(ξX)[ηX]− 1

2
(ηX ⊙ ξX)⊘X

−
(

D(ηX)[ξX]− 1

2
(ηX ⊙ ξX)⊘X

)

= ∇ηX
ξX −∇ξXηX (43)

The second property is obtained by direct computation of the

right and left hand sides in Definition 4. For simplicity of

the notation, all the tangent vectors χX, ηX, ξX in the tangent

space generated by X are written without the subscript. The

left hand side gives:

χ〈η, ξ〉X = D(〈η, ξ〉X)[χ]

=

n
∑

i=1

n
∑

j=1

D

(

ηijξij

Xij

)

[χij ]

=

n
∑

i,j=1

(

ηij

Xij

D (ξij) +
ξij

Xij

D (ηij) + ηijξijD

(

1

Xij

))

[χij ]

= 〈Dχη, ξ〉X + 〈η,Dχξ〉X −
n
∑

i=1

n
∑

j=1

ηijξijχij

X2
ij

= 〈∇χη, ξ〉X + 〈η,∇χξ〉X. (44)

Recall that the Euclidean Hessian Hess f(X)[ξX] =
D(Grad f(X))[ξX] is defined as the directional derivative of

the Euclidean gradient. Using the results above, the Rieman-

nian Hessian can be written as a function of the Euclidean

gradient and Hessian as follows:

Theorem 3. The Riemannian Hessian hess f(X)[ξX] can be

obtained from the Euclidean gradient Grad f(X) and the

Euclidean Hessian Hess f(X)[ξX] using the identity:

hess f(X)[ξX] = ΠX

(

δ̇ − 1

2
(δ ⊙ ξX)⊘X

)

α = ǫ(γ −XγT )1

β = γT
1−X

Tα

γ = Grad f(X)⊙X

δ = γ − (α1T + 1βT )⊙X

ǫ = (I−XX
T )†

α̇ =
[

ǫ̇(γ −XγT ) + ǫ(γ̇ − ξXγ −Xγ̇T )
]

1

β̇ = γ̇T
1− ξTXα−X

T α̇

γ̇ = Hess f(X)[ξX]⊙X+ Grad f(X)⊙ ξX

δ̇ = γ̇ − (α̇1T + 1β̇T )⊙X− (α1T + 1βT )⊙ ξX

ǫ̇ = ǫ(XξT
X
+ ξXX

T )ǫ (45)

Proof. The useful results to compute the Riemannian Hessian

for the manifold of interest in this paper can be found in

Appendix D. The expression of the Riemannian Hessian for

the doubly stochastic multinomial manifold can be found in

the first subsection of the appendix.

IV. THE SYMMETRIC MULTINOMIAL MANIFOLD

Whereas the doubly stochastic multinomial manifold is

regarded as an embedded manifold of the vector space of

matrices Rn×n, the symmetric and positive multinomial mani-

folds are seen as embedded manifolds of the set of symmetric

matrices. In other words, the embedding Euclidean space is

the space of symmetric matrices Sn defined as:

Sn =
{

X ∈ R
n×n

∣

∣X = X
T
}

(46)

Such choice of the ambient space allows to reduce the

ambient dimension from n2 to
n(n+1)

2 and thus enables

the simplification of the projection operators. As a result,
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the expression of Riemannian gradient and Hessian can be

computed more efficiently.

A. Manifold Geometry, Gradient, and Retraction

Let X ∈ SPn be a point on the manifold, the tangent space

TXSPn is given by the following preposition.

Preposition 2. The tangent space TXSPn is defined by:

TXSPn =
{

Z ∈ Sn

∣

∣Z1 = 0
}

. (47)

Proof. The technique of computing the tangent space of

manifold of interest in this paper can be found in Appendix A.

The complete proof of the expression of the tangent space

of symmetric stochastic matrices is located in the second

subsection of Appendix A.

Let ΠX : Sn −→ TXSPn be the orthogonal, in the 〈., .〉X
sens, projection of the ambient space onto the tangent space.

Note that the ambient space for the symmetric multinomial

SPn is the set of symmetric matrices Sn and not the set of all

matrices Rn×n as in Section III. The following theorem gives

the expression of the projection operator:

Theorem 4. The orthogonal projection ΠX operator onto the

tangent set has the following expression

ΠX(Z) = Z− (α1T + 1αT )⊙X, (48)

wherein the vector α is computed as:

α = (I+X)−1
Z1. (49)

Proof. Techniques for computing the orthogonal projection on

the tangent space for the manifolds of interest in this paper

can be found in Appendix B. The projection on the tangent

space of the doubly stochastic matrices can be found in the

second subsection of Appendix B and its derivation from

the projection of the doubly stochastic manifold in the third

subsection.

Using the result of Lemma 1 and using the expression of the

projection onto the tangent space, the Rienmannian gradient

can be efficiently computed as:

grad f(X) = γ − (α1T + 1αT )⊙X

α = (I+X)−1γ1

γ = (Grad f(X)⊙X), (50)

where γ is a simple sum that can be computed efficiently.

Similar to the result for the doubly stochastic multinomial

manifold, the canonical retraction on the symmetric multino-

mial manifold can be efficiently computed as shown in the

following corollary.

Corollary 1. The mapping R : T SPn −→ SPn whose

restriction RX to TXSPn is given by:

RX(ξX) = X+ ξX, (51)

represents a well-defined retraction on the symmetric multino-

mial manifold provided that ξX is in the neighborhood of 0X,

i.e., Xij > − (ξX)ij , 1 ≤ i, j ≤ n.

Proof. The proof of this corollary follows similar steps like

the one for the doubly stochastic multinomial manifold by

considering that the manifold is embedded in an Euclidean

subspace. Techniques for computing the retraction on embed-

ded manifold is given in Appendix C. Note that the result of

the doubly stochastic multinomial is not directly applicable as

the embedding space is different (Sn instead of Rn×n). The

problem is solved by using the DAD theorem [34] instead of

the Sinkhorn’s one [32]. The complete proof of the corollary

is given in the second subsection of Appendix C.

The canonical retraction suffers from the same limitation

as the one discussed in the previous section. Indeed, the

performance of the optimization algorithm heavily depend on

whether the optimal solution has vanishing entries or not. This

section shows that the retraction proposed in Lemma 2 is

a valid retraction on the set of symmetric double stochastic

matrices. However, instead of the Sinkhorn-Knopp algorithm

[32], this part uses the DAD algorithm [34] to project the

retracted vector. Let Sn =
{

X ∈ Rn×n
∣

∣Xij > 0, X = X
T
}

represent the set of symmetric, element-wise positive matrices.

The projection onto the set of symmetric doubly stochastic

matrices is denoted by the operator P+ : Sn −→ SPn. The

retraction is given in the following corollary.

Corollary 2. The mapping R : T SPn −→ SPn whose

restriction RX to TXSPn is given by:

RX(ξX) = P+ (X⊙ exp(ξX ⊘X)) , (52)

is a retraction on the symmetric doubly stochastic multinomial

manifold for all ξX ∈ T SPn.

Proof. The proof of this corollary is straightforward. Indeed,

after showing that the range space of RX(ξX) is the set

symmetric element-wise matrices Sn, the proof concerning

the centering and local rigidity of the retraction are similar to

the one in Lemma 2.

B. Connection and Riemannian Hessian Computation

As discussed earlier, the Levi-Civita connection solely de-

pends on the Riemannian metric. Therefore, the symmetric

stochastic multinomial manifold shares the same retraction on

the embedding space4 as the doubly stochastic multinomial

manifold. The Riemannian Hessian can be obtained by dif-

ferentiating the Riemnanian gradient using the projection of

the Levi-Civita connection onto the manifold as shown in the

below corollary:

Corollary 3. The Riemannian Hessian hess f(X)[ξX] can

be obtained from the Euclidean gradient Grad f(X) and the

4Even though the embedding spaces are not the same for both manifolds,
one can easily show that the expression of the connection is invariant.
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Euclidean Hessian Hess f(X)[ξX] using the identity:

hess f(X)[ξX] = ΠX

(

δ̇ − 1

2
(δ ⊙ ξX)⊘X

)

α = (I+X)−1γ1

δ = γ − (α1T + 1αT )⊙X

γ = Grad f(X)⊙X

α̇ =
(

(I+X)−1γ̇ − (I+X)−1ξX(I+X)−1γ
)

1

δ̇ = γ̇ − (α̇1T + 1α̇T )⊙X− (α1T + 1αT )⊙ ξX

γ̇ = Hess f(X)[ξX]⊙X+ Grad f(X)⊙ ξX (53)

V. EXTENSION TO THE DEFINITE SYMMETRIC

MULTINOMIAL MANIFOLD

The definite symmetric stochastic multinomial manifold is

defined as the subset of the symmetric stochastic multinomial

manifold wherein the matrix of interest is positive definite.

Similar to the condition Xij > 0, the strict condition X ≻ 0,

i.e., full-rank matrix, ensures that the manifold has a differen-

tiable structure.

The positive-definiteness constraint is a difficult one to

retract. In order to produce highly efficient algorithms, one

usually needs a re-parameterization of the manifold and to

regard the new structure as a quotient manifold, e.g., a

Grassmann manifold. However, this falls outside the scope of

this paper and is left for future investigation. This part extends

the previous study and regards the manifold as an embedded

manifold of Sn for which two retractions are proposed.

A. Manifold Geometry

The manifold geometry of the definite symmetric stochastic

multinomial manifold is similar to the one of the previous

manifold. Indeed, the strictly positive constraint being an

inequality one, the dimension of the manifold is unchanged.

Therefore, let X ∈ SP+
n be a point on the manifold, the

tangent space TXSP+
n of the definite symmetric stochastic

multinomial manifold is similar to tangent space of the sym-

metric stochastic multinomial manifold, i.e.,:

TXSP
+
n =

{

Z ∈ Sn

∣

∣Z1 = 0
}

. (54)

As a result, the expression of the Riemannian gradient and

Hessian are the same as the one presented in the previous

section. Hence, one only needs to design a retraction to derive

optimization algorithms on the manifold.

B. Retraction on the Cone of Positive Definite Matrices

As shown in the previous subsection, the geometry of the

definite symmetric multinomial manifold is similar to the

symmetric multinomial manifold one. Therefore, one can ex-

tend the canonical retraction proposed in the previous section.

However, even tough the retraction looks similar to the one

proposed in the previous section, its implementation is more

problematic as it includes a condition on the eigenvalues.

Hence, the section proposes another retraction that exploits

the definite structure of the manifold and uses the matrix

exponential to retract the tangent vectors as shown in the

following theorem.

Theorem 5. Define the map RX from TXSP+
n to SP+

n by:

RX(ξX) = X+
1

ωX

I− 1

ωX

e
−ωXξX , (55)

wherein e
Y the matrix exponential5 of matrix Y and ωX is a

scalar that ensures:

RX(ξX)ij > 0, 1 ≤ i, j ≤ n (56)

RX(ξX) ≻ 0, (57)

for all ξX ∈ TXSP+
n in the neighborhood of 0X, i.e.,

||ξX||F ≤ ǫ for some ǫ > 0. Then, there exists a sequence

of scalars {ωX}
X∈SP

+
n

such that the mapping R : T SP+
n −→

SP+
n , whose restriction RX to TXSP+

n , is a retraction on the

definite symmetric multinomial manifold.

Proof. Unlike the previous retractions that rely on the Eu-

clidean structure of the embedding space, this retraction is

obtained by direct computation of the properties of the re-

traction given in Section II. The organization of the proof is

the following: First, assuming the existence of ωX, we show

that the range of the mapping RX is included in the definite

symmetric multinomial manifold. Afterward, we demonstrate

that the operator satisfies the centering and local rigidity

conditions. Therefore, the operator represents a retraction.

Finally, showing the existence of the scalar ωX for an arbitrary

X ∈ SP+
n concludes the proof.

Recall that the matrix exponential of a symmetric real

matrix ξX with eigenvalue decomposition ξX = UΛUT is

given by e
ξX = U exp(Λ)UT , where exp(Λ) is the usual

element-wise exponential of the element on the diagonal and

zeros elsewhere. From the derivation of the tangent space

of the definite symmetric multinomial manifold TXSP+
n , we

have ξX1 = 0. Therefore, ξX has an eigenvalue of 0 cor-

responding to the eigenvector 1. As stated by the definition

of the matrix exponential, the eigenvalue are exponentiated

and the eigenvectors are unchanged. Therefore, eξX (and thus

e
−ωXξX) has an eigenvalue of exp(0) = 1 corresponding to

the eigenvector 1, i.e., e−ωXξX1 = 1. First note from the first

condition on ωX, all entries are positive. Now, computing the

rows summation gives:

RX(ξX)1 = X1+
1

ωX

I1− 1

ωX

e
−ωXξX1

= 1+
1

ωX

1− 1

ωX

1

= 1. (58)

Hence RX(ξX) is stochastic. Besides, all matrices are sym-

metric which concludes that the matrix is doubly stochastic.

Finally, the second condition on ωX ensure the definiteness of

the matrix which concludes that RX(ξX) ∈ SP+
n .

The centering property can be easily checked by evaluating

the retraction RX at the zero-element 0X of TXSP+
n . Indeed,

5Not to be confused with the exponential map Exp of the Riemannian
geometry or with the element-wise exponential exp.

10



we obtain:

RX(0X) = X+
1

ωX

I− 1

ωX

e
−ωX0X

= X+
1

ωX

I− 1

ωX

I = X. (59)

The speed of the rigidity curve γξX(τ) = RX(τξX) at the

origin is given by:

dγξx(τ)

dτ

∣

∣

∣

τ=0
= − 1

ωX

de−ωXτξX

dτ

∣

∣

∣

τ=0

= − 1

ωX

U
d exp(−ωXτΛ)

dτ
U

T
∣

∣

∣

τ=0

= UΛ exp(−ωXτΛ)UT
∣

∣

∣

τ=0

= UΛUU
T exp(−ωXτΛ)UT

∣

∣

∣

τ=0

= ξXe
−ωXτξX

∣

∣

∣

τ=0
= ξX (60)

Therefore, we conclude that RX(ξX) is a well-defined retrac-

tion.

Finally, the existence of the weight ωX is ensured by the fact

that S+

n is an open subset of Sn. Consider a positive sequence

{ωm
X
}∞m=1 decreasing to 0 and construct the function series

{Xm}∞m=1 as follows:

Xm(ξX) = X+
1

ωm
X

I− 1

ωm
X

e
−ωm

X
ξX . (61)

We aim to show that {Xm}∞m=1 uniformly converges to the

constant X ∈ S+

n . Since S+

n is an open set, then there exists

an index m0 above which, i.e., ∀ m ≥ m0 the sequence

Xm(ξX) ∈ S+

n , ∀ ξX ∈ TXSP+
n with ||ξX||F ≤ ǫ. Hence

ωX can be chosen to be any ωm
X

for m ≥ m0. The uniform

convergence of the series is given in the following lemma

Lemma 3. The uniform convergence of the function series

{Xm}∞m=1 is satisfied as ∀ ǫ′ > 0, ∃ M0 such that ∀ m ≥ M0

the following holds:

||Xm(ξX)−X||F < ǫ′, ∀ ξX ∈ TXSP
+
n with ||ξX||F ≤ ǫ

Proof. Note that the condition over all tangent vectors can be

replaced by the following condition (up to an abuse of notation

with the ǫ′):

||Xm(ξX)−X||F < ǫ′, ∀ ξX ∈ TXSP
+
n with ||ξX||F ≤ ǫ

⇔ sup
ξX∈TXSP

+
n

||ξX||F≤ǫ

||Xm(ξX)−X||2F < ǫ′

⇔ max
ξX∈TXSP

+
n

||ξX||F≤ǫ

||Xm(ξX)−X||2F < ǫ′, (62)

wherein the last equivalence is obtained from the fact that the

search space is closed. The last expression allows us to work

with an upper bound of the distance. Indeed, the distance can

be bound by:

||Xm(ξX)−X||2F =
1

(ωm
X
)2
||I− e

−ωm

X
ξX ||2F

=
1

(ωm
X
)2

n
∑

i=1

(1− exp(−ωm
X
λi))

2

≤ n

(ωm
X
)2
(1− exp(−ωm

X
ǫ))2, (63)

with the last inequality being obtained from ||ξX||F ≤ ǫ ⇒
λi ≤ ǫ, 1 ≤ i ≤ n. Now using the fact that {ωm

X
}∞m=1 is

decreasing to 0, then there exists M0 such that ∀ m ≥ M0,

the following is true:
n

(ωm
X
)2
(1 − exp(−ωm

X
ǫ))2 ≤ ǫ ≤ ǫ′ (64)

Combining the above results, we find out that ∀ ǫ′ > 0, ∃ M0

such that ∀ m ≥ M0 the following holds:

||Xm(ξX)−X||F < ǫ′, ∀ ξX ∈ TXSP
+
n with ||ξX||F ≤ ǫ

Finally, as stated earlier, combining the uniform conver-

gence and the fact that S+

n is an open subset of Sn allows

us to conclude the existence of ωX such that both conditions

(56) and (57) are satisfied for all tangent vectors ξX ∈ TXSP+
n

with ||ξX||F ≤ ǫ.

Remark 4. The retraction developed in Theorem 5 can be

applied to the symmetric multinomial manifold in which the

scalar ωX is chosen in such fashion so as to satisfy condition

(56) independently of condition (57). However, the retraction

is not valid for the doubly stochastic multinomial manifold.

Indeed, the tangent vectors of the doubly stochastic multino-

mial manifold being not necessarily symmetric, nothing can

be claimed about the exponential of the vector ξX.

While the retraction proposed in Theorem 5 is superior to

the canonical one, it still suffers from the scaling of ξX. In

other words, if the optimal solution has vanishing entries or

vanishing eigenvalues, the retraction results in tiny updates

which compromise the convergence speed of the proposed

algorithms. As stated at the beginning of the section, the

problem can be solved by re-parameterizing the manifold

which falls outside the scope of this paper.

VI. OPTIMIZATION ALGORITHMS AND COMPLEXITY

This section analysis the complexity of the steepest de-

scent, summarized in Algorithm 1, and the Newton’s method,

summed up in Algorithm 2, algorithms on the proposed

Riemannian Manifolds. While this section only presents the

simplest first and second order algorithms, the simulation

section uses the more sophisticated conjugate gradient and

trust regions methods as first and second order algorithms to

obtain the curves. The complexity analysis of these algorithms

is similar to the one presented herein as it is entirely governed

by the complexity of computing the Riemannian gradient

and Hessian. Table I summarizes the first and second order

complexity for each manifold.

A. Gradient Descent Complexity

The complexity of computing the gradient (32) of the

doubly stochastic multinomial manifold can be decomposed

into the complexity of computing γ, α, and grad f(X). The

term γ is a simple Hamadard product that can be computed in

n2 operations. The term α is obtained by solving the system of

equations in (25) which takes (2/3)(2n)3 when using an LU

factorization. Finally, the expression of grad f(X) requires a

couple of additions and an hadamard product which can be

done in 3n2 operations. Finally, the complexity of computing

the retraction can be decomposed into the complexity of com-

puting the update vector and the complexity of the projection.
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TABLE I
COMPLEXITY OF THE STEEPEST DESCENT AND NEWTON’S METHOD ALGORITHMS FOR THE PROPOSED MANIFOLDS.

Manifold Steepest descent algorithm Newton’s method algorithm

Doubly Stochastic Multinomial DPn (16/3)n3 + 7n2 + log(n)
√
n 32/3n3 + 15n2 + log(n)

√
n

Symmetric Multinomial SPn (1/3)n3 + 2n2 + 2n+ log(n)
√
n n3 + 8n2 + 17/2n+ log(n)

√
n

Definite Symmetric Multinomial SP+
n n3 + 3n2 + 3n 4/3n3 + 13/2n2 + 7n

The updated vector is an hadamard product and division that

can be computed in 3n2. The complexity of projecting a

matrix A onto the set of doubly stochastic manifold [35] with

accuracy ǫ is given by:

O((1/ǫ+ log(n))
√
nV/v), (65)

wherein V = max(A) and v = min(A). Therefore, the total

complexity of an iteration of the gradient descent algorithm

on the doubly stochastic multinomial manifold is (16/3)n3 +
7n2 + log(n)

√
n.

The complexity of the symmetric stochastic manifold can

be obtained in a similar manner. Due to the symmetry, term

γ only requires n(n + 1)/2 operations. The term α is the

solution to an n × n system of equations which can be

solved in (1/3)n3. Similarly, grad f(X) requires 3/2n(n+1).
Therefore, the total complexity can be written as:

(1/3)n3 + 2n2 + 2n+ log(n)
√
n. (66)

The retraction on the cone of positive matrices requires n3+
2n2 which gives a total complexity of the algorithm for the

positive symmetric multinomial manifold of n3 + 3n2 + 3n.

B. Newton’s Method Complexity

The complexity of computing the Newton’s method requires

computing the Riemannian gradient and Hessian and solving

an n × n linear system. However, from the expressions of

the Riemannian Hessian, one can note that the complexity of

computing the Riemannian gradient in included in the one of

the Riemannian Hessian.

For the doubly stochastic manifold, the complexity of com-

puting the Riemannian Hessian is controlled by the complexity

of the projection and the inversions. The projection onto the

tangent space requires solving a n × n system and a couple

of additions and an Hadamard product. The total cost of the

operation is 2/3(2n)3 + 3n2. The ǫ and ˙epsilon terms are

inversions and matrices products that require 4n3. The other

terms combined require 9n2 operation. The retraction costs

3n2 + log(n)
√
n and solving for the search direction requires

2/3(2n)3 which gives a total complexity of:

32/3n3 + 15n2 + log(n)
√
n. (67)

A similar analysis as the one above allows to conclude

that the total complexity of a second order method on the

symmetric and positive doubly stochastic manifold require,

respectively, the following number of iterations:

n3 + 8n2 + 17/2n+ log(n)
√
n (68)

4/3n3 + 13/2n2 + 7n. (69)

VII. SIMULATION RESULTS

This section attests the performance of the proposed frame-

work in efficiently solving optimization problems in which

n 60 70 80 90 100

CVX DPn 32.04 60.19 97.69 152.32 267.45

CG DPn 0.80 0.89 1.42 1.69 2.16

TR DPn 7.69 11.03 18.24 22.60 24.17
TABLE II

PERFORMANCE OF THE DOUBLY STOCHASTIC MULTINOMIAL MANIFOLD

AGAINST THE PROBLEM DIMENSION.

n 60 70 80 90 100

CVX SPn 8.66 16.08 26.12 39.95 59.57

CG SPn 0.18 0.31 0.34 0.44 0.53

TR SPn 0.61 1.15 1.43 2.07 2.50
TABLE III

PERFORMANCE OF THE SYMMETRIC STOCHASTIC MULTINOMIAL

MANIFOLD AGAINST THE PROBLEM DIMENSION.

the optimization variables is a doubly stochastic matrix. The

experiments are carried out using Matlab on an Intel Xeon

Processor E5-1650 v4 (15M Cache, 3.60 GHz) computer with

32GB 2.4 GHz DDR4 RAM. The optimization is performed

using the Matlab toolbox “Manopt” [36] and the conjugate

gradient (denoted by CG) and trust regions (denoted by TR)

algorithms.

The section is divided into three subsections. The first sub-

section tests the performance of the proposed solution against

a popular generic solver “CVX” [37] for each of the manifolds.

The section further shows the convergence of each manifold

in reaching the same solution by mean of regularization. The

second subsection solves a convex clustering problem [4]

and testifies the efficiency of the proposed algorithm against

a generic solver. Finally, the last subsection shows that the

proposed framework outperforms a specialized algorithm [5]

in finding the solution of a non-convex clustering problem.

A. Performance of the Proposed Manifolds

This section solves the following optimization problem:

min
X∈M

||A−X||2F , (70)

wherein the manifold M is the doubly stochastic, symmetric,

and definite stochastic multinomial manifold, respectively. For

each of the experiment, matrix A is generated by A = M+N

with M ∈ M belonging to the manifold of interest and N is

a zero-mean white Gaussian noise.

The optimization problem is first solved using the toolbox

CVX to obtain the optimal solution X
∗ with a predefined pre-

cision. The proposed algorithms are iterated until the desired

optimal solution X
∗ is reached with the same precision and the

total execution time is displayed in the corresponding table.

Table II illustrates the performance of the proposed method

in denoising a doubly stochastic matrix against the problem

dimension. The table reveals a significant gain in the simu-

lation time ranging from 39 to 123 fold for the first order
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n 60 70 80 90 100

CVX SP
+
n 5.43 11.39 22.84 33.77 53.79

CG SP
+
n 0.17 0.18 0.21 0.28 0.34

TR SP
+
n 0.58 0.78 0.93 1.32 1.90

TABLE IV
PERFORMANCE OF THE DEFINITE SYMMETRIC STOCHASTIC

MULTINOMIAL MANIFOLD AGAINST THE PROBLEM DIMENSION.

method and from 4 to 11 fold for the second order algorithm

as compared with the generic solver. The gain in performance

can be explained by the fact that the proposed method uses

the geometry of the problem efficiently unlike generic solvers

which convert the problem in a standard form and solve it

using standard methods. The second order method performs

poorly as compared with the first order method due to the fact

that the expression of the Riemannian Hessian is complex to

compute.

Table III shows the simulation time of the symmetric doubly

stochastic multinomial manifold against the problem size. One

can note that the gain is more important than the one in

Table II. Indeed, as shown in the complexity analysis section,

the symmetric manifold enjoys a large dimension reduction

as compared with the doubly stochastic one which makes

the required ingredients easier to compute. One can note that

the computation of the Riemannian Hessian of the symmetric

stochastic manifold is more efficient that the doubly stochastic

manifold which is reflected in a better performance against the

conjugate gradient algorithm.

Table IV displayed similar performance in the positive sym-

metric doubly stochastic multinomial manifold. The proposed

definite multinomial manifold efficiently finds the solution.

This is due to the fact that the optimal solution does not

represent vanishing entries or eigenvalues as pointed out in

Section V which makes the retraction efficient. Such condition

being not fulfilled in the upcomming couple of subsections,

the performance of the positive definite manifold is omitted

and a relaxed version using the symmetric manifold and

regularization is presented.

The rest of the subsection confirms the linear and quadratic

convergence rate behaviors of the proposed method by plotting

the norm of the gradient against the iteration number of each

of the manifolds and algorithms. For each of the manifolds,

an optimization problem is set up using regularizers is order

to reach the optimal solution to optimization problem (70)

with M = SP+
n . The definition of the regularized objective

functions is delayed to the next subsection for the more

interesting clustering problem. Since the complexity of each

step depends on the manifold, optimization problem, and used

algorithm, nothing is concluded in this subsection about the

efficiency of the algorithm in reaching the same solution.

Figure 4 plots the convergence rate of the first order method

using the doubly stochastic, symmetric, and positive mani-

folds. The figures clearly shows that the conjugate gradient

algorithm exhibits a linear convergence rate behavior similar

to the one of unconstrained optimization. This is mainly due

to the fact that the Riemannian optimization approach convert

a constrained optimization into an unconstrained one over a

constrained set.
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Fig. 4. Convergence rate of the conjugate gradient algorithm on the various
proposed manifolds against the iteration number for a high dimension system
n = 1000.
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Fig. 5. Convergence rate of the trust region method on the various proposed
manifolds against the iteration number for a high dimension system n =
1000.

Figure 5 shows that the trust region method has a super

linear, i.e., quadratic, convergence behavior with respect to

the iteration number. The figure particularly show that the

quadratic rate is achieved after a number of iterations which

can be explained by the fact that our implementation uses

a general retraction instead of the optimal (and complex)

Exponential map.

B. Similarity Clustering via Convex Programming

This section suggests using the proposed framework to

solve the convex clustering problem [4]. Given an entry-wise

non-negative similarity matrix A between n data points, the

goal is to cluster these data points into r clusters. Similar

to [4], the matrix is generated by assuming a noisy block

stochastic model with 3 blocks, a connection probability of

0.7 intra-cluster and 0.2 inter-clusters, and a noise variance of
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n 30 60 90 120 150

CVX SP
+
n 90.53 383.69 881.49 1590.41 2499.86

CG SPn 90.53 383.67 881.44 1590.33 2499.74

TR SPn 90.77 384.02 881.98 1590.90 2500.36

CG DPn 90.53 383.66 881.46 1590.32 2499.76

TR DPn 90.87 384.15 881.92 1590.58 2500.06

Fig. 6. Performance of the doubly stochastic and symmetric multinomial
manifolds in solving the convex clustering problem in terms of running time
and objective cost.

0.2. Under the above conditions, the reference guarantees the

recovery of the clusters by solving the following optimization

problem:

min
X∈SPn

X�0

||A−X||2F + λTr(X), (71)

wherein λ is the regulizer parameter whose expression is

derived in [4]. The optimal solution to the above problem

is a block matrix (up to a permutation) of rank equal to the

number of clusters. Due to such rank deficiency of the optimal

solution, the definite positive manifold cannot be used to solve

the above problem. Therefore, we reformulate the problem on

SPn by adding the adequate regulizers as below:

min
X∈SPn

||A−X||2F + λTr(X) + ρ(||X||∗ − Tr(X)), (72)

wherein ρ is the regularization parameter. The expression of

such regulizer can be obtained by expressing the Lagrangian

of the original problem and deriving the expression of the

Lagrangian multiplier. However, this falls outside the scope

of this paper. Clearly, the expression ||X||∗ − Tr(X) =
∑n

i=1 |λi| − λi is positive and equal to zero if and only if

all the eigenvalues are positive which concludes that X is

positive. Similarly, the problem can be reformulated on DPn

as follows:

min
X∈SPn

f(X) + ρ(||X||∗ − Tr(X)) + µ(||X−X
T ||2F ), (73)

where f(X) is the original objective function in (71) regular-

ized with ρ and µ to promote positiveness and symmetry.

Figure 6 plots the running time required to solve the convex

clustering problem and show the achieved original cost (71)

for the different optimization methods. Clearly, the proposed

Riemannian optimization algorithms largely outperform the

standard approach with gains ranging from 15 to 665 fold
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Fig. 7. Performance of the positive and symmetric multinomial manifolds in
solving the non-convex clustering problem against the Relaxed MM algorithm.

for the first order methods. The precision of the algorithms is

satisfactory as they achieve the CVX precision in almost all

experiments. Also note that using the symmetric multinomial

manifold produces better results. This can be explained by the

fact that not only the objective function (72) is simpler than

(73) but also by the fact that the manifold contains less degrees

of freedom which makes the projections more efficient.

C. Clustering by Low-Rank Doubly Stochastic Matrix Decom-

position

This last part of the simulations tests the performance of the

proposed method for clustering by low-rank doubly stochastic

matrix decomposition in the setting proposed in [5]. Given

a similarity matrix as in the previous section, the authors in

the above reference claim that a suitable objective function to

determine the clusters structure is the following non-convex

cost:

min
X∈SPn

X�0

−
∑

i,j

Aij log

(

∑

k

XikXjk
∑

v Xvk

)

− (α− 1)
∑

ij

log (Xij)

The authors propose a specialized algorithm, known as

“Relaxed MM”, to efficiently solve the problem above. This

section suggests solving the above problem using the positive

and the symmetric multinomial manifold (with the proper

regularization as shown in the previous subsection). In order to

reach the same solution, all algorithms are initialized with the

same value. The objective function achieved by the algorithm

of [5] is taken as a reference, and the other algorithms stop

as soon as their cost drops below such value.

Figure 7 illustrates the running time of the different algo-

rithms in order to reach the same solution. The plot reveals that

the proposed framework is highly efficient in high dimension

with significant gain over the specialized algorithm. The

performance of the first order method is noticeably better

than the second order one. This can be explained by the

complexity of deriving the Riemannian Hessian. In practical

implementations, one would use an approximation of the
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Hessian in a similar manner as the quasi-Newton methods,

e.g., BHHH, BFGS. Finally, one can note that the symmetric

multinomial performs better than the positive one which can

be explained by the fact that the optimal solution has vanishing

eigenvalues which make the retraction on the cone of positive

matrices non-efficient.

VIII. CONCLUSION

This paper proposes a Riemannian geometry-based frame-

work to solve a subset of convex (and non-convex) opti-

mization problems in which the variable of interest rep-

resents a multidimensional probability distribution function.

The optimization problems are reformulated from constrained

optimizations into unconstrained ones over a restricted search

space. The fundamental philosophy of the Riemannian opti-

mization is to take advantage of the low-dimension manifold in

which the solution lives and to use efficient unconstrained op-

timization algorithms while ensuring that each update remains

feasible. The geometrical structure of the doubly stochastic,

symmetric stochastic, and the definite multinomial manifold

is studied and efficient first and second order optimization

algorithms are proposed. Simulation results reveal that the

proposed approach outperforms conventional generic and spe-

cialized solvers in efficiently solving the problem in high

dimensions.

APPENDIX A

COMPUTATION OF THE TANGENT SPACE

This section computes the tangent space of the different

manifold of interest in this paper. Recall that the tangent space

TxM of the manifold M at x is the d-dimensional vector

space generated by the derivative of all curves going through

x. Therefore, the computation of such tangent space requires

considering a generic smooth curve γ(t) : R −→ M such as

γ(0) = x and γ(t) ∈ M for some t in the neighborhood of

0. The evaluation of the derivative of such parametric curves

at the origin generates a vector space D such that TxM ⊆ D.

Two approaches can be used to show the converse. If the

dimension of the manifold is known apriori and match the

dimension of D, then TxM = D. Such approach is referred

as dimension count. The second and more direct method is

to consider each element d ∈ D and construct a smooth

curve γ(t) ∈ M for some t ∈ I ⊂ R such that γ(0) = x
and γ′(0) = d. For illustration purposes, the first and second

subsections use the former and latter approaches, respectively.

A. Proof of Preposition 1

Recall the definition of the doubly stochastic manifold

DPn =
{

X ∈ Rn×n
∣

∣Xij > 0, X1 = 1, X
T
1 = 1

}

. Con-

sider an X ∈ DPn and let X(t) be a smooth curve such that

X(0) = X. Since X(t) ∈ DPn for some t in the neighborhood

of the origin, then the curve satisfies:

X(t)1 = 1 ⇒ Ẋ(t)1 = 0 (A.1)

(X(t))T1 = 1 ⇒ (Ẋ(t))T1 = 0 (A.2)

Differentiating both equations above concludes that the tangent

space is a subset of

TXDPn ⊆
{

Z ∈ R
n×n

∣

∣Z1 = 0, Z
T
1 = 0

}

. (A.3)

From the Birkhoff-von Neumann theorem, the degrees of

freedom of doubly stochastic matrices is (n− 1)2. Similarly,

one can note that the above space is generated by 2n − 1
independent linear equations (the sum of the last column can

be written as the difference of the sum of all row and the some

of all except the last column). In other words, the dimension of

the space is n2− (2n−1) = (n−1)2. Therefore, a dimension

count argument concludes that the tangent space has the above

expression.

B. Proof of Preposition 2

The symmetric multinomial manifold has the following ex-

pression SPn =
{

X ∈ Rn×n
∣

∣Xij > 0, X1 = 1, X = X
T
}

.

Therefore, a smooth curve X(t) that goes through a point

X ∈ SPn satisfies:

X(t) = (X(t))T ⇒ Ẋ(t) = (Ẋ(t))T (A.4)

X(t)1 = 1 ⇒ Ẋ(t)1 = 0 (A.5)

which concludes that the tangent space TXDPn is included in

the set
{

Z ∈ Sn

∣

∣Z1 = 0
}

. Now consider Z in the above set

and the smooth curve γ(t) = X+ tZ. Clearly, γ(t) = (γ(t))T

for all t ∈ R. Furthermore, we have:

γ(t)1 = X1+ tZ1 = X1 = 1 (A.6)

Finally, since Xij > 0 defines an open set, then there exists

an interval I ⊂ R such that γ(t)ij > 0. Finally, it is clear that

γ(0) = X and γ′(0) = Z which concludes that:

TXSPn =
{

Z ∈ Sn

∣

∣Z1 = 0
}

. (A.7)

APPENDIX B

ORTHOGONAL PROJECTION ON THE TANGENT SPACE

This section describes the general procedure to obtain the

orthogonal projection to manifolds of interest in this paper. For

a manifold M embedded in a vector space E , the orthogonal

projection Πx(z) projects a point z ∈ E onto the tangent space

TxM for some x ∈ M. The term orthogonal herein refers to

the fact that the difference z−Πx(z) is orthogonal to the space

TxM for the inner product 〈., .〉x. Therefore, the first step in

deriving the expression of the orthogonal projection onto the

tangent space TxM is to determine its orthogonal complement

T ⊥
x M defined as:

T ⊥
x M = {z⊥ ∈ E | 〈z⊥, z〉x, ∀ z ∈ TxM} (B.1)

As the dimension of T ⊥
x M can be written as dim(E) −

dim(TxM), a typically method for deriving the expression

of the orthogonal complement is to find a generating family

for the space and check its dimension. Now, let Π⊥
x (z) be the

orthogonal projection onto the orthogonal complement T ⊥
x M,

each point in the ambient space can be decomposed as:

z = Πx(z) + Π⊥
x (z), ∀ z ∈ E , ∀ x ∈ M. (B.2)

Using the expressions of both the tangent set and its com-

plement, the above equation allows deriving the expressions of

both projections simultaneously. The next subsections compute

the orthogonal projection on the set of double stochastic and

symmetric multinomial manifolds using the described method.
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A. Proof of Theorem 1

As stated earlier, the first step in deriving the expression of

the orthogonal projection onto the tangent space, one needs to

derive the expression on the orthogonal complement which is

given in the following lemma.

Lemma 4. The orthogonal complement of the tangent space

of the doubly stochastic multinomial has the following expres-

sion:

T ⊥
X DPn =

{

Z
⊥ ∈ R

n×n
∣

∣Z
⊥ = (α1T + 1βT )⊙X

}

(B.3)

for some α, β ∈ Rn.

Proof. As stated in the introduction of the section, the com-

putation of the orthogonal complement of the tangent space

requires on deriving a basis for the space and counting the

dimension. Let Z⊥ ∈ T ⊥
X
DPn and Z ∈ TXDPn, the inner

product can be written as:

〈Z⊥,Z〉X = Tr((Z⊥ ⊘X)ZT )

= Tr((α1T + 1βT )ZT )

= αT
Z1+ βT

Z
T
1 (B.4)

But Z1 = Z
T
1 = 0 by definition of the tangent space.

Therefore, we have 〈Z,Z⊥〉x, ∀ Z ∈ TXDPn.

Finally, one can note that the dimension of set is 2n − 1
which is the correct dimension for T ⊥

X
DPn. Therefore, the

derived set is the orthogonal complement of the tangent space.

Let Z ∈ Rn×n be a vector in the ambient space and X ∈
DPn. The expression of the projections are obtained using the

following decomposition:

Z = ΠX(Z) + Π⊥
X
(Z)

Z1 = ΠX(Z)1+Π⊥
X(Z)1 (B.5)

However, by definition of the tangent space, the first term in

the right hand side in the above equation vanishes. Similarly,

from Lemma 4, the second term can be replaced by its (α1T +
1βT )⊙X. Therefore the first equation implies

Z1 = ((α1T + 1βT )⊙X)1
n
∑

j=1

Zij =

n
∑

j=1

(αi + βj)Xij , 1 ≤ i ≤ n

n
∑

j=1

Zij = αi +

n
∑

j=1

βjXij , 1 ≤ i ≤ n

Z1 = α+Xβ (B.6)

A similar argument allows to conclude that ZT
1 = X

Tα+β.

Grouping the equations above gives the following system of

equations:
(

Z1

Z
T
1

)

=

(

I X

X
T

I

)(

α
β

)

(B.7)

Even though the matrix

(

I X

X
T

I

)

is rank deficient to

the present of the null vector at

(

1

−1

)

, the systems admits

infinitely many solutions. Indeed, from the orthogonal com-

plement identification of the range and null space of a matrix

A, i.e., R(A) = N⊥(A), it is sufficient to show that the

vector of interest is orthogonal to the null space of the matrix

of interest as follows:
(

Z1

Z
T
1

)T (

1

−1

)

= 1
T
Z
T
1− 1

T
Z1

= 1
T
Z1− 1

T
Z1 = 0 (B.8)

A particular solution to the system is the solve for β as

a function of α and solve for α which gives the following

solution

α = (I−XX
T )†(Z−XZ

T )1 (B.9)

β = Z
T
1−X

Tα (B.10)

Finally, rearranging the terms in (B.5) allows to conclude

that the orthogonal projection onto the tangent space has the

following expression

ΠX(Z) = Z− (α1T + 1βT )⊙X, (B.11)

wherein α and β are obtained according to (B.10) or more

generally (B.7).

B. Proof of Theorem 4

The proof of this theorem is closely related to the proof of

Theorem 1. Indeed, the next section shows that the orthogonal

projection on the symmetric double stochastic multinomial

manifold is a special case of the projection on the doubly

stochastic multinomial manifold. This section provides a more

direct proof that does not reply on the previously derived

result. The expression of the orthogonal complement of the

tangent space is given in the following lemma.

Lemma 5. The orthogonal complement of the tangent space of

the symmetric multinomial can be represented by the following

set:

T ⊥
X SPn =

{

Z
⊥ ∈ Sn

∣

∣Z
⊥ = (α1T + 1αT )⊙X

}

(B.12)

for some α ∈ Rn.

Proof. The proof of this lemma uses similar steps like the one

of Lemma 4 and thus is omitted herein.

Let Z ∈ Rn×n be a vector in the ambient space and X ∈
DPn. The decomposition of Z gives the following:

Z = ΠX(Z) + Π⊥
X
(Z)

Z1 = ΠX(Z)1 +Π⊥
X
(Z)1

Z1 = ((α1T + 1αT )⊙X)1

Z1 = α+Xα = (I+X)α

α = (I+X)−1
Z1, (B.13)

wherein the steps of the computation are obtained in a sim-

ilar fashion as the one in (B.6). Therefore, the orthogonal

projection on the tangent set of symmetric doubly stochastic

multinational manifold is given by:

ΠX(Z) = Z− (α1T + 1αT )⊙X, (B.14)

with α being derived in (B.13).

C. Relationship Between the Orthogonal Projections

One can note that the projection onto the tangent space of

the symmetric multinomial is a special case of the projection

onto the tangent space of the doubly stochastic manifold when

both the point on the manifold X and the ambient vector Z
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are symmetric. In other words, the projection can be written

as

ΠX(Z) = Z− (α1T + 1βT )⊙X, (B.15)

with

α = (I−XX
T )†(Z−XZ

T )1 (B.16)

β = (ZT − (X−T −X)†(Z−XZ
T ))1 (B.17)

and the additional identities X = X
T and Z = Z

T . Using the

economic eigenvalue decomposition of the symmetric matrix

X = UΛU
T , vector α can be expressed as:

α = (I−XX
T )†(Z−XZ

T )1

= (I−XX
T )†Z1− (I−XX

T )†XZ
T
1

= (I−X
2)†Z1− (X−1 −X)†Z1

= U
[

(I−Λ
2)−1 − (Λ−1 −Λ)−1

]

U
T
Z1 (B.18)

The inner matrix is a diagonal one with diagonal entries equal

to:
1

1− λ2
− 1

1

λ
− λ

=
1

1− λ2
− λ

1− λ2
=

1

1 + λ
(B.19)

Therefore, (I − Λ
2)−1 − (Λ−1 − Λ)−1 = (I + Λ)−1 which

gives the final expression of α as:

α = (I+X)−1
Z1. (B.20)

Finally, the expression of β is given by:

β = Z
T
1−X

Tα = (I−X(I+X)−1)Z1

= U
[

I−Λ(I+Λ)−1)
]

U
T
Z1, (B.21)

with the inner matrix equals to:

1− λ
1

1 + λ
=

1

1 + λ
⇒ (I−X(I+X)−1) = (I+X)−1

Therefore, we conclude that β = (I+X)−1
Z1 = α which is

in accordance with the result derived in Theorem 4.

Remark 5. Note that the link between both expressions can be

obtained easier by assuming that (I−XX
T ) is invertible. In-

deed, for example the expression of α can be easily computed

as:

α = (I−XX
T )−1(Z−XZ

T )1

= (I−XX)−1(Z−XZ)1

= (I+X)−1(I−X)−1(I−X)Z1

= (I+X)−1
Z1 (B.22)

However, due to eigenvalue at 1 from X1 = 1, such proof is

not valid and we need to use the pseudo-inverse as shown in

the section above.

APPENDIX C

RETRACTION ON EMBEDDED MANIFOLDS

This section exploits the vector space structure of the

embedding space to design efficient, i.e., low-complexity,

retractions on the manifolds of interest in this paper. The

construction of the retraction rely on the following theorem

whose proof can be found in [13].

Theorem 6. Let M be an embedded manifold of the Euclidean

space E and let N be an abstract manifold such that dim(M)

+ dim(N ) = dim(E). Assume that there is a diffeomorphism

φ : M×N −→ E∗

(F,G) 7−→ φ(F,G) (C.1)

where E∗ is an open subset of E , with a neutral element I ∈ N

satisfying

φ(F, I) = F, ∀ F ∈ M (C.2)

Under the above assumption, the mapping

Rx : TxM −→ M
ξx 7−→ Rx(ξx) = π1(φ

−1(x+ ξx)), (C.3)

where π1 : M×N −→ M : (F,G) 7−→ F is the projection

onto the first component, defines a retraction on the manifold

M for all x ∈ M and ξx in the neighborhood of 0x.

The upcoming sections take advantage of the matrix decom-

position to design a mapping φ. Interestingly, the inverse of

the map φ turns out to be straightforward to compute even

though the projection on the doubly stochastic matrices space

is challenging.

A. Proof of Theorem 2

This subsection uses the Sinkhorn’s theorem [32] to derive

an expression for the mapping φ. The Sinkhorn’s theorem

states:

Theorem 7. Let A ∈ R
n×n

be an element-wise positive

matrix. There exists two strictly positive diagonal matrices D1

and D2 such that D1AD2 is doubly stochastic.

Due the invariance of the above theorem for scaling D1 and

D2, the rest of the paper assumes that (D1)11 = 1 without

loss of generality. Define the φ mapping as follows:

φ : DPn ×R
2n−1 −→ R

n×n

(

A,

(

d1
d2

))

7−→ diag(1, d1)Adiag(d2). (C.4)

Note that R
2n−1

is an open subset of R2n−1 and thus is a

manifold by definition. Similarly, R
n×n

is an open subset of

Rn×n. Finally, dim(DPn)+dim(R
2n−1

) = (n−1)2+2n−1 =
n2 = dim(Rn×n). Also, the all one element of R2n−1 satisfies

φ(A,1) = A.

Clearly, the mapping φ is smooth by the smoothness of the

matrix product. The existence of the inverse map is guaranteed

by the Sinkhorn’s theorem. Such inverse map is obtained

through the Sinkhorn’s algorithm [32] that scales the rows

and columns of the matrix, i.e., the inverse map is smooth.

Finally, we conclude that φ represents a diffeomorphism.

Using the result of Theorem 6, we conclude that

π1(φ
−1(X + ξX)) is a valid retraction for ξX in the neigh-

borhood of 0X, i.e., (X + ξX) ∈ R
n×n

which can explicitly

written as Xij > − (ξX)ij , 1 ≤ i, j ≤ n. Using the property

of the manifold and its tangent space, the inverse map reduce

the identity. Indeed, it holds true that:

(X+ ξX)1 = X1+ ξX1 = 1+ 0 = 1 (C.5)

(X+ ξX)T1 = X
T
1+ ξTX1 = 1+ 0 = 1 (C.6)

Therefore, the canonical retraction is defined by RX(ξX) =
X+ ξX.
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B. Proof of Corollary 1

The proof of this corollary follows similar steps than the

one of Theorem 2. However, instead of using the Sinkhorn’s

theorem to find the adequate matrix decomposition, we use its

extension to the symmetric case known as the DAD theorem

[34] given below:

Theorem 8. Let A ∈ Sn be a symmetric, element-wise

positive matrix. There exists a strictly positive diagonal matrix

D such that DAD is symmetric doubly stochastic.

With the theorem above, define the map φ as follows:

φ : SPn ×R
n −→ Sn

(A, d) 7−→ diag(d)Adiag(d). (C.7)

Similar to the previous proof, Sn is an open subset of the

vector space Sn and R
n

is a manifold. The dimension of the

left hand side gives:

dim(SPn) + dim(R
n
) =

n(n− 1)

2
+ n

=
n(n+ 1)

2
= dim(Sn). (C.8)

Using similar techniques as the ones in Theorem 2, we can

conclude that φ is a diffeomorphism whose inverse is ensured

by the DAD algorithm. Finally, one can note that the projection

onto the set of symmetric double stochastic matrices leaves

X+ ξX unchanged for ξX in the neighborhood of 0X.

APPENDIX D

RIEMANNIAN HESSIAN COMPUTATION

Recall that the Riemannian Hessian is related to the Rie-

mannian connection and Riemnanian gradient through the

following equation:

hess f(X)[ξX] = ∇ξXgrad f(X), ∀ ξX ∈ TXM. (D.1)

Furthermore, the connection ∇ηX
ξX on the submanifold is

given by the Levi-Civita connection ∇ηX
ξX on Rn×n by

∇ηX
ξX = ΠX(∇ηX

ξX). Substituting in the expression of the

Riemannian Hessian yields:

hess f(X)[ξX] = ΠX (D(grad f(X))[ξX])

− 1

2
ΠX ((grad f(X)⊙ ξX)⊘X)

= ΠX (D(grad f(X))[ξX]) (D.2)

− 1

2
ΠX ((ΠX(Grad f(X)⊙X)⊙ ξX)⊘X)

Apart for the term D(grad f(X))[ξX], all the other terms

in the above equation are available. Therefore, one only needs

to derive the expression of D(grad f(X)[ξX] to obtain the

mapping from the Euclidean gradient and Hessian to their

Riemannian counterpart. For ease of notation, the section uses

the short notation ḟ [ξ] to denote the directional derivative

D(f)[ξ] (also denoted by ξf in the Riemannian geometry

community).The computation of the directional derivative of

the Riemannian gradient uses the result of the following

proposition:

Proposition 2. Let f and g be two matrix functions, i.e., f, g :
Rn×n −→ Rn×n. The directional derivative of the Hamadard

product f ⊙ g and the matrix product fg are given by:

D(f ⊙ g)[ξ] = ḟ [ξ]⊙ g + f ⊙ ġ[ξ] (D.3)

D(fg)[ξ] = ḟ [ξ]g + f ġ[ξ] (D.4)

Proof. The matrices identities and differentiation, including

the above identities, are summarized in the following reference

[38].

The next subsections derive such directional derivative for

the double stochastic and the symmetric multinomial manifold

to derive the final expression of the Riemannian Hessian. In

both subsections, let γ denote Grad f(X)⊙X.

A. Proof of Theorem 3

Recall that the projection on the set of doubly stochastic

multinomial manifold is given by:

ΠX(Z) = Z− (α1T + 1βT )⊙X

α = (I−XX
T )†(Z−XZ

T )1

β = Z
T
1−X

Tα (D.5)

Therefore, the directional derivative can be expressed as:

D(grad f(X))[ξX] = D(ΠX(γ)[ξX]

= D(γ − (α1T + 1βT )⊙X)[ξX]

= D(γ)[ξX]− D((α1T + 1βT )⊙X)[ξX]

= γ̇[ξX]− (α̇[ξX]1T + 1β̇T [ξX])⊙X

− (α1T + 1βT )⊙ ξX (D.6)

with

• γ̇[ξX] = D(γ)[ξX] can be expressed as:

γ̇[ξX] = D(Grad f(X))[ξX]⊙X+ Grad f(X)⊙ ξX

= Hess f(X)[ξX]⊙X+ Grad f(X)⊙ ξX
• α̇[ξX] = D(α)[ξX] can be computed as follows:

α̇[ξX] = D((I−XX
T )†(γ −XγT )1)[ξX] (D.7)

= D((I−XX
T )†)[ξX](γ −XγT )1

+ (I−XX
T )†(γ̇[ξX]− ξXγ −Xγ̇T [ξX])1,

with the term D((I−XX
T )†)[ξX] being derived below.

• β̇[ξX] = D(β)[ξX] can be computed as follows:

β̇[ξX] = D(γT
1−X

Tα)[ξX]

= γ̇T [ξX]1− ξT
X
α−X

T α̇[ξX] (D.8)

In order to compute D((I−XX
T )†)[ξX], first introduce the

following lemma:

Lemma 6. Let A be an n×n matrix with a left pseudo inverse

A
†. The left pseudo inverse of (A+BC) is given by:

(A+BC)† = A
† −A

†
B(I+CA

†
B)†CA

† (D.9)

Proof. The above identity is similar to the Kailath variant of

Sherman-Morrison-Woodbury formula [39] for an invertible

matrix A. The proof is given by a simple left multiplication

as follows:

(A+BC)†(A+BC) = A
†
A−A

†
B(I+CA

†
B)†CA

†
A

+A
†
BC−A

†
B(I+CA

†
B)†CA

†
BC (D.10)

= I−A
†
B((I+CA

†
B)†(I+CA

†
B)C−C) = I
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Using the identity above, the pseudo inverse of the perturbed

(I−XX
T )† along ξX is given by:

(I− (X+ tξX)(X+ tξX)T )† = A[ξX]†

= A
† + tA†(I− tCA

†)†CA
† (D.11)

wherein A = I − XX
T , B = −t, and C = XξT

X
+

ξXX
T + tξXξT

X
in the above inversion lemma. Therefore, the

directional derivative can obtained by:

D((I−XX
T )†)[ξX] = lim

t→0

A[ξX]† −A
†

t

= lim
t→0

tA†(I− tCA
†)†CA

†

t
= lim

t→0
A

†(I− tCA
†)†CA

†

= A
†(lim

t→0
C)A† (D.12)

= (I−XX
T )†(XξT

X
+ ξXX

T )(I−XX
T )†

B. Proof of Corollary 3

The proof of this corollary follows similar steps as the one

of Theorem 3. Recall that the projection on the symmetric

multinomial manifold is given by:

ΠX(Z) = Z− (α1T + 1αT )⊙X

α = (I+X)−1
Z1. (D.13)

Therefore, using a technique similar to Theorem 3, the direc-

tional derivative can be expressed as:

D(grad f(X))[ξX] = γ̇[ξX]− (α̇[ξX]1T + 1α̇T [ξX])⊙X

− (α1T + 1αT )⊙ ξX (D.14)

with γ̇[ξX] = Hess f(X)[ξX] ⊙ X + Grad f(X) ⊙ ξX.

The computation of the directional derivative of α requires

differentiating (I + X)−1 = A
−1. Using the Kailath variant

of Sherman-Morrison-Woodbury formula [39], the inverse is

given by:

(I+X+ tξX)−1 = A
−1 −A

−1t(I+ tξXA
−1)−1ξXA

−1.
(D.15)

Therefore, the directional derivative can be expressed as:

D((I+X)−1)[ξX] = lim
t→0

A[ξX]−1 −A
−1

t

= lim
t→0

−A
−1t(I+ tξXA

−1)−1ξXA
−1

t
= −(I+X)−1ξX(I+X)−1 (D.16)

Hence, we obtain:

α̇[ξX] =
(

(I+X)−1γ̇[ξX]− (I+X)−1ξX(I+X)−1γ
)

1.
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