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1 INTRODUCTION

ABSTRACT

The presence of planets in binary systems poses interesting problems for planet formation
theories, both in cases where planets must have formed in very compact discs around the
individual stars and where they are located near the edge of the stable circumbinary region,
where in situ formation is challenging. Dust dynamics is expected to play an important role
in such systems, since dust trapping at the inner edge of circumbinary discs could aid in situ
formation, but would simultaneously starve the circumstellar discs of the solid material needed
to form planets. Here we investigate the dynamics of dust in binary systems using smoothed
particle hydrodynamics. We find that all our simulations tend towards dust trapping in the
circumbinary disc, but the time-scale on which trapping begins depends on binary mass ratio
() and eccentricity as well as the angular momentum of the infalling material. Forq 0.1, we
find that dust can initially accrete on to the circumstellar discs, but as the circumbinary cavity
grows in radius, dust eventually becomes trapped in the circumbinary disc. For ¢ = 0.01, we
find that increasing the binary eccentricity increases the time required for dust trapping to
begin. However, even this longer time-scale is likely to be shorter than the planet formation
time-scale in the inner disc and is insufficient to explain the observed pre-transitional discs.
This indicates that increase in companion eccentricity alone is not enough to allow significant
transfer of solids from the outer to the inner disc.

Key words: accretion, accretion discs —hydrodynamics—planets and satellites: formation—
protoplanetary discs —binaries: general.

locations or do they form elsewhere and tend to migrate to their
observed locations?

The discovery of circumbinary planets has required the extension of
planet formation theories to a new dynamical regime and presented
numerous challenges to the existing theoretical picture. One feature
is particularly notable, i.e. circumbinary planets tend to orbit just
beyond the dynamical stability limits of the binary stars (Welsh et al.
2012; Martin & Triaud 2014; Martin, Mazeh & Fabrycky 2015).
The semimajor axes of these planets is a few 10s of per cent larger
than the minimum distance of a long-term stable planet from the
binary’s centre of mass (Holman & Wiegert 1999). This observation
has led to a debate about the origin of such a dynamical arrangement
and posed an interesting question for planet formation theories. Do
the circumbinary planets preferentially form near their observed
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The preferential formation of circumbinary planets at their
observed locations (i.e. in situ) is extremely challenging due to
their close proximity to the binary stars. The dynamical influence
of the binary in this region is strong and tends to pump up the
eccentricities of planet-forming material (Moriwaki & Nakagawa
2004; Paardekooper et al. 2012; Meschiari 2012a). These large ec-
centricities result in high-velocity collisions between planetesimals
(Marzari & Scholl 2000; Scholl, Marzari & Thébault 2007), causing
their catastrophic disruption. This prohibits growth to the 100 km
size range, which is more resilient to catastrophic collisions. Al-
though apsidal alignment and slight mutual inclination between the
binary and the disc can reduce the severity of this problem by reduc-
ing relative collision velocities, in situ formation of circumbinary
planets remains somewhat problematical (Marzari & Scholl 2000;
Xie & Zhou 2009; Lines et al. 2014; Bromley & Kenyon 2015).
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The possibility of ex situ formation and subsequent migration of
circumbinary planets to their observed locations has received more
support. Further out in the circumbinary disc (i.e. well beyond the
circumbinary cavity so typically at >10 au for binary semimajor
axis 1 au; Moriwaki & Nakagawa 2004; Scholl et al. 2007; Rafikov
2013), the dynamical environment would seem as hospitable for
planet formation as it is in discs around single stars. However, one
issue faced by planet formation at large distances from the binary
is the prohibitively long formation time-scale associated with the
longer orbital time-scales at such distances. Intermediate regions
are either subject to strong perturbations by the binary (Moriwaki &
Nakagawa 2004) or turbulence (Meschiari 2012b). Inclusion of disc
self-gravity helps to shift the inner boundary of the region where
planetesimal accretion is viable slightly further in (though not to
the current locations of the planets in observed systems around au
scale binaries), as it dampens the growth of planetesimal eccentricity
and lowers collisional velocities (Rafikov 2013; Silsbee & Rafikov
2015).

Even if planetary cores can form in the outer disc, there is still
the challenge of migrating them and piling them up just beyond the
stability limit. Migration in a circumbinary disc could happen via
the standard Type | or Il mechanisms but it needs to halt when
planetary cores reach the observed planetary locations (Nelson
2003; Pierens & Nelson 2007; Meschiari 2012a; Silsbee & Rafikov
2015). Pierens & Nelson (2007) suggested that the pressure maxi-
mum created beyond the inner edge of the truncated circumbinary
disc could slow down or halt the inward migration of a planetary
core (see also Masset et al. 2006). While current simulations do
not yet reproduce the observed location of planets (Pierens &
Nelson 2013; Kley & Haghighipour 2014; Mutter, Pierens & Nelson
2017), additional physics that is typically neglected such as radiative
transport, magnetic fields, and disc self-gravity may help to alleviate
the discrepancy. Thus formation at larger distances, followed by
inward migration that stalls near the cavity edge remains a possible
explanation for the origin of circumbinary planets.

In situ growth of planetary embryos may turn out to be important,
if dust can be effectively trapped in the pressure maximum at the
inner edge of the circumbinary disc. First, if sufficient density of
dust can build up, the dust might collapse directly to form planetary
seeds surpassing the metre-sized barrier, perhaps further aided by
the streaming instability (Youdin & Goodman 2005; Johansen et al.
2007). Second, a high density of dust would lead to accelerated
growth of planetesimals via pebble accretion (Ormel & Klahr
2010; Lambrechts & Johansen 2012). Through this mechanism
planetary seeds could perhaps grow to sizes where they can survive
high-velocity collisions, while the cavity edge prevents them from
migrating further in the disc (e.g. Meschiari 2014).

The trapping of dust in pressure maxima is well established in
quiescent discs, where super-Keplerian gas velocity in regions with
positive pressure gradient and sub-Keplerian gas velocity in regions
with negative pressure gradients drives dust towards the pressure
maximum (Whipple 1972; Weidenschilling 1977; Haghighipour &
Boss 2003). Since giant planets open up deep gaps in protoplanetary
discs, they create pressure maxima at the outer edge of the gap
that can trap dust migrating from the outer disc (Paardekooper &
Mellema 2004; Rice et al. 2006). This may explain the origin
of transition discs with large cavities (e.g. Pinilla, Benisty &
Birnstiel 2012; Zhu et al. 2012), and has been invoked to explain
the relative lack of refractory materials in photospheres of young
Herbig stars with transitional discs (Folsom et al. 2012; Kama,
Folsom & Pinilla 2015). In fact, the trapping of dust is possible
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down to masses as low as 20 to 30 M (Lambrechts, Johansen &
Morbidelli 2014; Rosotti et al. 2016; Ataiee et al. 2018; Bitsch et al.
2018).

However, the extension of dust trapping in pressure maxima from
the planetary regime to binaries of mass ratio about q 0.1 is
not guaranteed. In the case of planets on circular orbits, the gas
remains on orbits that are close to circular, while at high mass ratio
the binary accretes through strong spiral streams (Artymowicz &
Lubow 1996; Bate & Bonnell 1997; Rozyczka & Laughlin 1997;
Gunther & Kley 2002). In this paper, we demonstrate that these
streams can under certain circumstances penetrate into the disc far
enough to carry dust with them, thereby disrupting the trapping of
dust. We study both circular and eccentric binary systems. The latter
are important because circumbinary planets are often found around
eccentric binaries and the behaviour of dust and gas transport in
these systems needs to be understood.

Dust trapping for eccentric orbits in the giant planet regime (q
0.01) is also of interest, particularly in the context of pre-transition
discs (Espaillat et al. 2010), where the presence of a warm inner disc
suggests that dust is transported across the gap. Eccentric planets
may provide a natural explanation for the wide gaps observed (e.g.
Cazzoletti etal. 2017), with very massive objects or multiple planets
otherwise required. We show that the time-scale over which the
gap opens and dust accretion stops is longer when the planetary
companion is eccentric and discuss the implications of this result
for pre-transition discs as well as planet formation interior to the
companion’s orbit.

The outline of the paper is as follows: in Section 2, we describe
the set-up of our simulations along with the physics included in our
study and the important quantities we choose to quantify and study.
Thereafter, we present the results of our simulations in Section 3
and discuss the implications of our findings in Section 4. Finally,
we summarize our work and suggest directions for future work in
Section 5.

2 SIMULATION SET-UP

We simulate the dynamics of gas and dust in the circumbinary and
both circumstellar discs using smoothed particle hydrodynamics
(SPH), using GADGET-2 modified to include dust species (Springel
2005; Booth, Sijacki & Clarke 2015; Booth & Clarke 2016). The
equations of motion for dust and gas, respectively, are given hy:

dVd (Vd - Vg) _

at = _T (r), 1)
dvg _ P _
E - ?g (r) =+ avisc- (2)

Here, dust and gas particles have masses my and my, densities pg
and pg, and local velocities vq and vy, respectively. P is gas pressure,

(r) is the gravitational potential of the binary (see appendix B) and
avisc IS acceleration due to artificial viscosity (see Springel 2005). In
our simulations we compute the drag coefficient assuming constant
Stokes number, St=ts (r),where (r) = GM/r3,the Keplerian
angular frequency due to the total mass of the binary, M.

The binary orbits in an anticlockwise direction and has a mass
ratio g = M,/My, total mass M = M; + M, semimajor axis a, and
eccentricity e. The simulations are run in the inertial frame centred
on the binary’s centre of mass. The stars are treated as sinks and
particles that come within 0.01a of either star are accreted on to it
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(Bate, Bonnell & Price 1995). The binary parameters are assumed
to be constant over the duration of the simulation and the stellar
gravitational softening length is set to 0.001a, chosen to be small
enough to ensure that the circumstellar discs are not affected by the
softening. We do not include the effects of disc self-gravity or the
back-reaction of the disc on the binary in our simulations. A globally
isothermal equation of state for the gas js used with a dimensionless
sound speed ¢s = 0.05 normalized to  GM/a (corresponding to a
disc aspect ratio H/R = 0.05(R/a)*2).

We use one set of particles to simulate the gas, and a second
set to simulate the dust, coupled by drag forces. We work in the
test-particle limit, where the influence of the dust on the gas is
neglected. A quintic spline is used, with the number of neighbours
set according to n = 1.2 (as defined by Price 2012), and the
gradients involved in the pressure and artificial viscosity terms
are computed using the integral-gradient SPH formulation as in
Booth & Clarke (2016) (see also Rosswog 2015). A linear artificial
viscosity parameter aspy = 1.5 is employed. For our chosen
parameters, this gives v = Ogpycsh/8 =9 x 10~°ha |, where
h is the smoothing length and  is the binary’s orbital frequency
(Lodato & Rice 2004). In the circumstellar discs,h  0.005-0.03 3,
which gives v 4 x 107°-3 x 10™*a? . In the circumbinary
disc,h  0.05a, which givesv 4 x 107*a? .

We follow Bate & Bonnell (1997) and Young, Baird & Clarke
(2015) and model the accretion on to the binary by injecting particles
at a large distance from the binary. We define the dimensionless
quantity, Rinj, as the radius where the particles are injected in units
of the binary semimajor axis. The particles are injected with a
specific initial angular momentum j that is ji,; times the binary’s
specific angular momentum ( GMa(l — €2)).

We inject the particle in such a way that an accretion disc builds
up over time in the simulations. To this end, we choose Ry = 10
for all our simulations apart from those with e = 0.3, for which we
choose a larger value of Ri,; = 20. The velocity of the particles is
set to ensure that the circularization radius, Rre = jiﬁj a(l—e?d)
(i.e. the radius that the gas particles would orbit at once their orbits
have circularized, assuming no exchange of angular momentum),
is large enough so that the gas circularizes before falling on to
the binary. However, since accretion rates on to the binary fall
with increasing R« We choose ji, to be as small as possible to
best resolve the accretion (Bate & Bonnell 1997). The injection
angular momentum ji,; not only affects the circularization radius
and accretion rate but also the subsequent evolution of the location
of the pressure maximum. For low-mass binaries (q = 0.01),
we inject particles with the same injection angular momentum
relative to the binary for all eccentricities. This allows us to
compare the relative time-scales of evolution and dust trapping
as a function of eccentricity alone. For higher mass ratios, we find
it necessary to increase the injection angular momentum when the
binary eccentricity is increased in order to form a circumbinary
disc.

Dust particles are injected at Rij qust = 7 (=10 for e = 0.3
simulations) after 50 tayn (tayn = b‘l) to allow time for the gaseous
circumbinary disc to build up. A smaller dust injection radius is
chosen to ensure that the dust particles have well-defined SPH
neighbours when they are injected, which are needed to compute
the drag force. We study moderately coupled dust particles, fixing
the Stokes number of the particles, St =t = 0.1. Here, t; is
the stopping time and  is the Keplerian orbital frequency at a
particle’s location. For this choice of St, the angular momentum
with which the dust particles are injected is unimportant because
gas drag quickly brings the particles into rough corotation with the
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Table 1. Simulations parameters.

Parameter Description Value
M Total mass 1.0
a Binary semimajor axis 1.0
b Binary orbital frequency Vv 1.0
Cs Sound speed (normalized to = GM/a) 0.05
Rinj Gas injection radius e<03 10
(in units of a) e=03 20
Rinj, dust Dust injection radius e<0.3 7
(in units of a) e=03 10
St Stokes number 0.1
N Gas injection rate (per tgyn = 1) 500
Neust Dust injection rate (per tgyn = 1) 100
OspH Artificial viscosity parameter 15
Jinj Injection angular momentum nominal 1.2
for gas e=0.0,q=04 13

e=0.2,q=0.1 1.25
e=02q=04,07 14

e=0.3,q=01 1.4
e=0.3,g=04,07 15

gas. Thus we inject the dust with only a slightly larger angular
momentum than for the gas (jinj, qust = Jinj + 0.3), simply because it
is injected closer in than the latter (see Table 1).

Our choice of Stokes number is motivated by theoretical and
observational constraints on protoplanetary discs, which suggest
that the maximum grain size is likely in the regime St = 0.01-0.1
(e.g. Birnstiel, Dullemond & Brauer 2010; Tazzari et al. 2016).
Since most of the mass is typically contained in particles close to
the largest size, the flux of dust arriving from the outer edge is
also typically dominated by the largest particles (Birnstiel, Klahr &
Ercolano 2012), hence St = 0.1 represents a reasonable choice
when exploring the mass flux from a circumbinary disc. However,
we note that inside the water snow line,  lau, dust grains are
expected to be much smaller and very well coupled to the gas. In
this case, results from studies of gas accretion on to binaries are
expected to also apply to the dust. For reference, we note that St =
0.1 would typically correspond to sizes of a few cm at a few au,
although due to the large density variations in our simulations the
exact correspondence is sensitive to location of the dust, as well as
the assumed binary semimajor axis.

To quantify the delivery of material to the circumstellar discs, we
follow the change in mass of both the stars and circumstellar discs,
giving the net flux across their Roche lobes:

d(Mdisc + Mstar)
——a ®)

The circumstellar disc masses are estimated by considering the mass
within the Hill radius that is bound to the star. We convolve with a
Gaussian kernel of width 10 tqy, to remove high-frequency noise in
(Mgisc + Mgor) and calculate its gradient with time to determine the
accretion rate. Each simulation is allowed to run for either 300ty
or until dust accretion on to the binary ceases. We obtain steady-
state accretion rates from roughly 30t,,  200tqy, onwards and only
include the results obtained after steady state has been established
(as in Young et al. 2015). To compare the delivery of dust and gas
to the primary and the secondary, we use the fractional accretion
rate on to the primary, A,

Accretion rate =

M i
A= — primary . (4)
Mprimary + Msecondary
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We also use the ratio Mp/Mg to study the relative variation of dust
and gas accretion rates with time and binary mass ratio.

MD _ Mprimary,dust + Msecondary,dust

, ®)

M G M primary,gas +M secondary,gas

where each M is normalized to the injection rate of the particles.

3 DUST ACCRETION

3.1 Planetary regime

We begin by considering a binary with mass ratio g = 0.01 (i.e. a
10 M; planet for a solar mass star). Here, it is well known that
companions on circular orbits are able to trap dust in pressure
maxima that form outside of their orbit, as is suspected to be the
origin of transition discs (e.g. Pinilla et al. 2012; Zhu et al. 2012;
Kama et al. 2015). From Fig. 1, it is clear that dust particles (with
St = 0.1) are trapped efficiently for companions on a circular orbit.
Just after 30 binary orbits, the accretion on to the secondary is
purely gaseous (black particles represent gas) and the accretion
stream does not reach the pressure maximum in which the dust is
trapped. However, it is evident that the binary takes a significantly
longer time to reach this stage in the case of non-zero eccentricity
(for the same injection angular momentum relative to the binary).
Fore = 0.1, there is marginal dust accretion on to the binary initially
(' 100tym) but by the time 200 binary orbits have elapsed, dust is
entirely trapped in the circumbinary disc and the accretion streams
are purely gaseous. For e = 0.2, the time-scale is even longer, with
ongoing dust accretion even after 300 binary orbits.

To quantify the accretion of dust, we plot the ratio of the dust
accretion rate to the gas accretion rate on to the binary in Fig. 2.
This plot quantitatively reinforces the points made above and
demonstrates that our conclusions are not a result of the resolution of
our simulations. The decline in dust accretion for e = 0.2 simulation
is gradual and we expect dust accretion to stop eventually. For
higher eccentricities, dust accretion would probably continue for
even longer. Notably, Fig. 2 shows the accretion of dust on to
both the primary and the secondary. We show the fraction of dust
and gas accreted on to the primary (A) in Fig. 3 to compare the
relative distribution of accreted circumbinary material on to the two
components of the binary.

For the three eccentricites considered here, A for gas takes a
roughly constant value of 0.15 once the simulations reach pseudo-
equilibrium, implying that nearly 15 per cent of the gas accreted
from the circumbinary disc goes to the primary. We do not observe
astrong dependence of A for gas on the binary eccentricity. A for dust
is qualitatively different in that it declines with time. For e = 0 and
e = 0.1, the dust accretion phase is comparable to the time it takes
for the simulations to reach pseudo-equilibrium. Therefore, it is not
possible to get a reasonable estimate of A for these simulations. For
e = 0.2, we plot A for dust as a function of time and find that it
declines with time. This implies that the rate at which dust is accreted
by the primary is declining more rapidly than the corresponding rate
for the binary (both primary and secondary).

3.2 Stellar regime

In the case of hinaries where the companion is in the stellar regime
(g 0.1), we find that there is initially a flow of dust on to the
circumstellar discs. During this dust accretion phase, we find that
St = 0.1 dust is divided between the primary and the secondary in
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the same ratio as the gas and thus the dust to gas ratio in each of
the circumstellar discs is similar (Fig. 4). This can be understood
inasmuch as pressure only plays a sub-dominant role in the accretion
of gas at aspect ratios H/R  0.05, being more important at higher
temperatures (Young et al. 2015). Since the differences between
the dynamics of dust and gas are already small for St = 0.1, we
expect this result to hold for smaller particles as well since they
are more strongly coupled to the gas. We also compare A from our
simulations with values obtained by Young & Clarke (2015) and
show that there is good agreement between the two in Fig. 4.

However, as the disc evolves in time and the gap opened by
the binary becomes wider, dust accretion declines considerably and
stops in most of our simulations (Fig. 5). To investigate the origin
of this behaviour, we considered the hypothesis that dust could
be trapped in a pressure maximum away from the inner edge of
the disc, while the binary is able to accrete gas from interior to
this maximum. With this in mind we tested whether the periastron
radius of fluid elements located in the pressure maximum provided
a good predictor of whether the binary was able to accrete dust.
Fig. 5 shows the evolution of the ratio of dust to gas accretion rates
(where a value of unity would indicate that the binary accretes dust
and gas in the same ratio as the input dust to gas ratio) versus
the pericentre of pressure maximum for different mass ratios and
eccentricities. It illustrates that the accretion of dust stops once the
periastron distance exceeds the binary separation by a factor in the
range 2.2-2.8. ' Moreover, at higher q there is a trend for the
pressure maximum to need to reach larger distances before dust
accretion is inhibited.

The location of the pericentre radius increases in time, i.e. the gap
opened by the binary continues to widen. However, the details of this
evolution depend on both the properties of the binary, and in part on
the viscosity and the angular momentum with which the gas particles
are injected. Given that we run the simulations for a relatively short
period of time, the discs do not reach a steady state and the gaps
are continuing to open. We find that this time dependence of the
pericentre radius helps explain why models transition between a
state of dust accretion and dust trapping. Since the simulations of
Thun, Kley & Picogna (2017) are however evolved to a steady
state, we can use their results to infer whether the accretion of
dust or trapping is expected more generally. Thun et al. (2017)
find that radius of the pressure maximum is typically between three
and five binary separations, although this value is decreased for
larger viscosity and higher aspect ratios. Based on our finding that
dust accretion stops once the dust pericentre recedes beyond 2.2—
2.8 times the binary semimajor axis, together with the dependence
of the cavity radius on viscosity determined by Thun et al. (2017),
we suggest that it is unlikely that accretion of dust with St = 0.1
should be able to persist once the circumbinary disc has evolved
into a steady state, unless ah?>  10™*. Here, a is the alpha viscosity
parameter (Shakura & Sunyaev 1973) and h is the disc aspect ratio.

For dust grains with smaller St (<0.1) we expect the differences
between the dust and gas to be smaller. This is because although
dust grains inside the pressure maximum drift outwards towards
the pressure maximum, they are also replaced by diffusion. Since
turbulent diffusion is not sensitive to Stokes number (e.g. Youdin &
Lithwick 2007), but radial drift is slower for smaller St, this will
result in higher dust surface densities inside the pressure maximum,

INote that we have also investigated how dust accretion instead correlates
with the semimajor axis of fluid elements in the pressure maximum but find
that this quantity less cleanly delineates the regime where dust can accrete.
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Figure 1. Gas and dust distributions (black and coloured yellow to red, respectively, for a g = 0.01 binary with different eccentricities. Dust particle sizes are
calculated in the Epstein regime and normalized to the smallest size in the simulation domain; dust grains are coloured according to this relative size. (a, b)
Just after 50 binary orbits, accretion of St = 0.1 dust has completely halted for the circular binary. For e = 0.1 in (c) and (d), the dust accretion continues for
longer and stops later than it does for the e = 0 case. Dust accretion continues for much longer for e = 0.2 binary (>300 orbits, panels e and f).
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