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Voluntary lane-change policy synthesis with reactive control
improvisation

Jin I. Ge and Richard M. Murray

Abstract—In this paper, we propose reactive control impro-
visation to synthesize voluntary lane-change policy that meets
human preferences under given traffic environments. We first
train Markov models to describe traffic patterns and the motion
of vehicles responding to such patterns using traffic data. The
trained parameters are calibrated using control improvisation
to ensure the traffic scenario assumptions are satisfied. Based
on the traffic pattern, vehicle response models, and Bayesian
switching rules, the lane-change environment for an automated
vehicle is modeled as a Markov decision process. Based on
human lane-change behaviors, we train a voluntary lane-
change policy using explicit-duration Markov decision process.
Parameters in the lane-change policy are calibrated through
reactive control improvisation to allow an automated car to
pursue faster speed while maintaining desired frequency of
lane-change maneuvers in various traffic environments.

I. INTRODUCTION

While automated vehicles have the potential to alleviate
many traffic problems [1], in order to integrate well with
the current road transportation system, it is necessary for
an automated car to actively respond to other cars on road
(which are largely human-driven) [2], [3]. Moreover, to be
better accepted by users, an automated car may need to learn
the preference of the human passengers on-board, and tune
its behaviors accordingly.

Despite that adaptive cruise control and lane-keeping sys-
tems are relatively well researched [4], high-level decision-
making is still an open question for automated cars. In
particular, few research results exist regarding voluntarily
lane-change policies that would allow the automated car to
switch lanes for faster traffic flow [5]-[8]. It is important for
both the overall traffic and the passengers on-board to enable
an automated car to change a lane voluntarily in anticipation
of slower traffic in front. It often creates less safety hazard
and traffic perturbations to merge into a faster lane when
the speed difference between two lanes is not yet too large
[9]. Moreover, making voluntary lane-changes under similar
conditions and with similar frequency a human driver would
use is preferable.

To learn from human decision-making and build con-
trollers that resemble human behaviors while meeting certain
specifications, control improvisation has been shown to be
a suitable method [10]. Randomized actions are generated
that satisfy a set of hard constraints, while meeting a set
of soft constraints in a probabilistic manner. While control

*This work is supported by NSF VeHiCal project 1545126. The authors
are with the Department of Computational and Mathematical Sciences,
California Institute of Technology, Pasadena, California, 91125, USA.
Email: jge@caltech.edu, murray@cds.caltech.edu

| Traffic scenario assumptions Lane-change

l behavior
Statistical specifications
traffic data Lane-change environment model ]
Vehicle for the motion of neighboring cars  fess}
car-following === (Markov Decision Process) .
data Stochastic
model
Human Probabilistic lane-change controller checking
lane-change (Explicit-Duration

data Markov Decision Process)

N~

Parameter calibration

Fig. 1. Schematic for reactive control improvisation in voluntary lane-
change synthesis.

improvisation has been used in composing music and con-
trolling home appliances [11], [12], it is yet to be extended
to problems with uncontrolled variables, where a controller
is synthesized with respect to an environment. In particular,
while lane-change maneuvers are decided by the automated
vehicle, the speed and position of its neighboring vehicles
cannot be directly controlled.

Therefore, in this paper we integrate the notion of reac-
tive synthesis and propose the method of reactive control
improvisation. First, we train Markov models to describe
a specified traffic pattern and the motion of vehicles re-
sponding to such patterns using traffic data. Using control
improvisation, we ensure the trained models satisfy the given
traffic environment assumptions. Then we train a voluntary
lane-change policy as an explicit-duration Markov decision
process based on human lane-change behavior. Finally, we
formulate human preferences on voluntary lane-change be-
havior using reactive control improvisation. By calibrating
parameters in the explicit-duration Markov decision process
using stochastic model checking, a voluntary lane-change
policy is synthesized that ensures safety and follows human
preferences in a probabilistic manner; see Fig.

II. VOLUNTARY LANE-CHANGE SETTINGS

Here we first set up the voluntary lane-change scenario
on a two-lane road with symmetric lane-change rules, see
Fig. 2] The ego vehicle (red) is in Lane 1, with its position
and speed denoted se,ve. The position and speed of its
immediate predecessor (green) is denoted s¢,ve. We project
the longitudinal position of the ego car in Lane 2 (pink
box). The position and speed of the projection’s immediate
leader (grey) are s,,v,, while the position and speed of two



Fig. 2. The voluntary lane-changing scenario for two-lane roads.

cars behind the projection are denoted sy, vy, (blue) and s, v
(yellow), respectively.

A. Safety and incentive for voluntary lane change

Several models exist that describe human lane-changing
behaviors. A shared feature of these models is that a lane-
change maneuver is initiated if it is safe to change to the
other lane lane, and the ego car has the incentive to do
so. Here we describe the MOBILE (Minimizing Overall
Braking Induced by Lane Changes) model, whose safety and
incentive criteria are based on the acceleration of the ego car
and its surrounding cars [13].

We assume that the acceleration a. of the ego vehicle at
time ¢ is determined by its speed v, headway he, and its
leader’s speed vy, that is:

ae(t):fe(Ve(t)ahe(t)v"f(t))v (1)

where the headway he = sf —se — [, [ is the car length
(assumed to be the same for all cars), and f. can be various
models as discussed in [16]. Similarly, the acceleration of
the neighboring car B (blue) is

ap(t) = fo(vo(1),h(1),va(2)) , 2

If the ego car were in Lane 2 (pink box), its acceleration and
the acceleration of car B would be

de(t) = fe(Ve(t)ahb(t) _hlb(t) _lava(t)) ,
an (1) = fo (vo (), i (2),ve(1)) -

To ensure safety, if the ego vehicle merges onto Lane 2,
it should not induce severe braking in vehicle B, that is,

3)

ap(t) > a™™, )
where a™™" is the threshold for emergency braking. On the
other hand, the incentive criterion requires certain ‘overall
benefit’ for performing a lane-change at time ¢, i.e.,

Ge (1) — ac(t) + p(a(t) — ap(t)) > a™, (5)

where the politeness factor p and the benefit threshold a™
may differ among different drivers.

B. Limitations of safety and incentive criteria

While the lane-change model @5) seems to capture the
human lane-change behavior well, it can generate an arti-
ficially high amount of lane changes in macroscopic traffic
simulations [14]. In particular, if a vehicle would change
its lane whenever the safety and incentive flags @[3) are

Lane 1

Lane 2

he
LZO (a)

10

0

15
Ut, Ve
10

5
0

20
15
10

5

i

0 100t [s] 200 0 100

t[s] 200

Fig. 3. An automated car (red) and its leader (green) travels on Lane 1,
while cars 1,...,n drives on Lane 2. (a) The bumper-to-bumper distance &,
between the automated car and its leader. (b) The speed of the automated car
ve and its leader vy. (¢) The curve shows the index i of the car in Lane 2 that
immediately follows the projection of the automated car (pink box). The red
circles indicate when the safety and incentive flags @EI) are both positive.
(d) The headway h;, between the current neighbors of the automated car in
Lane 2. (e) The speeds v,, vy, of the current neighbors of the automated car
in Lane 2. (f) The distance Ay, between the automated car and its current
neighbor vehicle i.

positive, a vehicle is likely to shift between two lanes with
high frequency, leading to so-called ‘ping-pong effect’ [15].

As a demonstration, we consider a two-lane scenario as
shown in Fig. 3] where the ego car (red) in Lane 1 travels
with constant speed ve = 10 [m/s] while in Lane 2 cars
1,...,n are led by car 1 with v (¢) =9+ 6sin(0.1¢) [m/s]. In
Fig. B] panel (a) shows the headway h. of the ego car (red),
and panel (b) shows the speed v, of the ego car and the
speed vy of its predecessor (green). The blue curve in panel
(c) shows the index i of the car in Lane 2 in front of which the
ego car is projected (pink box). Since the ego car maintains a
higher average speed compared with cars in Lane 2, it keeps
passing over cars in Lane 2 and the number i decreases from
14 to 2 in 200 seconds. Panel (d) shows the headway between
the cars in Lane 2 which are the current neighbors of the
ego car, i.e., i, = h(,). Correspondingly, panel (e) shows the
speed vy, = ;) (orange curve) and vy = v;;)_; (blue curve).
Note that while the speed and headway of cars in Lane 2 are
continuous, the switchings in i introduce jumps in A, and vy,
vp. Similarly in panel (f), the distance Ay, between the ego
car’s projection and its current follower (blue) experiences
jumps as the car number i changes.

While the ego car (red) travels with constant speed and
passes over 12 cars in Lane 2, the red circles in Fig. Ekc)
mark when the safety and incentive criteria (3)) recommend
voluntary lane changes to the ego vehicle. Here the safety



threshold @™ = —4 [m/s?], the incentive threshold a =
2 [m/s?], and the politeness factor p = 0.4. By comparing
panels (c,e), we see that the circles are given when the speed
v, in Lane 2 is temporarily higher than the ego car ve. If
the ego car did switch to Lane 2 and adopt the sinusoidal
speed profile, the safety and incentive conditions (@]5) would
prompt it to switch back to Lane 1 during the next lower half
of the sinusoidal wave. While more restrictive thresholds in
the safety and incentive criteria (@3] can reduce the number
of recommended lane changes in Fig. [3{(c), overly restrictive
thresholds can trap an automated car in a slower lane.

Through this simplified scenario, Fig. [3] demonstrates
undesirable voluntary lane-change decisions that are solely
based on safety and local incentives. An automated vehicle
may eliminate overly frequent lane changes while responding
to the attraction of faster lanes, if it incorporates in its
decision-making statistical traffic information such as the
average speed and speed variations of cars in front. More-
over, the performance of voluntary lane-change decisions
needs to be evaluated stochastically, given the randomness
in human-dominated traffic. Such stochastic criteria not only
allows reactive synthesis of voluntary lane-change maneuvers
responding to specific traffic situations, it can also learn
from human lane-change behaviors, and may result in better
acceptance from human passengers.

C. Control improvisation

Control improvisation is a framework to generate stochas-
tic control sequences such that the control strategy obeys a
set of hard constraints (conditions that are satisfied determin-
istically), a set of soft constraints (conditions that are satisfied
with a probability), and certain randomness requirement on
the richness of the controller behavior [10]. Specifically, giv-
en a finite alphabet X, we consider a randomized controller
whose control sequence resides in the language / C X*. Given
aset S C X* for hard constraints, finitely many subsets A; C /
with error probability bounds &; € [0, 1] for soft constraint
i €{1,...,n}, and a probability bound p € (0,1] for the
randomness requirement, the distribution D : ¥* — [0, 1] with
support set S such that

1) SCl1,
2) Vi=1,...,n, P[(DGA,“(D(‘D]ZI*&‘,
3) VoeS, D(w)<p,

is called an (&, p)-improvising distribution. The hard con-
straint (1) is used to specify that behaviors with non-zero
probabilities are within the safe set (e.g., no collisions
on road); the soft constraint (2) is used to regulate the
probability for certain sets of behaviors (e.g., the probability
of consecutive lane-changes over 3 minutes apart is more
than 90% ); while the randomness requirement (3) ensures
a low probability for any particular control sequence to be
repeated.

III. MODELING IN-LANE TRAFFIC

In order to model the voluntary lane-change environment
in two-lane traffic, we need to first describe vehicle motions
in one lane. To model a specific level of traffic perturbations,
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Fig. 4. (a,b) A 3000-step segment of training data used to model stop-and-
go traffic. (c,d) A sample of traffic perturbations generated by the trained
Markov model M .

we train a Markov chain using corresponding speed and
headway data. For vehicles responding to such a traffic
pattern, we train a Markov decision process to model the
car-following behaviors. Finally, we formulate the safety and
volatility constraints of road traffic using control improvisa-
tion, and calibrate the Markov models such that their product
can generate specified behaviors such as uniform traffic flow
or stop-and-go waves.

A. Modeling traffic profiles with Markov chains

Assume that for a desired traffic pattern such as stop-and-
go traffic waves, representative motion data can be collected
from a segment of road. Without loss of generality, we
consider Lane 1 in Fig. [2} and assume the speed v¢ of the
front vehicle and the speed v, and headway k. of the fol-
lowing vehicle are available through some types of vehicle-
to-everything communication. As an example, Fig. [{(a,b)
shows a segment of motion data ¢(f) = (he(7), e (F), V¢(f))
for7=1,...,T, which is representative in stop-and-go traffic.
Here he = he /M is the quantized headway, V. = v¢/1y is
the quantized speed, and 7 = /7 is the sampled time, with
the quantization step M, =2 [m] and 1y =2 [m/s], and the
sampling period T = 0.5 [s].

For a specific traffic pattern, we define a discrete-time
Markov chain

M, = {Xy, m,Ar, Y1, EL},

— the sample space Xy = {s,,,m=1,...,M_} where the
state s, = (fzm\?f,\?e),
— the initial distribution m € RML,
— the transition matrix A;, € RML*ML
— the output space Yy = {ox,k = 1,...,K} where the
output variable oy = Ve,
— the emission matrix Ej, € RML*K
While the emission matrix can be readily obtained through
the projection of the state space X to the output space Y,
the transition probability

[AL]; = Pla(+1) =sjlg(f) =si], i,j=1,....ML, (6)

needs to be obtained from the traffic data ¢(7), 7 =1,.. LT,
using maximum likelihood estimation. Then the initial distri-
bution 71, can be obtained as the stationary distribution with
respect to the transition matrix Ar.



Fig. flc,d) shows an example of traffic perturbations
generated by the Markov model trained with traffic data in
panels (a,b). We note that the generated speed and headway
profiles indeed display features of stop-and-go traffic.

We remark that the speed alone is insufficient to maintain
Markov property for such traffic models. The car-following
model (T) shows that a following car’s acceleration depends
on not only both cars’ speeds but also the distance between
them. Without the headway distance /., an extended history
of ve would influence v, at the next time step.

B. Modeling vehicle response with Markov decision process-
es

Given the Markov chain describing traffic patterns in front,
we propose a Markov decision process to describe the motion
of vehicles responding to such traffic patterns. Without loss
of generality, we assume in Fig. [2] vehicle A (grey) is the
leader in Lane 2 and the motion of vehicles A and B (blue)
can be described by the Markov model My. We consider the
speed v. and headway /A of vehicle C (yellow) in response
to the speed vy of vehicle B.

For vehicle C responding to the motion of vehicles A and
B modeled by My, we define a Markov decision process

Mr = {Xranh]}aUr?YhEr} (7)

— the sample space X; = {s,,m =1,...,M,} where the
state s, = (fzc,ﬁc),

— the conditional initial distribution 7, € RMr<K

— the conditional transition matrix 7, € RMr*<MrxK

— the input space Uy = {uy,k=1,...,K} where the input
variable u; = vy, is the predecessor’s speed,

— the output space Y, = {ox,k = 1,...,K} where the
output variable o = V. is the speed of the modeled
vehicle,

— the emission matrix E, € R¥r<K
While the output map E; can be obtained by projecting

the sample space X; to the output space Y, the conditional

transition matrix 7; needs to be obtained using a sequence
of inputs u(7) € U, and states g,(f) € X; for i =1,...,T. In

particular, the conditional transition probability for s; — s;

given action uy is

[T = PlaGt+1) = s5jlq(?) = si,uld) =w], )

fori,j=1,...,M;, k=1,...,K, and can be obtained using
maximum likelihood estimation. And the initial distribution
7 (-|uy) € RMr conditioned on the input u; can be obtained
through the stationary distribution of 7;(-|uy) € RMr>Mr,

As an example, we train a Markov decision process M, for
vehicle C (yellow) in Fig. 2] and demonstrate the generated
behavior in Fig.[5] Given the input ¥y, (red curve in Fig. [5[b)),
vehicle C (blue curve in Fig. B[b)) is able to follow the
speed profile well, and the headway he (Fig. a)) responds
accordingly.

Note that training the vehicle response model M; may
require more data than training the traffic profile model
M_. Nevertheless, when there are no sufficient data to span
the product space X; x U, car-following models [16] with
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Fig. 5. A sample of the car-following behavior generated by the trained
Markov decision process M;. In the upper panel, the headway response of
the vehicle is shown. In the lower panel, the input u is plotted in red, while
the speed response is plotted in blue.

bounded acceleration, speed, and headway can be used to
obtain a priori transition probability matrix 7; for M;.

C. Calibrating in-lane traffic model

To ensure that the trained models My and M; can gen-
erate diverse motion profiles that meet given traffic scenario
assumptions, we consider N consecutive vehicles in one lane
with the product model

My =My x (M;)V 72, 9)

and we formulate the traffic scenario assumptions in the
framework of control improvisation:

1) Hard constraint
The product model My does not generate states that
contain collisions or reversing cars, that is,

S CXp x XN-2

A A (10)
:{(ﬁlahi;ﬁi) ‘ ‘,}\l 203 hi>0; \31'20, i:27"'7N}7

2) Soft constraints

The product model My generates a specified level of
harshness in acceleration/deceleration maneuvers with high
probability. That is, the one-step state variance

Asi(F) = (hi(f+1) — bi(7),9:(F+ 1) = %:(7)) ,

satisfies

(1)

Pll|Asi[| < A*]>1-¢&%, (12)

for f=1,2,... where A? is the volatility bound for headway
and speed variations, and £? is the corresponding concentra-
tion bound.

Moreover, headway and speed trajectories generated by
My satisfy certain concentrations, that is,

P[|hj —h*| < AP} > 1 - &N

1
Pllvi—v| <A >1-¢". (1)

where A" and A are the bounds for headway and speed
variations, h* and v* are the mean headway and speed in
given traffic scenario, while EM and £V are corresponding
probability bounds.

3) Randomness
The randomness condition ensures richness in the gener-
ated motion of one-lane traffic. It requires that a particular
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Fig. 6.  (a,b) Configurations of neighboring cars during a pass-over sce-
nario. (c,d) Configurations of neighboring cars during a fall-back scenario.

sequence of speed and headway profiles is related with very
small probability. Since the product Markov model My is
aperiodic and irreducible, this condition is automatically
satisfied due to ergodicity.

Because the training data used in this paper are represen-
tative of the given stop-and-go traffic scenario, the trained
models satisfy the hard constraint and the soft constraints,
and are able to generate desired traffic profiles; see Fig.[d{c,d)
and Fig. 5] However, if traffic scenarios with less representa-
tive data need to be modelled, further calibration is necessary
after the transition matrices Ay, and 7; are estimated from
the data. For example, if the data contain irregular driving
behaviors such as collisions, the support set of My may
strictly contain the set S of hard constraint @) then the
states violating the hard constraint need to be pruned. On the
other hand, if a traffic scenario with less speed and headway
volatility than Fig. ffa,b) is desired, My may not satisfy
the soft constraints (I2|T3), then the transition probabilities
can be tuned accordingly. In this way, the traffic scenario
assumptions are enforced through control improvisation.

IV. MODELING VOLUNTARY LANE-CHANGE
ENVIRONMENT

Based on the Markov models on the traffic pattern and
vehicle responses, we may obtain a Markov model for
the voluntary lane-change environment. Again we consider
Fig.|2| and denote the lane the ego carisinas A € A={1,2}.
The projected headway Ay, satisfies

hip(F+1) = hyp () +T(Ve(f) — Vb(tA)) .

While the right-hand side of equation @) is smooth, Ay,
experience jumps as the ego car passes by or falls behind
vehicles in the other lane, resulting in jumps in ve,vp, see
Fig. B]

When the ego car falls behind vehicle B in the other lane,
see Fig. [6{c), the neighboring vehicles A and B change

hy < —H" =

(14)

V;:Vb
A () ~ B[]
A hy = hy+ iy + 1

15)

see Fig. Ekd), where A" is the hysteresis distance to avoid
chattering in the switching. P[-|v}] is the distribution of the
headway hj and speed v{ of the newly emerged vehicle B’
conditioned on the speed v, of its predecessor

Pil(hys viy) Vi = k] = e (Ry, v [ue) » (16)

where 7(-|uy) is the stationary distribution of the vehicle
response model M; under input speed u; for k =1,... K.
On the other hand, when the ego car passes over vehicle A
in Fig. [f[a), the neighboring cars A and B have

Iy, = hiy — hy — [
A v{) =V,
A (Vi ho) ~ B[ vy

hip > hy+HY =
17

see Fig. @b), where the probability distribution B, [(v}, i) [vi]
for the newly emerged vehicle A’ is calculated through
Bayesian rules such that

Plvy, Iy, v

Plh{ v, gP !
Rl )] = - PPl

a

PO T L Pl [vilPil
(18)
where the stationary distribution
P[h/bvvl/n|véi] = ﬂr(hfmvlla\”k)»
Pl =Y ) mpe (Vi) (19)

/ /
hy va

based on the stationary distributions 7, of the response model
M; and 7 ;¢ of the traffic pattern model Mj ;¢ in the other
lane ¢ € A® {A}. Here the ‘exclusive or’ operation @ is
used to select the lane without the ego car.

Using the switching conditions (T3|[I7), we may also
define a counter ¢ on the number of cars in the adjacent
lane that the ego car passes over:

hy > hy + Y =
hy < =B =

d=c+1,
, (20)
¢ =c—1.
We consider the set of lane-change decisions @ = {0,1},
where ¢ = 1 indicates the decision to change a lane, then

p=1 = V=,
A Vi=w,
A héZhb—hlb—l
A V/a:Vf
S RS
A hy = hjy+ he
A A =2C
A =0,

where P[-|ve] is given as in equation (I6). Note that the
counter ¢ on the number of passing vehicles is reset as the
ego car switches to a new lane.

Based on the motion vy, Ay, v, of neighboring cars in the
adjacent lane, the motion vg,he,ve of the ego car and its
leader, and the projected headway hy, between two lanes,
we can define the safety flag ¢; and the incentive flag ¢, as

c1 = (a(r) > ami“) ,
b (aw) ~aelt) + p(@(t) — an(t) > ath) ,

which are used to indicate potential lane-change opportuni-
ties.

(22)
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Fig. 7. (a) The bumper-to-bumper distance 4. between the ego car and
its leader. (b) The speed of the automated car v, and its leader v¢. (c) The
number ¢ of cars the ego car passes over. The red stars indicate instances
when the safety and incentive flags (cq,c) are true. (d) The headway hy,
between the current neighbors of the ego car in the other lane. (e) The
speeds v,, vy of the current neighbors of the ego car in the other lane. (f)
The distance Ay, between the automated car and its current neighbor vehicle
b.

Using equations (T3] — 22), we can define a Markov
decision process to describe the lane-change environment

M= {X,x,T,®,Y,E} (23)

— the sample space X = {Asm,m = 1,...,M} where the
state s, = (¢, e, Ve ,Pa, p, Db s b, A, €),

— the initial distribution = € RM,

— the input space ® where the input variable ¢ =0
indicates no lane-change, while ¢ = 1 indicates lane-
change maneuver,

— the transition matrix 7 € RM*M*I®| " \here |®| is the
cardinality of the input space P,

— the output space Y = {(c,c1,¢2)},

— the emission matrix E € RM*YI where |Y| is the
cardinality of the output space Y.

Note that the transition matrix 7 can be calculated based
on the traffic model My ; for the ego lane, the traffic model
M; 5. and response model M, for the next lane, the projected
headway model (T4) and switching rules (T3] - [I9). And the
emission matrix E can be calculated using (22).

As an example, we show the trajectory of a neighbor
model M in Fig. [7} where the traffic patterns on both lanes
are as shown in Fig. ] and the vehicle response model is as
shown in Fig.[5} Fig.[7{(c) shows that ¢ varies between 5 and
—5 within 300 seconds, that is, while the ego car passes over
up to 5 cars temporarily, it can fall back quickly. This is well
expected as the traffic patterns on both lanes are the same.
The safety flag ¢ and the incentive flag ¢, are satisfied three
times during these 300 seconds, as shown by the red stars in
Fig. [/(c). Different from in Fig. 3] the three potential lane-
changes within realistic traffic pattern here are not evenly
distributed in time (r = 166.5, 178.5,273.5 [s]). Therefore,
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Fig. 8. (a) Distribution of the number of lane-change opportunities in

600 seconds, over 10000 runs. (b) Distribution of the time gap between two
consecutive lane-change opportunities in 600 seconds, over 10000 runs.

consecutive lane changes can happen within short periods of
time if the ego car acts on every lane-change opportunities.

Furthermore, Fig. 8] shows the corresponding distribution
of the number of lane-change opportunities and the time gap
between two consecutive lane-change opportunities in 10000
runs. In average, there are 4.83 lane-change opportunities in
600 seconds, while the time gap between two opportunities
follows an exponential distribution (expected for a Markov
model). If an automated car acts on every lane-change
opportunity, it would perform a lane-change every 2 minutes
in average, and it is highly likely to change lanes again within
a short period of time. Such frequent lane-change behavior is
not only potentially detrimental to the overall traffic, it also
may not be appreciated by the passengers on-board.

While the ego car does not lose speed by avoiding volun-
tary lane-changes in this simulation, allowing voluntary lane-
changes is still beneficial for most traffic conditions when
traffic patterns on two lanes are not symmetric. Therefore,
it is necessary to build a probabilistic lane-change policy
to avoid frequent lane-changes while providing the human
passengers on-board the satisfaction that the automated car
travels no slower than the other cars on road.

V. VOLUNTARY LANE-CHANGE CONTROLLER SYNTHESIS
USING REACTIVE CONTROL IMPROVISATION

In this section, we propose a stochastic lane-change policy
using explicit-duration Markov decision process. While this
explicit-duration Markov decision process can be trained
using human lane-change data, to ensure the performance
of the lane-change controller in various traffic situations,
we propose a reactive control improvisation framework to
calibrate its parameters.

A. Explicit-duration Markov decision process

Here we propose an explicit-duration Markov decision
process as a voluntary lane-change controller

C=(®,D,Py,pq,Ac) (24)

— the sample space @ = {0,1} where ¢ = 1 indicates
initiating a lane-change maneuver,

— the duration set D = {1,...,d™*}, where d™* is the
maximum duration for refusing lane-change chances.
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Fig. 9.  (a) The bumper-to-bumper distance /. between the ego car and

its leader. (b) The speed of the automated car v, and its leader vy. (c) The
number ¢ of cars the ego car passes over. The red dots indicate when the
safety and incentive flags are positive. (d) The headway &, between the
current neighbors of the ego car in the other lane. (e) The speeds vy, v, of
the current neighbors of the ego car in the other lane. (f) The distance Ay
between the automated car and its current neighbor vehicle b.

the transition matrix Py € R>*? where
[Pylij =Pl = jlo =i,d=1],

the duration distribution p; € R¥™ %2, where

pa(k)=P[¢'=0,d =klp =1,d=1], k=1,....d™,

the transition matrix 7 € RM>*M*|®| \here |®| =2,
the input space A = {(c,c1,c2)} which is the same as
the output space E of the lane-change environment .

Here the stochastic matrix Py is an identity matrix, since
there are only two states in @ and remaining in the same
state is not allowed with explicit duration.

The action a. = (¢, ¢, ¢2) determines whether the Markov
decision process is allowed to transit into ¢’ = 1. That is,

“(c<O0Necr=1ANe=1) = ¢ =0,

(c<OAci=1Acr=1) = (¢'.d)~Pyq(9.d). &)

When ¢ =1, d has Dirac distribution centered on 1, i.e.,
palk = 1|¢ = 1] = 1, ensuring no immediately consecutive
lane-changes. However, the duration distribution p,[k|¢ = 0]
can have the entire set D as its support, and need to be
trained using human lane-change behaviors using maximum
likelihood estimate methods presented in [17], [18].

To demonstrate the behavior of the proposed controller, we
plot the behavior of the ego car and its neighboring vehicles
in Fig. |§|in a 150-second simulation. In panel (c), the counter
¢ jumps from around -40 to 0 at 7 = 120 [s], indicating a lane-
change maneuver. While multiple lane-change opportunities
exist during r < 120 [s], as marked by the red dots, in these
cases the lane-change decision remains ¢ = 0. This behavior
is similar to human lane-change decisions in the sense that
a human driver does not immediately switch to a faster
adjacent lane, but rather wait for the ‘cost’ of remaining in

(@ _ Fo eE g (b)) __ Ae %xB'
_A o (E) o _coF —eE
Fig. 10. (a) Configuration of neighboring cars before the lane-change

maneuver. The pink dot (E) is the projection of the ego car in the other
lane. (b) Configuration after the lane-change maneuver, where car F is car
A in (a), car A’ is car F in (a), and car B’ is newly emerged for the lane-
change environment.

the slower lane to accumulate and execute the lane-change
maneuver after some time.

In Fig. [T0] we show the configuration of the lane-change
environment before and after the lane-change maneuver. In
panel (a), the ego car (red) has very small speed in response
to its leader (green) while cars in the next lane travel faster.
Since there is a large gap between car A and car B, vehicle
E is able to switch over, as shown in panel (b). Note that
vehicle B’ in panel (b) is a newly emerged vehicle whose
initial position and speed follows the Bayesian rule P;[-|ve].

B. Reactive control improvisation

In order to ensure desired lane-change behavior in the
specific environment, we need to verify the product Markov
model M x C satisfies safety constraints all the time and
meets human preferences probabilistically. Therefore, we
formulate the safety and human preference constraints in the
framework of control improvisation:

1) Hard constraint
A voluntary lane-change only happens when it is safe and
locally motivated for pursuing higher speed across the lanes:

c=0Ac=0= ¢ =0. (26)

Note that this constraint is satisfied by the safety and
incentive criteria (23).

2) Soft constraints
The human preference on the frequency of lane-change
maneuvers can be written as

Pllng —Ng| < AV} > 1 &,
P[|6y — @] <A%] > 1-&,

where ny is the number of lane changes in a fixed amount
of time, Ny is the number of lane changes suitable for the
particular traffic patterns, 6y is the time gap between two
consecutive lane changes, @y is the average time gap human
passengers prefer. The bounds AV, A® and &y, &g control the
concentration of the lane-change number ny and time gap
0.

27)

3) Randomness

The randomness requirement specifies that the probability
of generating a particular decision sequence {¢(f)} is low.
Here this condition is also met by the construction of the
controller C.

Then we check that the production M x C satisfies the
constraints (26]27), i.e. M x C is a (&, p)-improvising distri-
bution conditioned on the assumptions (IO[T2J[T3) on M. Note
that while tuning the trained duration distribution p, directly
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Fig. 11.  (a) Distribution of the number of lane-change maneuvers in 600

seconds, over 10000 runs. (b) Distribution of the time gap between two
consecutive lane-change maneuvers in 600 seconds, over 10000 runs.

influences the distribution of the number ny and the time gap
0y of lane changes, the safety and incentive parameters a™"
and a™, p can also be tuned to satisfy the soft constraint
through the influence of M.

To demonstrate the distribution of ny and 6y in the soft
constraint (27), we plot their distributions in Fig. [TT] using
the same traffic pattern setting as in Fig. [8] In panel (a), the
average number of lane-change maneuvers in 600 seconds is
0.93 among 10000 simulations. In panel (b), the average time
gap between two consecutive lane changes is 195 seconds.
By comparing Fig. [T1] and Fig. [8] we see that the proposed
lane-change controller is able to avoid frequent lane changes
while allowing an automated car to pursue speed gains in
another lane.

VI. CONCLUSION

In this paper, we synthesized randomized decisions for
voluntary lane changes that would meet human preferences
under given traffic environment. The traffic environment
was described using Markov models trained by traffic data.
Parameters in the environment model were calibrated through
control improvisation to be stochastically representative of
the specified traffic patterns. An explicit-duration Markov
decision process was proposed as the voluntary lane-change
controller, whose parameters were trained using human lane-
change data. Then, reactive control improvisation was formu-
lated to ensure that the lane-change controller was tuned to
satisfy human preferences stochastically under given traffic
environment.

ACKNOWLEDGEMENT

The authors would like to thank the support from NSF
CPS Frontier project 1545126, and thank the insightful
discussions with Prof. Sanjit Seshia and Prof. Gabor Orosz.

REFERENCES

[1] R. Stern, S. Cui, M. L. D. Monache, R. Bhadani, M. Bunting,
M. Churchill, N. Hamilton, R. Haulcy, H. Pohlmanng, F. Wu, B. Pic-
colih, B. Seiboldb, J. Sprinkle, and D. B. Work, “Dissipation of stop-
and-go waves via control of autonomous vehicles: Field experiments,”
Transportation research Part C: Emerging technologies, vol. in press,
2018.

[2] D. Sadigh, K. Driggs Campbell, A. A. A. Puggelli, W. Li, V. Shia,
R. Bajcsy, A. L. Sangiovanni-Vincentelli, S. S. Sastry, and S. A. Seshi-
a, “Data-driven probabilistic modeling and verification of human driver
behavior,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2013-197, Dec 2013.

[3]

[4

=

[6

=

[7]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

K. Driggs-Campbell, R. Dong, S. S. Sastry, and R. Bajcsy, “Infor-
mative human-in-the-loop predictions via empirical reachable sets,”
Transactions on Intelligent Vehicles, vol. in press, 2018.

M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas,
Y. Pilat, F. Homm, W. Huber, and N. Kaempchen, “Experience, results
and lessons learned from automated driving on Germany’s highways,”
IEEE Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp.
42-57, 2015.

A. G. Cunningham, E. Galceran, R. M. Eustice, and E. Olson, “Mpdm:
Multipolicy decision-making in dynamic, uncertain environments for
autonomous driving,” in 2015 I[EEE International Conference on
Robotics and Automation (ICRA), 2015, pp. 1670-1677.

S. Ulbrich and M. Maurer, “Towards tactical lane change behavior
planning for automated vehicles,” in 2015 [EEE 18th International
Conference on Intelligent Transportation Systems, 2015, pp. 989-995.
M. Wang, S. P. Hoogendoorn, W. Daamen, B. van Arem, and
R. Happee, “Game theoretic approach for predictive lane-changing
and car-following control,” Transportation Research Part C: Emerging
Technologies, vol. 58, pp. 73 — 92, 2015.

Y. Du, Y. Wang, and C. Y. Chan, “Autonomous lane-change controller
via mixed logical dynamical,” in 17th International IEEE Conference
on Intelligent Transportation Systems (ITSC), 2014, pp. 1154-1159.
H. Jula, E. B. Kosmatopoulos, and P. A. Ioannou, “Collision avoidance
analysis for lane changing and merging,” [EEE Transactions on
Vehicular Technology, vol. 49, no. 6, pp. 2295-2308, 2000.

D. J. Fremont, A. Donzé, S. A. Seshia, and D. Wessel, “Control
improvisation,” in 35th IARCS Annual Conference on Foundation of
Software Technology and Theoretical Computer Science (FSTTCS),
ser. LIPIcs, vol. 45, December 2015, pp. 463—474.

1. Akkaya, D. Fremont, R. Valle, A. Donzé, E. A. Lee, and S. A. Se-
shia, “Control improvisation for probabilistic temporal specifications,”
in Proceedings of the Ist IEEE International Conference on Internet-
of-Things Design and Implementation (IoTDI), April 2016, pp. 55-70.
A.Donzé, R. Valle, I. Akkaya, S. Libkind, S. A. Seshia, and D. Wessel,
“Machine improvisation with formal specifications,” in Proceedings of
the 40th International Computer Music Conference (ICMC), Septem-
ber 2014.

A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model
mobil for car-following models,” Transportation Research Record:
Journal of the Transportation Research Board, vol. 1999, pp. 86-94,
2007.

W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg, “A
realistic two-lane traffic model for highway traffic,” Journal of Physics
A: Mathematical and General, vol. 35, no. 15, pp. 3369-3388, 2002.
K. Nagel, D. E. Wolf, P. Wagner, and P. Simon, “Two-lane traffic
rules for cellular automata: A systematic approach,” Physical Review
E, vol. 58, no. 2, pp. 1425-1437, 1998.

D. Chowdhury, L. Santen, and A. Schadschneider, “Statistical physics
of vehicular traffic and some related systems,” Physics Reports, vol.
329, pp. 199-329, 2000.

L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257-286, 1989.

S.-Z. Yu and H. Kobayashi, “Practical implementation of an efficient
forward-backward algorithm for an explicit-duration hidden markov
model,” IEEE Transactions on Signal Processing, vol. 54, no. 5, pp.
1947-1951, 2006.



	Introduction
	Voluntary lane-change settings
	Safety and incentive for voluntary lane change 
	Limitations of safety and incentive criteria
	Control improvisation

	Modeling in-lane traffic
	Modeling traffic profiles with Markov chains
	Modeling vehicle response with Markov decision processes
	Calibrating in-lane traffic model

	Modeling voluntary lane-change environment
	Voluntary lane-change controller synthesis using reactive control improvisation
	Explicit-duration Markov decision process
	Reactive control improvisation

	Conclusion
	References

