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Supplementary Figure 1. Characterization of the prism as an ergodic relay. (a) Schematic 

demonstrating 400 pixels on the illumination face of the ER prism. The pixels were sampled from 

a square region on the illumination face of the prism with 20-by-20 steps and a 50 μm step size. 

The red box represents a zoomed-in view of the pixels. The numbers in red are the indices to the 

pixels. (b) Cross-correlation map of the encoded PA signals from the pixels, where the diagonal 

line represents autocorrelation (top). Line profile along the red dashed line (bottom). (c) Cross-

correlation map of the encoded PA signals that are truncated to remove the first-arrival signals (i.e., 

signals propagating directly from the sources to the ultrasonic transducer without scrambling 

inside the ergodic relay), showing the time traces of the sufficiently encoded PA signals are almost 

orthogonal to each other (top). Line profile along the red dashed line (bottom). (d) Averaged cross-

correlation map of the reshaped and co-registered maps from (b) (top) and the profile along the 
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red dashed line (bottom). The full width at half maximum (FWHM) of the fitted profile is ~120 

μm. Abs., absolute. Meas., measurement. (e) A-line signal from a point source detected using a 

conventional OR-PAM system. The significant portion of the signal lasted approximately 100 ns. 

(f) Encoded impulse response from a point source recorded using PATER for 164 μs. 
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Supplementary Figure 2. PATER imaging of blood flow behind scattering biological tissue. (a) 

Photograph of the imaged object. A layer of chicken breast tissue (~1 mm thickness) was used as 

the scattering medium. Two tubes filled with blood were placed behind the tissue. While Tube 1 

served as the control without flow, blood flowed through Tube 2. (b) Calibration image of the two 

tubes. Norm., normalized. (c) Widefield images of blood flushing out of Tube 2 (from top to 

bottom) acquired at various time points. (d) Space-time domain plot of pixels along the red dashed 

line in (c). The blue dashed line and label show the approximated flow speed of blood through the 

tube.  
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Supplementary Figure 3. Evaluation of reconstruction artefacts due to incomplete calibration. (a) 

Calibration image of the two tubes. Norm., normalized. (b) Comparison of partial-signal and full-

signal reconstructions. In the partial-signal cases, the amplitude of the calibration signal from Tube 

1 was manually suppressed to simulate conditions in which there were not enough blood signals 

in Tube 1 during calibration (no signal, and only 20% of original signal amplitude). The widefield 
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signals from both tubes were used to test each case of the calibration data. The results are compared 

with the control case, in which full calibration data from Tube 1 was used for calibration. (c) Space-

time domain plot of pixels along the axis of Tube 2 in the different cases in (b). The artefacts due 

to incomplete calibration are absent, even with only 20% of the original signal amplitude from 

Tube 1. The blue dashed lines and labels show the flow speeds of blood through the tube. (d) 2D 

Fourier transform images of (c). The slopes of the red dashed lines represent the flow speeds, 

which were approximately 2.2 mm/s for all three cases. The partial-signal reconstructions and 

analyses show that blood flow dynamics in Tube 2 can be accurately reconstructed even if 

widefield signals from Tube 1 appear after calibration. 
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Supplementary Figure 4. PATER imaging of deep mouse brain through intact scalp (N = 3). (a) 

Photograph of the mouse brain with hair removed. (b) Calibration image of the mouse brain 

vasculature through an intact scalp and skull. (c) Snapshot widefield image of the mouse brain 

vasculature acquired through an intact scalp. (d) Photograph of the mouse brain vasculature with 

the scalp removed, acquired after the PATER imaging. (e) Maximum amplitude projection image 

of the mouse brain vasculature acquired without scalp by conventional optical-resolution PAM. (f) 

B-scan image below the dashed line in Panel e. The deepest vessel shown in Panel c along the 

same line was approximately 0.6 mm below the bottom surface of the skull. Since the thickness of 

the scalp was ~0.3 mm and the thickness of the skull was ~0.2 mm, the total depth from the ergodic 

relay input surface to the vessel was ~1.1 mm.   
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Supplementary Figure 5. Mapping of pulse wave velocity (PWV) by imaging the blood flow at 

multiple sites simultaneously. (a) Widefield images showing thermal wave propagation in the 

mouse middle cerebral arteries. The yellow circles, labelled L1–L4, indicate locations of the laser 

heating spots during recording. (b) Plot of averaged blood flow speeds at spots L1 and L3. (c) Plot 

of averaged blood flow speeds at spots L1 and L4. (d) Zoomed-in view of the peaks shown in the 

dotted boxes in (b) and (c). (e) Map of PWV at two branches of the middle cerebral arteries. The 

vessel diameter of each branch was assumed to be constant. 
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Supplementary Figure 6. Phantom study of melanoma tumour cells (MTCs). (a) Absorption 

spectra of whole blood (85% oxygen) and melanosome. (b) PATER imaging of MTCs flowing 

through a tube (120 µm in diameter) filled with blood. The MTCs and the blood are driven through 

the tube by a syringe pump. (c) Space-time domain plot of PA signals along the dashed line in (b). 

The slope from the plot was computed by linear fitting to be ~1 mm/s, which was the flow speed 

of the MTCs. (d) Plot of localization error at different signal-to-noise ratios (SNRs). MTC clusters 

with different concentrations were prepared by mixing agar with blood and MTCs. The clusters 

were then injected into the tube shown in (b) and driven by a syringe pump to flow through the 

tube. The computed localization errors at different SNRs were fitted with the function 𝑓ሺSNRሻ  ൌ

 𝑎/SNR , where 𝑎  is a constant. The fitting shows that the localization error is inversely 

proportional to the value of SNR.  
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Supplementary Figure 7. Quantification of spatial resolution in the localization map of mouse 

brain. (a) Calibration image of the mouse brain and a zoomed-in view of the blue boxed region 

showing a group of small vessels. The plot shows the profile along the blue line in the zoomed-in 

view and a Gaussian fit calculated using MATLAB’s curve-fit toolbox. Meas., measurement. (b) 

Localization map of the mouse brain and a zoomed-in view of the red boxed region showing the 

same region as the blue boxed region in (a). The plot shows the profile along the red line in the 

zoomed-in view and a three-term Gaussian fit. The two neighboring vessels branching out from 

each other can be separated at a distance of 12 μm, and the FWHM for the small vessel is 7 μm. 

Scale bars in (a) and (b), 100 μm. (c) Two summed localization traces of tumour cells migrating 

through two crossed blood vessels, superimposed on the red-boxed region in (a). A 25-time spatial 

running averaging was performed for each image to enhance the SNR. The colour indicates MTC 

flow direction inside the blood vessels. (d) Line profile across the grey dotted line in (c) at a 

distance of 300 nm.  
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Supplementary Note 1. Derivation of the noise-limited localization error.  

For simplicity, the analysis is given in one dimension. The goal is to estimate the centre of the 

tracked particle, 𝑥଴, from the acquired PA amplitude, 𝑃௜, where 𝑖 is the pixel index along the 𝑥 

axis. We assume a Gaussian PSF to represent the PA amplitude density with a dimension of 

amplitude per unit length:  

 𝑝ሺ𝑥, 𝑥଴ሻ ൌ
𝑃

√2𝜋𝜎
exp ቆെ

ሺ𝑥 െ 𝑥଴ሻଶ

2𝜎ଶ ቇ, (1) 

where 𝑃 is the PA amplitude and 𝜎 is the standard deviation (Supplementary Fig. 8). We use the 

least-squares fitting to evaluate 𝑥଴. The sum of the squared residuals is given by 

 χଶሺ𝑥଴ሻ ൌ ෍ ቆ
𝑃௜

𝑙
െ 𝑝ሺ𝑥௜, 𝑥଴ሻቇ

ଶ

, (2) 

where 𝑙 is the width of a pixel, which is assumed to be much smaller than 𝜎. Parameter 𝑥଴ is 

estimated by minimizing the sum: 

 𝑥ො଴ ൌ arg min
௫బ

𝜒ଶሺ𝑥଴ሻ. 
(3) 

The minimization is achieved by solving the following equation:  

 
𝑑𝜒ଶ

𝑑𝑥ො଴
ൌ ෍ 2 ቆ

𝑃௜

𝑙
െ 𝑝ሺ𝑥௜, 𝑥ො଴ሻቇ

𝜕𝑝ሺ𝑥௜, 𝑥ො଴ሻ
𝜕𝑥ො଴

ൌ 0. (4) 

The Taylor expansion is invoked to the first order: 

 𝑝ሺ𝑥௜, 𝑥ො଴ሻ ൌ 𝑝ሺ𝑥௜, 𝑥଴ሻ ൅
𝜕𝑝ሺ𝑥௜, 𝑥଴ሻ

𝜕𝑥଴
Δ𝑥ො଴, (5) 

where Δ𝑥ො଴ ൌ 𝑥ො଴ െ 𝑥଴. For notation brevity, we denote 𝑝௜
ᇱ ൌ 𝜕𝑝ሺ𝑥௜, 𝑥଴ሻ/𝜕𝑥଴. Inserting Eq. (5) into 

Eq. (4) yields 

 ෍ሺ𝑃௜ െ 𝑙 ⋅ 𝑝ሺ𝑥௜, 𝑥଴ሻ െ 𝑙 ⋅ 𝑝௜
ᇱ ⋅ Δ𝑥ො଴ሻ ⋅ 𝑝௜

ᇱ ൌ 0, (6) 

We denote the measurement error as Δ𝑃௜ ൌ 𝑃௜ െ 𝑙 ⋅ 𝑝ሺ𝑥௜, 𝑥଴ሻ, which is inserted into Eq. (6) to yield 
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 Δ𝑥ො଴ ൌ
∑ Δ𝑃௜𝑝௜

ᇱ

𝑙 ∑ 𝑝௜
ᇱଶ . 

(7) 

Because the only random variable on the right-hand side of Eq. (7), Δ𝑃௜, is an independent zero-

mean Gaussian random variable, Δ𝑥ො଴ must be a zero-mean Gaussian random variable as well. 

Therefore, the estimation is unbiased. By squaring Eq. (7) and calculating the expected value, we 

obtain the mean squared error as 

 〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ
〈ሺ∑ Δ𝑃௜𝑝௜

ᇱሻଶ 〉

𝑙ଶ൫∑𝑝௜
ᇱଶ൯

ଶ . 
(8) 

Because Δ𝑃௜ at different indices are uncorrelated, 〈ሺ∑ Δ𝑃௜𝑝௜
ᇱሻଶ 〉 ൌ ∑ 𝑝௜

ᇱଶ〈ሺΔ𝑃௜ሻଶ〉. Therefore, Eq. 

(8) becomes 

 〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ
∑ 𝑝௜

ᇱଶ〈ሺΔ𝑃௜ሻଶ〉

𝑙ଶ൫∑𝑝௜
ᇱଶ൯

ଶ . 
(9) 

We rewrite the expected noise power (not in absolute unit) as 〈ሺΔ𝑃௜ሻଶ 〉 ൌ 𝑁௟
ଶ, where 𝑁௟ is the 

amplitude of the statistically stationary (that its statistical properties are independent of the index 

𝑖) detector or environmental noise at pixel width 𝑙. Eq. (9) then becomes 

 〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ
𝑁௟

ଶ

𝑙∑𝑙 ⋅ 𝑝௜
ᇱଶ . 

(10) 

We approximate the sum in the denominator in Eq. (10) with an integral: 

 
〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ

𝑁௟
ଶ

𝑙 ׬ 𝑑𝑥 ൬
𝜕𝑝ሺ𝑥, 𝑥଴ሻ

𝜕𝑥଴
൰

ଶ
ାஶ

ିஶ

, 
(11) 

where 

 
𝜕𝑝ሺ𝑥, 𝑥଴ሻ

𝜕𝑥଴
ൌ

𝑃

√2𝜋𝜎ଷ
ሺ𝑥 െ 𝑥଴ሻ𝑒ିሺ௫ି௫బሻమ/ଶఙమ

. (12) 

Therefore, it can be shown that 
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 〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ
2𝜋𝜎଺𝑁௟

ଶ

𝑙 ⋅ 𝑃ଶ ׬ 𝑑𝑥 ሺ𝑥 െ 𝑥଴ሻଶ𝑒ିሺ௫ି௫బሻమ/ఙమାஶ
ିஶ

. 
(13) 

If we let 𝑣 ൌ ሺ𝑥 െ 𝑥଴ሻ, we have 

 〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ
2𝜋𝜎଺𝑁௟

ଶ

𝑙 ⋅ 𝑃ଶ ׬ 𝑑𝑣 𝑣ଶ𝑒ି௩మ/ఙమାஶ
ିஶ

. 
(14) 

If we set a random variable 𝑉~𝒩 ൬0, ቀ ఙ

√ଶ
ቁ

ଶ
൰, whose probability density function is pdfሺ𝑣ሻ ൌ

ଵ

√గఙ
𝑒ି௩మ/ఙమ

, then Eq. (14) can be rearranged as follows: 

 〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ
2𝜋𝜎଺𝑁௟

ଶ

𝑙 ⋅ 𝑃ଶ√𝜋𝜎 ׬ 𝑑𝑣 𝑣ଶ 1
√𝜋𝜎

𝑒ି௩మ/ఙమାஶ
ିஶ

. 
(15) 

Since ׬ 𝑑𝑣 𝑣ଶ ଵ

√గఙ
𝑒ି௩మ/ఙమାஶ

ିஶ ൌ ׬ 𝑑𝑣 𝑣ଶpdfሺ𝑣ሻାஶ
ିஶ ൌ 𝐸ሺ𝑉ଶሻ ൌ Varሺ𝑉ሻ ൌ ఙమ

ଶ
, Eq. (15) becomes 

 〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ
2𝜋𝜎଺𝑁௟

ଶ

𝑙 ⋅ 𝑃ଶ√𝜋𝜎ଷ/2
ൌ

4√𝜋𝜎ଷ𝑁௟
ଶ

𝑙 ⋅ 𝑃ଶ . (16) 

Denoting the maximum amplitude of the Gaussian PSF as 𝑆௟ ൌ 𝑙 ⋅ ௉

√ଶగఙ
, we convert Eq. (16) to 

 〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ
2𝑙𝜎

√𝜋
൬

𝑁௟

𝑆௟
൰

ଶ

. (17) 

Next, we define an equivalent conceptual pixel of width 𝐿 ൌ √2𝜋𝜎 centred at the peak of the PSF 

such that the area of the colored region shown in Supplementary Fig. 8 is 𝑃 . This pixel’s 

associated signal and noise amplitudes are denoted as 𝑆௅ and 𝑁௅, respectively. Since the signal 

amplitude is proportional to length, and the noise amplitude is proportional to the square root of 

length, we have 𝑆௅/𝑆௟ ൌ ௅

௟
 and 𝑁௅/𝑁௟ ൌ ට௅

௟
, which yield 

 
𝑁௟

𝑆௟
ൌ

𝑁௅

𝑆௅
ඨ

𝐿
𝑙

. (18) 
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Substituting Eq. (18) into Eq. (17), we obtain 

 〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ 2√2𝜎ଶ 𝑁௅
ଶ

𝑆௅
ଶ ൌ 2√2𝜎ଶ ⋅

1
SNR௅

ଶ , (19) 

where the amplitude-based signal-to-noise ratio with a pixel width of 𝐿 is defined as SNR௅ ൌ

𝑆௅/𝑁௅. Taking the square root of Eq. (19) leads to 

 ඥ〈ሺΔ𝑥ො଴ሻଶ 〉 ൌ 2ଷ/ସ 𝜎
SNR௅

. 
(20) 

In conclusion, the localization error is proportional to the original resolution of the system and 

inversely proportional to the value of SNR௅. 

 

 

Supplementary Figure 8. Schematic representation of the least-squares fitting for the centre of a 

particle. 𝑃௜, measured PA amplitude of the particle at pixel of index 𝑖; 𝑝ሺ𝑥, 𝑥଴ሻ, assumed Gaussian 

point-spread-function (PSF); 𝑥଴, the centre of the particle to be estimated; 𝑥௜ ൌ 𝑖 ⋅ 𝑙, the position 

of the 𝑖th pixel, where 𝑙 is the pixel width. The coloured region represents an area of 𝑃 for a 

conceptual pixel of width 𝐿 ൌ √2𝜋𝜎.  
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Supplementary Note 2. Computation of the flow speed and direction of the MTCs. 

We computed the flow speed and direction of the MTCs in each vessel by tracking them in real 

time and analyzing their movements. The computed flow speed of MTCs has a maximum of 0.54 

mm/s, which is lower than the cerebral blood flow speed1. A velocity-contrast map is computed 

for the mouse cortical vasculature by analyzing the flow speed of MTCs in each vessel in the 

spatiotemporal frequency domain. Vessels in the mouse brain can be individually identified based 

on the differences in flow speed and direction of MTCs as shown in Supplementary Fig. 9. 

 

 

Supplementary Figure 9. Localization and tracking of MTCs in the mouse brain. (a) Calibration 

image of the cortical region through an intact skull. (b) Localization map reconstructed by 

superimposing the tracked MTC positions from all frames. (c) Velocity-contrast map for the mouse 
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cortical vasculatures computed by analyzing the flow speed of MTCs in each vessel in the 

spatiotemporal frequency domain. The arrows indicate the flow directions of the MTCs. (d) Flow 

direction map of the MTCs from the boxed region in (c) compared to the calibration image. All 

scale bars, 500 μm.  
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Supplementary Note 3. Order-of-magnitude estimation of the total number of resolvable pixels 

in the reconstructed image of PATER.  

We first consider the information in the unit of bits in an image containing 𝑁௣ pixels:  

 𝑁௣𝑏௣, 
(21) 

where 𝑏௣ is the bit depth desired for each pixel’s digitized signal.  

In widefield mode, the detected signal 𝑢ሺ𝑡ሻ has a time duration of 𝑇௪. The temporal resolution ∆𝑡 

of the detected time course is determined by the high cutoff frequency 𝑓ு஼ of the signal: 

 ∆𝑡 ൌ
1

2𝑓ு஼
. (22) 

Thus, the information capacity of the widefield signal detected by PATER is estimated to be 

 
𝑇௪

∆𝑡
⋅ b୵ ൌ 2𝑓ு஼𝑇௪ ⋅ 𝑏௪, (23) 

where 𝑏௪ is the bit depth used to digitize 𝑢ሺ𝑡ሻ. To well reconstruct the widefield image using 

PATER, the following condition must be satisfied: 

 𝑁௣𝑏௣ ൑ 2𝑓ு஼𝑇௪ ⋅ 𝑏௪. 
(24) 

In our current experimental settings, 𝑇௪ ൌ 164 μs, 𝑓ு஼ ൌ 25 MHz, and 𝑏௪ ൌ 12. In calibration 

mode, we have achieved an SNR = 70; thus, we desire 𝑏௣ ൎ logଶ 70 ൎ 7. Therefore, from Eq. 

(24), the maximum number of resolvable pixels 𝑁௣ is approximately 14,000.  
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Supplementary Note 4. Comparison of SNRs between point and widefield illuminations in 

PATER.  

We consider a widefield image containing 𝑁௣ resolvable pixels. Calibration yields 𝑁௣ unit-norm 

calibration vectors 𝑒̂ଵ, 𝑒̂ଶ, … , 𝑒̂ே೛
 , each representing a normalized time-resolved PA signal from a 

single pixel. For simplicity, we assume that they are noise-free and orthogonal to each other (i.e., 

𝑒̂௜ ⋅  𝑒̂௝ ൌ 0, if 𝑖 ് 𝑗, and 𝑖, 𝑗 ൌ 1,2, … , 𝑁௣).  

In widefield mode, the detected signal 𝑒 can be expressed as 

 𝑒 ൌ ෍ 𝜇௜𝑒̂௜

ே೛

ଵ
൅ 𝑛ሬ⃑ , (25) 

where 𝜇௜ denotes the true RMS signal amplitude of the ith pixel and 𝑛ሬ⃑  denotes the noise vector. 

PATER’s image reconstruction is equivalent to vector projection to each pixel’s basis vector—

which may also be considered matched filtering: 

 𝑒 ⋅ 𝑒̂௜ ൌ 𝜇௜ ൅ 𝑛௜. (26) 

While the first term on the right side represents the true pixel value in RMS signal amplitude, the 

second term represents the projected RMS noise amplitude 𝑛௜ ൌ 𝑛ሬ⃑ ⋅ 𝑒̂௜. The expected SNR can be 

expressed as 

 𝑆𝑁𝑅௪௙ ൌ
𝜇௜

〈|𝑛௜|〉
. (27) 

For a fair comparison, the light fluence (mJ/cm2) is kept identical for both widefield and point-

scanning measurements. For point-scanning imaging without calibration data, the signal 𝑒 for the 

ith pixel can nevertheless be expressed as 

 𝑒 ൌ 𝜇௜𝑒̂௜ ൅ 𝑛ሬ⃑ . (28) 
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In photoacoustics, noise mainly arises from three sources: thermal acoustic noise from the medium, 

thermal noise from the ultrasonic transducer, and electronic noise from the amplifier2, 3. 

Independent of light illumination, 𝑛ሬ⃑  is statistically identical for both widefield and point-scanning 

measurements.  

Without knowledge of 𝑒̂௜ during the experiment in this mode, we use the RMS value of 𝑒 (i.e., the 

norm ‖𝑒‖) instead as the measured pixel value: 

 ‖𝑒‖ ൌ ට𝜇௜
ଶ ൅ 𝑛ଶ ൅ 2𝜇௜𝑒̂௜ ⋅ 𝑛ሬ⃑ , (29) 

which is approximately equal to 𝜇௜ if 𝑛 ≪ 𝜇௜ (𝑛 ൌ ‖𝑛ሬ⃑ ‖). The RMS noise relative to the true value 

of 𝜇௜ can be estimated as follows: 

 𝑛𝑜𝑖𝑠𝑒௦௣ ൌ |‖𝑒‖ െ 𝜇௜| ൌ ቤට𝜇௜
ଶ ൅ 𝑛ଶ ൅ 2𝜇௜𝑒̂௜ ⋅ 𝑛ሬ⃑ െ 𝜇௜ቤ. (29) 

As 𝑛 ≪ 𝜇௜, Eq. (30) can be approximated to 

 𝑛𝑜𝑖𝑠𝑒௦௣ ൌ |𝑛௜|. (30) 

Therefore, the point-scanning pixel SNR is  

 𝑆𝑁𝑅௦௣ ൌ
𝜇௜

〈|𝑛௜|〉
, 

(31) 

which approximately equals the widefield SNR for the same pixel as long as 𝑛 ≪ 𝜇௜ holds true. 

This conclusion has also been experimentally validated. 
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Supplementary Video 1. Demonstration of PATER’s imaging mechanism. The acoustic ergodic 

relay encodes the PA signals as they propagate from the source to the detector. In the calibration 

mode, the point-by-point encoded responses are recorded. In the widefield mode, the detected 

signals are decoded by the reconstruction algorithm using the calibrated impulse responses. The 

resulting images are then displayed. The propagations of PA signals inside the ergodic relay are 

simulated using the k-wave toolbox. 

 

Supplementary Video 2. Quantification of the spatial resolution of snapshot widefield imaging 

by PATER. After calibration, two 30-μm-diameter light beams were shone on a black sheet. While 

one beam was held stationary in the centre, the other beam was translated linearly away from the 

first. The step size was 15 μm, and the FOV was 1.5 ൈ 0.75 mm2. 

 

Supplementary Video 3. Snapshot widefield imaging by PATER of blood flow behind biological 

tissue. A tissue phantom consisting of two tubes with blood placed behind a layer of chicken breast 

tissue was imaged. Tube 1 without flow served as the control while Tube 2 with blood being 

flushed out was monitored. The video with an original recording frame rate of 2 kHz was down-

sampled 200ൈ to a playback rate of 10 Hz. 

 

Supplementary Video 4. Snapshot widefield functional PATER imaging of haemoglobin 

responses in a mouse brain to front-paw stimulations in vivo. An 8 ൈ 6 mm2 FOV of the mouse 

cortex was monitored at a frame rate of 10 Hz. The fractional changes in PA signal amplitude 

(shown in red) in response to right- and left-paw stimulations were superimposed on the calibration 
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image (shown in grey). The average change in the PA signal amplitude in the somatosensory region 

over time, peaking at ~6.4%, was plotted at the bottom of the video.  

 

Supplementary Video 5. Visualization of blood pulse wave propagation in the middle cerebral 

arteries. A 3 × 3 mm2 FOV of the mouse cerebral region was imaged at a frame rate of 2 kHz. Five 

heating cycles were displayed. 

 

Supplementary Video 6. Snapshot widefield tracking of MTCs in a tube using PATER at 660 nm 

light illumination. A tube (0.1 mm inner diameter) filled with blood was first imaged in calibration 

mode. An MTC cluster mixed with blood was then injected at a speed of 1 mm/s. The migration 

of the MTCs through the tube was monitored with widefield measurements. The video with an 

original recording frame rate of 1 kHz is down-sampled 20ൈ to a playback rate of 50 Hz. 

 

Supplementary Video 7. Snapshot widefield tracking of MTCs in a mouse brain in vivo using 

PATER at 660 nm light illumination. A 2 ൈ  2 mm2 FOV of the mouse cortical region was 

monitored at a frame rate of 2 kHz for 100 seconds. The video was down-sampled 200ൈ to a 

playback rate of 10 Hz. 

 

Supplementary Video 8. Close-up slow-motion video of snapshot widefield tracking of MTCs as 

shown in Supplementary Video 6.  
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Supplementary Video 9. Buildup of MTC localization map. The positions of migrating MTCs in 

the blood vessels were tracked throughout the video from Supplementary Video 6 and 

superimposed. 
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