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Summary

In nature, organic acids are a commonly used source of carbon and energy. Many bacteria 

use AMP-forming acid:CoA ligases to convert organic acids into their corresponding acyl-

CoA derivatives, which can then enter metabolism. The soil environment contains a broad 

diversity of organic acids, so it is not surprising that bacteria such as Streptomyces lividans 

can activate many of the available organic acids. Our group has shown that the activity of 

many acid:CoA ligases is posttranslationally controlled by acylation of an active-site lysine. 

In some cases, the modification is reversed by deacylases of different types. We identified 

eight new acid:CoA ligases in S. lividans TK24. Here, we report the range of organic acids 

that each of these enzymes can activate, and determined that two newly identified CoA 

ligases were under NAD+-dependent sirtuin deacylase reversible lysine (de)acetylation 

control, four were not acetylated by two acetyltransferases used in this work, and two were 

acetylated but not deacetylated by sirtuin. This work provides insights into the broad organic-

acid metabolic capabilities of S. lividans, and sheds light into the control of the activities of 

CoA ligases involved in the activation of organic acids in this bacterium. 

Keywords. Reversible lysine acetylation, sirtuin, Streptomyces, acetyltransferases, CoA 

ligases, proteomics, actinobacteria metabolism, organic acid activation

Introduction

Lysine acetylation is a posttranslational modification (PTM) broadly distributed in cells from 

all domains of life. Acetylation of the epsilon amino group (N) of lysyl residues can impact 

the activity or stability of a protein, and its interactions with other proteins or molecules. 

Importantly, in some cases lysine acetylation is reversed by deacetylases. Regulation of A
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protein function by reversible lysine acetylation (hereafter RLA) allows cells to react rapidly 

to changing environmental conditions (VanDrisse & Escalante-Semerena, 2019, Hentchel & 

Escalante-Semerena, 2015).

The first enzyme reported to be under RLA control was the acetyl-Coenzyme A (AcCoA) 

synthetase (Acs, EC 6.2.1.1) of Salmonella enterica enterica sv Typhimurium LT2 (hereafter 

S. enterica) (Starai et al., 2002). Like other AMP-forming acyl-CoA synthetases (a.k.a. 

acetate:CoA ligase) (PF00501, IPR000873) (Gulick, 2009), Acs activates acetate to acetyl-

CoA (AcCoA) in two steps via an acetyl-AMP (AcAMP) intermediate (Fig. 1) (Starai & 

Escalante-Semerena, 2004a). 

In vitro activity and structural data indicate that in S. enterica Acs (SeAcs), the side chain of 

residue K609 is critical for the conversion of acetate to acetyl-AMP (Gulick et al., 2003, 

Starai & Escalante-Semerena, 2004b). Acetylation of this catalytic lysine abolishes the 

adenylylation activity of the enzyme, but does not affect the conversion of acetyl-AMP to 

AcCoA (Starai & Escalante-Semerena, 2004b). RLA controls the activities of acid:CoA 

ligases in prokaryotes and eukaryotes  (Crosby et al., 2012a, Starai & Escalante-Semerena, 

2004b, Gardner et al., 2006, Hallows et al., 2006, Nambi et al., 2013, Tucker & Escalante-

Semerena, 2013, Burckhardt et al., 2019). Although the presence of the canonical catalytic 

lysine is necessary, it is not sufficient for RLA control (Crosby & Escalante-Semerena, 2014, 

Crosby et al., 2012b, Tucker & Escalante-Semerena, 2013). For example, the 

methylmalonate:CoA ligase MatB enzyme of Rhodopseudomonas palustris is not acetylated 

even though it contains the conserved catalytic lysine within the so-called acetylation motif. 

Results of structural biochemical and genetic studies showed that a 21-aa region N-terminal 

to the acetylation motif was necessary for recognition by the acetyltransferase (Crosby et al., 

2012b). Notably, in Streptomyces lividans acetylation of the catalytic lysine is modulated by 

the acetylation of a serine residue closely located to the catalytic lysine (VanDrisse & 

Escalante-Semerena, 2018). The point to keep in mind here is that the catalytic lysine of 

CoA ligases is not always accessible to acetyltransferases, and that much remains to be 

learned about GNAT specificity.  
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RLA involves i) acetyltransferases that transfer the acetyl group from AcCoA to the epsilon 

amino (N) group of specific lysyl residues of a target protein, and ii) deacetylases that 

remove the modification. Deacetylases could be either NAD+-dependent or Zn-dependent, 

acetate-forming enzymes (Hentchel & Escalante-Semerena, 2015) (Fig. 2). NAD+-

dependent protein deacetylation is relevant to the work reported herein.      

In S. enterica, the protein acetyltransferase (SePat) acetylates and inactivates Acs (Starai 

& Escalante-Semerena, 2004b). The SePat enzyme belongs to the Gcn5-related N-

acetyltransferase superfamily (GNAT; PF00583, IPR000182), a family of acetyltransferases 

found in all domains of life (Vetting et al., 2005, Hentchel & Escalante-Semerena, 2015). S. 

enterica contains only one sirtuin, known as CobB (Tsang & Escalante-Semerena, 1998, 

Starai et al., 2002).

Past work from our group studied the activity and substrates of SePat homologues in the 

Gram-positive actinomycete Streptomyces lividans. Notably, this bacterium encodes a type 

II Pat homologue named SlPatA, in which its two domains are reversed relative to the 

domains of SePat (Tucker & Escalante-Semerena, 2013) (Fig. S1). Even though SlPatA 

acetylates the acetoacetyl-CoA synthetase (SlAacS) of this bacterium, it only poorly 

acetylates SlAcs (Tucker & Escalante-Semerena, 2013). More recent work identified the 

type-III acetyltransferase SlPatB as the enzyme that acetylates SlAcs (VanDrisse & 

Escalante-Semerena, 2018). This same work in S. lividans also reported the presence of 

three different deacetylases, two of which were homologous to the NAD+-dependent 

deacetylases SIRT5 and SIRT4. The third deacetylase of S. lividans was homologous to the 

Zn-dependent, acetate-forming deacetylases (Fig. 2). 

Here, we report the identification and characterization of eight new S. lividans acid:CoA 

ligases and studied their range of substrates. The enzymatic activity of four of the new CoA 

ligases was modulated by lysine acetylation. 

Insights into the need for the posttranslational control of CoA ligases was reported for the 

acetate:CoA ligase (a.k.a. acetyl-CoA synthetase, Acs) of Salmonella enterica. In vivo and in 

vitro evidence supported that idea that RLA control of SeAcs was needed to maintain energy 

charge homeostasis (Chan et al., 2011). That is, in the absence of RLA control, SeAcs A
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reduces the energy charge of the cell below growth-sustaining levels due to the depletion of 

ATP and the buildup of an unphysiologically high level of AMP. Since AMP-forming ligases 

are involved in many cellular processes, it is of interest to determine which members of this 

family of enzymes are under RLA control, and what the reason for such a control is. 

Our results reported here are only the initial steps taken to identify and initially characterize 

acid:CoA ligases in S. lividans.  Subsequent studies will provide insights into the role RLA in 

S. lividans metabolism and physiology. 

Results 
SlPatA is expressed in a growth-phase dependent manner. Since there is precedent that 

type-II acetyltransferases target acetate:CoA ligases and affect growth of bacteria, we 

sought to probe for differences in growth of the S. lividans patA strain compared to the 

patA+ strain. S. lividans TK24 patA+ and patA strains were grown aerobically on rich 

medium (YEME) or minimal medium supplemented with glucose, maltose, -

hydroxybutyrate, glycerol, or N-acetylglucosamine. As shown in figure S2, neither the wild-

type nor the patA strain exhibited a growth defect on any carbon source tested, indicating 

that the absence of SlPatA function did not perturb the physiology of this bacterium to the 

point of resulting in observable phenotypical differences between the two strains under the 

conditions tested. However, we asked whether the protein acetylation patterns of the two 

strains differed. To address this point, cultures of the patA+ and patA strains were grown 

under the above-mentioned conditions. After cell breakage, proteins present in the soluble 

fraction of the extracts were resolved by SDS-PAGE and probed by western blot for the 

presence of SlPatA and the presence of acetyllysine (AcK) in resolved proteins. A schematic 

of the protocol is shown in figure S3. We expected that if SlPatA acetylated S. lividans 

proteins, differences in the protein acetylation profiles would be detectable using anti-AcK 

(-AcK) antibodies.

  To correlate the presence of SlPatA with changes in protein acetylation profiles, we probed 

each lysate using rabbit polyclonal antibodies against SlPatA (Envigo, PA) and with 

commercially available polyclonal rabbit -AcK antibodies (Calbiochem). As shown in figure A
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3, we detected SlPatA in cell lysates when the S. lividans wild-type strain was grown in each 

of the culture media used. As expected, a signal for SlPatA was not detected in the S. 

lividans patA strain grown in parallel. Notably, the SlPatA signal was weaker at the 24-h 

time point than at later time points for all conditions, and SlPatA was not detected at the 62-h 

time point when the S. lividans wild-type strain was grown in media supplemented with -

hydroxybutyrate as the sole carbon source. Similarly, SlPatA was not detected at the 48- 

and 62-h time points when the S. lividans patA+ strain was grown on N-acetylglucosamine as 

the sole carbon source. These data suggested that SlPatA was expressed in a growth-

phase dependent manner on each carbon source tested.

SlPatA controls acetylation of multiple targets in S. lividans. When we probed S. 

lividans soluble proteins for AcK residues, we detected differential banding patterns on each 

carbon source that correlated with the presence of SlPatA (Fig. 3). It is important to note that 

we observed a high number of proteins acetylated in the absence of SlPatA in all conditions, 

suggesting that SlPatA-independent acetylation occurs in S. lividans. This was not surprising 

since non-enzymatic acetylation occurs (Weinert et al., 2013, Kuhn et al., 2014), and the 

genome of S. lividans codes for 72 putative acetyltransferases, some of which are likely to 

acetylate proteins. 

We observed differences in protein acetylation that correlated with the presence of SlPatA 

when S. lividans was grown in minimal and rich medium, suggesting that SlPatA controlled 

the acetylation of multiple targets (Fig. 3). Notably, when S. lividans was grown on N-

acetylglucosamine, differences in acetylation patterns between S. lividans patA+ and patA 

strains correlated strongly with the presence of SlPatA after 24 h of growth. Significant 

differences in acetylation were not detected at 48- and 62-h time points when SlPatA was 

not detected. The most striking difference in acetylation patterns between the patA+ and 

patA strains occurred when S. lividans was grown on -hydroxybutyrate. As seen in figure 

3, SlPatA was detected after 24, 38, and 48 h of growth. We observed acetylated proteins 

between 50 and 75 kDa in the S. lividans patA+ strain that were not detected in the S. 

lividans patA strain, suggesting that these proteins were acetylated by SlPatA. A
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Identification of acetylated proteins in S. lividans correlated with the presence of 

SlPatA. To identify possible targets of SlPatA, S. lividans wild-type and patA strains were 

grown on -hydroxybutyrate as before, and soluble proteins were subjected to isoelectric 

focusing followed by SDS-PAGE. Gels were stained to confirm equal loading (Fig. 4A, B). S. 

lividans wild-type and patA protein were then transferred to polyvinylidene fluoride (PVDF) 

membrane for western blotting. Acetylated proteins were detected using -AcK antibodies. 

We detected six distinct AcK spots in lysates of S. lividans patA+ strain (Fig. 4C, D) that were 

not found in lysates of a S. lividans patA strain (Fig. 4E). 

Acetylated protein spots were excised from the corresponding isoelectric point and 

molecular mass position from duplicate, Coomassie Blue-stained protein gels. Proteins of 

interest were identified by mass spectrometry peptide fingerprinting (spectra not shown). We 

identified four acid:CoA (AMP-forming) ligases among the six spots detected (Table 1). All of 

the putative CoA ligases activate organic acids to the corresponding thioester in the two-step 

reaction shown Fig. 1, 5A. Spots 1 and 2 were fragments of the same protein (EFD65796), 

and proteins EFD65795 and EFD68037 were found in the same location (spot 3). Spot 6 

was identified as CTP synthetase, which does not belong to the AMP-forming family of 

enzymes. CTP synthetase was not further analyzed. 

Table 1. Identification of lysine-acetylated proteins by isoelectric focusing / SDS-PAGE, 
Western blot analysis and LC/MS/MS

Accession
number

Annotation Acetylated site Spot #

EFD65795 Acid:CoA ligase PMTVSGKAcVRKVELRE 3, 5

EFD65796 Acetate:CoA ligase PKTVSGKAcIRRIELRE 1, 2

EFD68037 Acid:CoA ligase PKTSVGKAcFDKKVLRR 3

EFD64737 Phenylacetate:CoA ligase LERSLGKAcIRRVWDQR 4

Additional Acid:CoA ligases identified by bioinformatics analysis

EFD64524 Putative acid:CoA ligase PLTAVGKAcVDKAALAR

EFD64965 Putative acid:CoA ligase PRNASGKILKRELRDA
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The 

single acetylated lysine detected in each protein was the predicted catalytic lysine located 

within the so-called A10 motif of acid:CoA ligases (AMP-forming) (Starai & Escalante-

Semerena, 2004a, Gulick, 2009) (Fig. 5B, black asterisk), suggesting that acetylation could 

be a means of regulating the activity of these putative S. lividans enzymes. 

The acetylated, putative S. lividans acid:CoA (AMP-forming) ligases are not modified 
by SlPatA. Since many bacterial acid:CoA (AMP-forming) ligases are known to be 

acetylated, we sought to determine whether the newly identified enzymes were substrates of 

SlPatA as suggested by the results shown in figure 4. Purified proteins were incubated with 

[1-14C]-acetyl-CoA and SlPatA and transfer of the acetyl moiety onto the proteins was 

monitored by phosphor imaging. Surprisingly, none of the proteins were acetylated by 

SlPatA under conditions previously optimized for SlPatA (Tucker & Escalante-Semerena, 

2013), compared to a positive control of SlPatA with its bona fide substrate SlAacS (Fig. S4). 

This was despite the fact that these CoA ligases were identified in 

a patA+ strain. 

We began addressing these unexpected results by testing the possibility that the S. 

lividans PatB (SlPatB) acetyltransferase was in fact responsible for the acetylation of the 

proteins identified by isoelectric focusing/SDS-PAGE. 

We chose to test SlPatB, as it is the only other characterized acetyltransferase in S. 

lividans that also targets acid:CoA ligases (VanDrisse & Escalante-Semerena, 2018). 

The difference in domain organization between SlPatA (type II) and SlPatB (type III) is 

illustrated in figure S1. Because of difficulties keeping SlPatB active in isolation, we used the 

more stable SlPatB homologue from Micromonospora aurantiaca, MaPatB (Xu et al., 2014) 

in our in vitro experiments. Previous work from our laboratory showed that MaPatB is 

functionally and physiologically equivalent to SlPatB (VanDrisse & Escalante-Semerena, 

2018). We prepared reaction mixtures that contained MaPatB plus the identified S. lividans 

putative acid:CoA ligases plus [1-14C]-acetyl-CoA. After a 2-h incubation at 37ºC, proteins 

EFD66106 Putative acid:CoA ligase PRTATGKAcLQRYRLLD

EFD67678 Putative acid:CoA ligase PRAASGKILRRQLRE
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were resolved by SDS-PAGE and label transfer visualized by phosphor imaging as 

described under Experimental procedures.  As shown in figure 6, two of the four acid:CoA 

ligases that were identified from mass spectrometry experiments (EFD65795, EFD68037; 

shown in boldface type) were acetylated by MaPatB. This acetylation appeared on the 

putative active-site lysine, a conclusion that we reached because K-to-A variants of the 

ligases were not acetylated, indicating that the substituted lysine residue was the only 

acetylatable site. 

These data highlighted the fact that SlPatA and SlPatB appear to have different protein 

substrate specificity since SlPatB acetylated proteins that SlPatA did not. 

To explore the possibility that MaPatB could acetylate other AMP-forming acid:CoA ligases 

in S. lividans, the primary amino acid sequence of the acetate:CoA ligase (Acs) from S. 

lividans  was used to search for putative acid:CoA ligases in this bacterium using the 

BLASTp algorithm (Altschul et al., 2009). Four genes encoding putative CoA ligases with 

sequences with the highest degree of identity to Acs were cloned, overexpressed, and the 

proteins purified (Table 1). These proteins also contained predicted active-site lysine 

residues (Fig. 5B), making them putative candidates for acetylation. When these additional 

proteins were incubated with MaPatB and [1-14C]-

acetyl-CoA, two of the proteins, EFD64524 and EFD66106 (shown in boldface type), were 

acetylated (Fig. 6). As with other acetylatable proteins, the acetylation was specific to the 

putative active-site lysine since the EFD64524K540A and EFD66106K550A variants were not 

acetylated by MaPatB (Fig. 6). Interestingly, the acid:CoA ligases EFD64737, EFD67678, 

EFD65796, and EFD64965 were not acetylated by MaPatB indicating there might be 

additional acid:CoA ligase acetyltransferases in S. lividans capable of acetylating these CoA 

ligases.

Acetylated S. lividans CoA ligases are deacetylated by NAD+-dependent sirtuin.  To 

determine whether acetylation of S. lividans enzymes was reversible, as has been the case 

for CoA ligases in other organisms (Crosby et al., 2012a, Starai & Escalante-Semerena, 

2004b, Gardner et al., 2006, Tucker & Escalante-Semerena, 2013, Burckhardt et al., 2019). A
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S. lividans CoA ligases were acetylated with [1-14C]-acetyl-CoA and incubated with the 

known sirtuin deacylase CobB from S. enterica. We did not use the sirtuin deacylases from 

S. lividans (SlSrtA, SlCobB) because they are inactive in vitro even though they are active in 

vivo (Tucker & Escalante-Semerena, 2013, VanDrisse & Escalante-Semerena, 2018); 

SeCobB is ~30% identical to the sirtuins from Streptomyces lividans (Fig. S5). The 

EFD64524Ac protein was unstable during the deacetylation assay, hence its deacetylation 

status could not be assessed. While ligases EFD65795Ac and EFD68037Ac were 

deacetylated by the SeCobB sirtuin, EFD66106Ac was not (Fig. 7), a finding that reinforces 

the idea that it is difficult to predict based solely on sequence which proteins may be 

substrates for acetyltransferases and deacetylases.

S. lividans CoA ligases activate a variety of substrates. All of the above mentioned 

acid:CoA ligases were previously uncharacterized and their acid targets unknown. To 

determine the organic acid substrates for each of the new CoA-ligases, each enzyme was 

purified and their enzymatic activity was quantified using the continuous spectrophotometric 

assay described under Experimental procedures.

A variety of organic acids were found to be substrates of the CoA ligases (Fig. 8). 

EFD65795, EFD65796, and EFD64524 activated short chain fatty acids. EFD65795 

activated several aliphatic linear, branched, and unsaturated 4- and 5-carbon fatty acids. 

Thus, we named EFD65795 LbuL for linear, branched, and unsaturated fatty acid:CoA 

ligase. The specific activity of EFD65796 was the highest when C3 and C4 substrates were 

used. The enzyme activated isobutyrate ~4-fold faster than propionate and butyrate. 

EFD65796 was named IbuL for isobutyrate:CoA ligase. The apparent substrate preference 

for EFD64565 was not as clear since it showed similar specific activities with butyrate, 

valerate and caproate. However, dicarboxylic fatty acids were not good substrates for this 

enzyme. Because of the similar specific activities with C4, C5 and C6 monocarboxylates, we 

refrained from naming EFD64565 until catalytic efficiencies are determined for each 

substrate. EFD68037 activates 5- to 12-carbon linear fatty acids and was named MlaL for 

medium and long chain fatty acid:CoA ligase. Other CoA ligases activated aromatic acids. A
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EFD64737 was annotated as a phenylacetic acid CoA ligase (PaaL) and displayed a 

preference for this substrate over related aromatic organic acids. EFD66106 specifically 

activated 2-aminobenzoate and was named AmbL for 2-aminobenozate:CoA ligase. 

EFD64524 showed homology to 2,3-dihydroxybenozoate:CoA ligases and displayed higher 

specific activity for that compound, thus we named it DhbL for 2,3-dihydroxybenzoate:CoA 

ligase. We named EFD67678 as a 4-coumarate:CoA ligase, CouL. Table 2 shows the 

correspondence between locus tags, functions, and newly assigned protein names based on 

functionalities. Kinetic parameters must be determined for each enzyme and each substrate 

to be able to conclude which substrates are likely to be the preferred substrates for each 

enzyme.

Activity of CoA ligases is regulated by acetylation.  To determine the impact of 

acetylation on activity, MlaL and LbuL were incubated with MaPatB with or without acetyl-

CoA. After incubation, MlaL was tested for CoA ligase activity with caproate and LbuL with 

isovalerate (Fig. 9). Upon acetylation by MaPatB, activity of each CoA ligase tested 

decreased only marginally (~20% decrease in the activities of MlaLAc and LbuLAc). 

A buffer sweep for MaPatB activity was performed at pH values ranging from 5 to 9.5. 

Buffer and pH changes did not appear to make a difference in activity of LbuL after 

acetylation at pH between 6.5 and 9.5; the protein was unstable below pH 6.5 (data not 

shown). However, while these changes were modest, the decrease in activity was similar to 

that seen after MaPatB acetylation of SlAcs (VanDrisse & Escalante-Semerena, 2018, Xu et 

Table 2. Names of S. lividans acid:CoA ligases based on substrate range

Locus tag Substrates Name Acetylated by 
MaPatB 

EFD64524 2,3-Dihydroxybenzoate DhbL Yes

EFD64795 Isovalerate, valerate, butyrate, crotonate LbuL Yes

EFD64796 Isobutyrate, propionate, butyrate IbuL No

EFD64737 Phenylacetate PaaL No

EFD64965 Valerate, butyrate, caproate EFD64965 No

EFD66106 2-aminobenzoate AmbL Yes

EFD67678 4-coumarate CouL No

EFD68037 Caproate, valerate, heptanoate MlaL Yes
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al., 2014). This idea is discussed further in the Discussion section. These data are 

consistent with known S. lividans acetylation systems, indicating regulation of these CoA 

ligases may occur in vivo. 

Discussion

The metabolic capabilities of actinobacteria are broad and complex. S. lividans is no 

exception. By studying a few of its putative acid:CoA ligases, we have learned that the 

substrate specificity of the these enzymes is broad, probably evolving in response to the 

richness of organic acids present in the soil, where this organism is found. In soil, organic 

acid concentration can be as high as 1 mM for monocarboxylic acids, and as high as 50 M 

for polycarboxylates, providing soil bacteria with a plethora of carbon and energy to be 

extracted (Adeleke et al., 2017). Among the organic acid substrates activated by just a few 

of the S. lividans CoA ligases, our studies revealed that these enzymes can activate 

aliphatic linear, saturated and unsaturated, short and medium length and aromatic organic 

acids (Fig. 8, Table 2). The large number of putative CoA ligases encoded by the genome of 

this bacterium suggests that these types of compounds are critical carbon and energy 

sources for S. lividans, and likely for other streptomycetes. 

Why does S. lividans posttranslationally control the activity of some CoA ligases? 
Although the activity of some, but not all, of its CoA ligases that we studied were under the 

control of the sirtuin-dependent protein acylation/deacylation systems tested (Figs. 4, 5, 6), it 

is important to note that the lack of acetylation in some cases could be due to the fact that 

the acetyltransferase that modifies such enzymes was not used in this work. We note that 

the S. lividans genome encodes >70 putative GNATs (Hentchel & Escalante-Semerena, 

2015), hence it would be premature to conclude that CoA ligases that were not acetylated by 

SlPatA or MaPatB (the homologue of SlPatB) are not under RLA control. These results raise 

questions, such as i) what are the physiological stresses that trigger the acylation of 

proteins? ii) which organic acids are used to modify proteins? iii) what acetyltransferase(s) 

acetylate the other CoA ligases, if any, iv) what are the targets of the other uncharacterized A
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acetyltransferases in S. lividans? etc. Clearly, more work is needed to answers these 

questions. Regardless, our data provide evidence that reversible lysine acetylation (RLA) 

occurs in this bacterium, and that it is likely to play an important role in the metabolism and 

physiology of diverse organic acids.

Insights into the complexity of the role of reversible lysine acetylation in S. lividans. 

One striking result obtained during the course of these studies was that while the results of 

the initial screen for AcK correlated the presence of SlPatA with the acetylation of four CoA 

ligases (Fig. 4), none of the identified proteins was a substrate of SlPatA in vitro. In fact, only 

two of the four proteins were acetylated in vitro, and the acetyltransferase catalyzing the 

transfer was not SlPatA. Based on results obtained with MaPatB (a homologue of SlPatB), 

we speculate that SlPatB may control the activity of the MaPatB-acetylatable CoA ligases 

(Table 2), but the signals that trigger the modification are unknown. Alternatively, one or 

more of the yet-to-be-studied putative acetyltransferases may be responsible for the 

acetylation of the CoA ligases that were not acetylated by SlPatA in vitro but their acetylation 

in vivo correlated with the presence of SlPatA. What we do know is that SlPatA synthesis 

appears to be regulated as a function of the growth phase and the carbon and energy 

source available to the bacterium (Fig. 3). From a physiological stand point, this observation 

makes sense, since the CoA ligases studied here are ATP-consuming, AMP-forming 

enzymes and under nutrient limited conditions, cells must reduce the rate of ATP 

consumption.

The fact that the absence of SlPatA did not affect the growth of S. lividans when different 

carbon and energy sources were provided suggests that the growth conditions used did not 

elicit the stress signals needed for the control of any CoA ligases involved in the catabolism 

of the substrates provided.  

Target specificity of SlPatA vs SlPatB. The differential patterns of acetylated proteins that 

correlate with the presence of SlPatA suggest that many proteins are under the control of 

this enzyme (Fig. 3). Because the results presented in figure 3 were not confirmed in vitro in A
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experiments performed with purified components, we surmise that SlPatA is indirectly 

involved in the acetylation of the proteins identified in figure 3, and that the enzyme 

responsible for the modification of the protein targets is SlPatB or a yet-to-be-identified 

acetyltransferase. One possible explanation for this observation could be that SlPatA 

somehow controls patB transcription. Control of gene expression by reversible lysine 

acetylation is not unprecedented in actinobacteria (Ghosh et al., 2016) gamma- and alpha-

proteobacteria (Thao et al., 2010, Lima et al., 2011, Christensen et al., 2018), and 

Firmicutes (Carabetta et al., 2019). If in fact SlPatA somehow affects the patB transcription, 

the newly identified SlPatB substrates would not be acetylated in a patA strain of S. 

lividans. As mentioned above, it is unclear that SlPatB is the enzyme that modifies the CoA 

ligases that were acetylated in vitro. Additional work linking the catabolism of specific 

organic acids to SlPatA and SlPatB function is needed to provide in vivo support to the in 

vitro data reported herein.

Physiological importance of reversible lysine acetylation of CoA ligases in S. lividans. 
Substrates for the eight putative AMP-forming CoA ligases were identified, expanding the 

known metabolic capabilities of Streptomyces. Four of these CoA ligases (LbuL, IbuL, MlaL, 

and PaaL) are acetylated during growth on -hydoxybutyrate as compared to growth on rich 

or minimal glucose (Fig. 4). This could indicate an increased need to regulate these 

enzymes under the conditions tested. Three of the CoA ligases enriched for acetylation 

(LbuL, IbuL, and MlaL) activate short to medium length organic acids, while PaaL activates 

phenylacetate (Fig. 8). Phenylacetyl-CoA is converted in several steps into acetyl-CoA and 

succinyl-CoA before entering central metabolism. -Hydoxybutyrate is metabolized into 

acetoacetate, which can be converted into acetoacetyl-CoA, which in turn can be converted 

into AcCoA to generate energy and building blocks (Pauli & Overath, 1972). We note here, 

that the activation of acetoacetate into acetoacetyl-CoA by SlPatA is under RLA control 

(Tucker & Escalante-Semerena, 2013). This fact raises the possibility of multiple layers of 

RLA control taking place simultaneously in S. lividans. But, why are these ligases 

posttrranslationally controlled in S. lividans? There is precedent in the literature that shows A
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that RLA control of the AMP-forming acetate:CoA ligase Acs of S. enterica maintains the 

energy charge of the cell (Chan et al., 2011). That is, lack of RLA control of Acs leads to 

growth arrest because of Acs-dependent depletion of ATP and the concomitant rise in AMP, 

resulting in an energy charge that cannot support cell growth (Chan et al., 2011). By 

inactivating an AMP-forming acetate:CoA ligase, the cell can modulate the amount of AMP 

produced. It is plausible that S. lividans acetylates CoA ligases for the purpose of 

maintaining energy charge homeostasis while growing on organic acids. 

 

Why does the modification of the catalytic lysine of CoA ligases have a limited effect 
on enzyme activity? When assaying the impact of acetylation by MaPatB, activity of MlaL 

and LbuL reproducibly decreased ~20% (Fig. 9). However, while these changes were 

modest, the decrease in activity was similar to that seen after MaPatB acetylation of SlAcs 

(VanDrisse & Escalante-Semerena, 2018, Xu et al., 2014). As was the case for SlAcs, the 

limited decrease in enzymatic activity in acetylated CoA ligases may be linked to the degree 

of acetylation of a serine residue within the acetylation motif (Fig. 5B, yellow highlight), which 

in the case of SlAcs was needed for lysine acetylation by SlPatB (VanDrisse & Escalante-

Semerena, 2018). This serine modification only occurred in vivo in S. lividans and it is 

possible that these CoA ligases would need to be purified from S. lividans and tested for 

their acetylation ability by SlPatB. The alluded acetylated serine may be needed for 

recognition and acetylation of the CoA ligases. Ongoing work is aimed at elucidating the role 

of serine acetylation in the regulation of CoA ligase activity in S. lividans. 

  

Alternative explanations for our results. One area of interest that remains mostly 

unexplored is how the activity of GNATs is controlled. To date, evidence of allostery has 

been reported for type III GNATs (Xu et al., 2014), but not for type I or II. It is possible that 

some of the proteins identified in vivo as substrates for SlPatA were not acetylated in vitro by 

SlPatA because an effector or accessory protein was absent in the reaction mixture. These 

possibilities will be explored in future studies.    

  A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

A wealth of information is yet to be uncovered. As mentioned above, the S. lividans 

genome encodes ~72 putative GNATs, a fact that reflects on the diversity of stimuli that 

likely cause metabolic stress in this bacterium. At present, there is limited information about 

the function of these enzymes and the signals that control their activities. While studies of 

the function and regulation of such putative enzymes is a tall order, the insights that such 

efforts would provide valuable information regarding the physiology of actinobacteria. 

Experimental procedures

Bacterial strains and growth conditions. All strains and plasmids used in this study are 

listed in Table 3.  Streptomyces strains are derivatives of Streptomyces lividans TK24. ISP-2 

medium (Shirling & Gottlieb, 1966) or R2YE medium (Kieser et al., 2000b) was used to 

culture S. lividans on solid medium. Liquid cultures of S. lividans were inoculated with 1 x 

109 spores (Kieser et al., 2000a).

Table 3. Strains and plasmids used in this study1.

Name Relevant Genotype Reference or source

E. coli strains

JE9314 Strain C41(DE3) pka12::kan+ Laboratory collection

S. lividans strains

TK24 Wild type Laboratory collection

Derivatives of S. lividans TK24

JE16707 patA

Plasmids 

pMHT238 Encodes the etch tobacco virus (TEV) protease with 

a truncation of its last four residues, and a His7 

tagged fused on its N-terminus 

(Blommel & Fox, 2007)

pTEV5 Over expression vector, bla+. Genes cloned into this 

vector encode proteins with a N-terminal, rTEV-

cleavable His6-tag 

(Rocco et al., 2008)

Derivatives of plasmid pTEV5

pSlMlaL1 S. lividans mlaL+ (formerly EFD68037) 

pSlMlaL2 S. lividans mlaL1 (encodes variant MlaLK538A)

pSlLbuL1 S. lividans lbuL+ (formerly EFD65795) A
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pSlLbuL2 S. lividans lbuL1 (encodes variant LbuLK527A)

pSlAmbL1 S. lividans ambL+ (formerly EFD66106) 

pSlAmbL2 S. lividans ambL1 (encodes variant EFD66106K550A)

pSlCouL1 S. lividans couL+ (formerly EFD67678) 

pSlCouL2 S. lividans couL1 (encodes variant EFD67678K512A)

pSlEFD64965-1 S. lividans EFD64965+ 

pSlEFD64965-2 S. lividans pSlEFD64965-2 (encodes variant 

EFD64965K492A)

pSlDhbL1 S. lividans dhbL+ (formerly EFD64524)

pSlDhbL2 S. lividans dhbL1 (encodes variant EFD64524K538A)

pSlPaaL1 S. lividans paaL+ (formerly EFD64737) 

pSlPaaL2 S. lividans paaL1 (encodes variant PaaAK540A)

pSlIbuL1 S. lividans ibuL+ (formerly EFD65796) 

pSlIbaL2 S. lividans ibuL1 (encodes variant IbuLK534A) 
1Unless otherwise stated, all strains and plasmids were constructed during the course of this work.

S. lividans was grown in yeast extract-malt extract (YEME) rich medium (Kieser et al., 

2000b). S. lividans liquid cultures were grown in baffled flasks with marine-grade stainless 

steel springs to aid in cell dispersion. Strains were cultured for 72 h at 30C.

  Unless noted otherwise, all E. coli strains used were derivatives of E. coli C41 (DE3). E. 

coli strains were grown at room temperature or 37C in lysogeny broth (LB, Difco) (Bertani, 

1951). When necessary ampicillin was used at 100 g ml-1.

Preparation of S. lividans cell-free extracts. Twenty or 25 ml of S. lividans cultures was 

diluted into 25 ml of distilled water. Cells were harvested by centrifugation for 10 min at 

4,000 x g. Cell pellets were washed once with 25 ml of tris-(hydroxymethyl)aminomethane-

HCl (Tris-HCl, pH 7.5 @ 25C) buffer and excess buffer was removed by decantation. Cell 

pellets were weighed and flash frozen in liquid nitrogen.

Cells were stored at -80°C until lysis. S. lividans cells were resuspended in 0.5 or 1 ml lysis 

buffer [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 50 mM), NaCl (100 

mM), lysozyme (1 mg ml-1), DNase (50 g ml-1), SIGMAFAST Protease Inhibitor Cocktail 

Tablet (EDTA-free, 0.01 tablet ml-1), and phenylmethanesulfonylfluoride (PMSF, 0.5 mM). 

Cells were placed on ice and lysed by sonication for 2 s (0.2-s pulse followed by 0.2- s A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

cooling). Samples were centrifuged at 40,000 x g for 30 min to remove insoluble material. 

Soluble proteins were quantified using the Bio-Rad Protein assay according to the 

manufacturer’s protocol (Bio-Rad).

One-dimensional Western blot analysis. For one-dimensional gel analysis fifty 

micrograms of cellular protein were resolved using SDS-PAGE (Laemmli, 1970) and 

transferred onto a PVDF membrane (Millipore). Rabbit polyclonal SlPatA antiserum 

(Laboratory Animal Resources, University of Wisconsin, Madison, WI) was used to detect 

SlPatA (1:10,000 final dilution). Rabbit polyclonal -AcK antibodies were used to detect 

acetylated proteins (Calbiochem, 1:5,000 dilution). Binding of primary antibodies to blots was 

visualized using alkaline phosphatase-conjugated goat -rabbit immunoglobulin G 

(ThermoFisher) and NBT/BCIP 1-Step substrate (Pierce) according to the manufacturer’s 

instructions.

Two-dimensional Western blot analysis. Two-dimensional electrophoresis was performed 

according to the carrier ampholine method of isoelectric focusing (Talmi-Frank et al., 2009, 

O'Farrell, 1975) by Kendrick Labs, Inc. (Madison, WI). Duplicate gels were run for lysates of 

S. lividans TK24 and S. lividans patA strains grown on NMMP supplemented with -

hydroxybutyrate (10 mM) for 60 h. Isoelectric focusing was performed in a glass tube of 3.3-

mm inner diameter using 2.0% pH 4-8 mix Servalytes (Serva, Heidelberg, Germany; and 2 

mM lysine) for 20,000 V-h. One g of an IEF internal standard, tropomyosin, was added to 

each sample. This protein migrated as a doublet with lower polypeptide spot of MM 33,000 

Da and pI 5.2. The enclosed tube gel pH gradient plot for this set of Servalytes was 

determined with a surface pH electrode.

  After equilibration for 10 min in Buffer O (10% (v/v) glycerol, dithiothreitol (DTT, 50 mM), 

SDS (2.3% w/v) and Tris-HCl buffer (0.0625 M, pH 6.8), each tube gel was sealed to the top 

of a stacking gel that overlaid a 10% (w/v) acrylamide slab gel (1.00 mm thick). SDS slab gel 

electrophoresis was performed for about 5 h at 25 mA/gel. The following proteins (Sigma 

Chemical Co., St. Louis, MO) were used as molecular mass standards (Da): myosin A
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(220,000), phosphorylase A (94,000), catalase (60,000), actin (43,000) carbonic anhydrase 

(29,000) and lysozyme (14,000). These standards appear as bands at the basic edge of the 

Coomassie Brilliant Blue R-250-stained gel. The gel was dried between sheets of cellophane 

with the acid edge to the left.

  After slab gel electrophoresis, the gels for blotting were placed in transfer buffer N-

cyclohexyl-3-aminopropanesulfonic acid (CAPS, 10 mM, pH 11.0, 10% (v/v) MeOH) and 

transblotted onto a PVDF membrane overnight at 225 mA and approximately 100 V/ two 

gels. Membranes were de-stained with 10% (v/v) methanol prior to blotting. Acetylated lysine 

residues were detected as described above. Corresponding spots were cut from the 

duplicate gels, and samples were analyzed by mass spectrometry.

Determination of the acetylated proteins by mass spectrometry. To determine the identity of 

the acetylated proteins identified by 2-D gel electrophoresis, “In Gel” digestion and mass 

spectrometric analysis was performed at the Proteomics and Mass Spectrometry Facility 

(University of Georgia). Mass spectrometry analyses were performed using a Thermo- 

Fisher LTQ Orbitrap Elite Mass Spectrometer coupled with a Proxeon Easy NanoLC system 

(Waltham, MA). Peptides were loaded into a Dionex PepMap 5 mm long and 300-m 

internal diameter pre-column (Sunnyvale, CA) first, then were separated by a self-packed 

~12-cm long, 100-m internal diameter column/emitter with 200 Å 5 M Burker MagicAQ 

C18 (Auburn, CA), at 500 L by gradient elution. Briefly, the two-buffer gradient (0.1% (v/v) 

formic acid as buffer A and 

99.9% acetonitrile with 0.1% formic acid(v/v) as buffer B) starts with 5% B, increases to 40% 

B in 40 min, to 60% B in 15 min, and to 95% B in 10 min. The Top 10 data-dependent 

acquisition method was used to acquire data. Both MS and MS/MS scans were analyzed 

using Orbitrap at the resolutions of 120,000 and 30,000, respectively. Proteome Discoverer 

1.3 (Thermo- Fisher) software was used with Mascot database search program (Matrix 

Science, Landon, UK) for protein 

identifications.
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Plasmid construction. All primers used in this study were synthesized by IDT (Coralville, 

IA) and are listed in table 4. 

  All 

primers 

Table 4. List of primers used in this study

Primer Sequence

EFD65795 5’ NheI pTEV5 GTAGCTAGCATGACCGCACCCGCGCCCCAGC

EFD65795 3’ EcoRI pTEV5 ACTGAATTCTCAGGGGCGCGTTCCGTACCGC

EFD65796 5’ NheI pTEV5 GTAGCTAGCATGACGACGGCCACGGAGCTG

EFD65796 3’ EcoRI pTEV5 ACTGAATTCTCACCGGAAGTCCTCCTCGCGG

EFD68037 5’ NheI pTEV5 GTAGCTAGCATGTCGCCCCGGGAGGACAC

EFD68037 3’ EcoRI pTEV5 ACTGAATTCTCAGAGCCGGGTGACGTCGAG

EFD64737 NheI pTEV5 GTAGCTAGCATGAGCAGCGAGCCGACGAC

EFD64737 EcoRI pTEV5 ACTGAATTCTCACGCGCCCCGCTGGTC

EFD66106 5’ NheI pTEV5 GTAGCTAGCATGTCGTCACCAACACGATACGCTCG

EFD66106 3’ EcoRI pTEV5 ACTGAATTCTTATGTCGTCGGCGTCGCGC

EFD67678 5’ NheI pTEV5 GTAGCTAGCATGTTCCGCAGCGAGTACGC

EFD67678 3’ EcoRI pTEV5 ACTGAATTCTCATCGCGGCTCCCTGAGC

EFD64965 5’ NheI pTEV5 GTAGCTAGCATGACGCCCGGACACGGCAGC 

EFD64965 3’ EcoRI pTEV5 ACTGAATTCTCAGGCACCGGCGAAGCGGTCC

EFD64524 5’ NheI pTEV5 GTAGCTAGCATGAGCAAGACTCAACGGACC

EFD64524 3’ EcoRI pTEV5 ACTGAATTCTCACGGCCGGGGCAACTGC

EFD65795 5’ K527A CACCTTGCGCACCGCCCCCGAGACGGTC

EFD65795 3’ K527A GACCGTCTCGGGGGCGGTGCGCAAGGTG

EFD68037 5’ K538A CACCTTCTTGTCGAACGCGCCGACGCTCGTCTTC

EFD68037 3’ K538A GAAGACGAGCGTCGGCGCGTTCGACAAGAAGGTG

EFD64737 5’ K438A CACCCGGCGGATCGCGCCGAGCGAGCGC

EFD64737 3’ K438A GCGCTCGCTCGGCGCGATCCGCCGGGTG

EFD65796 5’ K534A GATGCGGCGGATCGCGCCCGAGACGGTC

EFD65796 3’ K534A GACCGTCTCGGGCGCGATCCGCCGCATC

EFD64524 5’ K540A CGCCTTGTCGACCGCCCCGACCGCGGTG

EFD64524 3’ K540A ACCGCGGTCGGGGCGGTCGACAAGGCG

EFD64965 5’ K492A CCCTCTTGAGGATCGCCCCGCTGGCGTTGC

EFD64965 3’ K492A GCAACGCCAGCGGGGCGATCCTCAAGAGGG

EFD67678 5’ K512A CGGCGGAGGATCGCGCCGGAGGCGGC

EFD67678 3’ K512A GCCGCCTCCGGCGCGATCCTCCGCCG

EFD66106 5’ K550A GTAGCGCTGGAGCGCGCCGGTCGCCGTG

EFD66106 3’ K550A CACGGCGACCGGCGCGCTCCAGCGCTAC
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were synthesized by IDT (Coralville, IA)

Streptomyces lividans TK24 genomic DNA was used as template to amplify genes lbuL 

(EFD65795), ibuL (EFD65796), mlaL (EFD68037), paaL (EFD64737), dhbL (EFD64524), 

EFD64965, couL (EFD67678), and ambL (EFD66106) genes for overproduction using Pfu 

Ultra II Fusion DNA polymerase (Agilent). The first codon of lbuL (GTG) was changed to the 

more common ATG start codon. The DNA fragments were digested with NheI and EcoRI 

and ligated into pTEV5 that directs the synthesis of the recombinant protein fused to a hexa-

his (H6) tag at the N-terminus (Rocco et al., 2008). Site-directed mutagenesis for constructing 

active-site lysine variants was performed using the QuikChange protocol (Stratagene) using the 

plasmid containing the wild-type allele as template. DNA sequencing of resulting plasmids was 

performed at the Georgia Genomics and Bioinformatics Core at the University of Georgia.

Overproduction of proteins. Overproduction plasmids were transformed into a derivative 

of E. coli strain C41(DE3) pka (pka codes for the acid:CoA ligase acetyltransferase of E. 

coli) to block acetylation during overproduction. Cells carrying overproduction plasmids were 

grown at 37°C for ~ 4 h and then diluted 1:50 (v/v) into 2 L of LB containing ampicilin (100 

g ml-1) and grown at room temperature (~25°C) with shaking at 150 rpm. Gene expression 

was induced when cultures reached an optical density at 600 nm (Spectronic 20D) of 0.3-

0.4.  At that point, IPTG (500 M) was added to the culture, which was grown overnight at 

room temperature with shaking in an innova®44 (New Brunswick Scientific) gyratory shaker. 

Cells were harvested by centrifugation at 6,000 x g for 15 min at 4C in an Avanti J-2 XPI 

centrifuge equipped with rotor JLA- 8.1000 (Beckman Coulter), and the cell paste was frozen 

at -80°C until use.

Purification of S. lividans CoA ligase proteins. Frozen cell pellets were resuspened in 30-

40 ml cold bind buffer containing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) buffer (50 mM, pH 7.5 @ 4 ºC) containing NaCl (500 mM) and imidazole (20 mM), 

lysozyme (1 g ml-1), DNase (25 g ml-1), and phenylmethanoesulfonyl fluoride (PMSF, A
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Fisher Scientific; 0.5 mM). Cells were lysed by sonication (550 Sonic Dismembrator, Fisher 

Scientific) at an amplitude setting of 60 for 2 s on, followed by 2 s off for 30 s on ice for four 

cycles total. Cellular debris was cleared by centrifugation at 40,000 x g for 30 min in an 

Avanti J-25I floor centrifuge equipped with a JA-25.25 rotor (Beckman Coulter).

  Clarified cell-free extract was loaded onto a 1-ml Ni-NTA affinity column (HisPur; 

ThermoFisher Scientific) equilibrated with bind buffer. The column was washed with 10 

column volumes of bind buffer to remove unbound proteins followed by six column volumes 

of wash buffer containing HEPES buffer (50 mM, pH 7.5 @ 4 ºC) containing NaCl (500 mM) 

and imidazole (60 mM). Proteins were eluted with six column volumes of elution buffer 

containing HEPES buffer (50 mM, pH 7.5 @ 4 ºC) containing NaCl (500 mM) and imidazole 

(500 mM). 

  Fractions containing the desired H6-tagged proteins were pooled and rTEV protease was 

added (1:50 mg/mg ratio) and incubated at room temperature for 3 h to allow for cleavage of 

the H6 tag. This mixture was dialyzed at 4ºC against a HEPES buffer (50 mM, pH 7.5 @ 4 

ºC) containing NaCl (500 mM) three times for at least three h each. The cleaved and 

dialyzed protein was passed over the 1-ml Ni-NTA equilibrated with bind buffer and washed 

as described above. Cleaved protein passed through the resin and eluted in the flow-through 

fractions while un-cleaved protein remains bound to the resin. Fractions were analyzed by 

SDS-PAGE, and those containing the desired protein were pooled and dialyzed at 4ºC 

against a HEPES buffer (50 mM, pH 7.5 @ 4 ºC) containing NaCl (150 mM) and 10% (v/v) 

glycerol before storage at -80ºC. 

Purification of M. aurantiaca PatB acetyltransferase protein. MaPatB was purified as 

described above but in a Tris-HCl buffer (50 mM, pH 7.5 @ 4 ºC) containing NaCl (500 mM) 

and 20% (v/v) glycerol and various levels of imidazole. For cleavage of the H6 N-terimal tag, 

rTEV protease was added at a 1:10 mg/mg ratio and incubated as described above since 

uncleaved H6-MaPatB was inactive (data not shown). De-tagged protein was loaded onto 1-

ml Ni-NTA column equilibrated with Tris-HCl buffer (50 mM, pH 7.5 @ 4 ºC) containing NaCl 
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(500 mM), 0.5mM TCEP, and 20% (v/v) glycerol. Fractions of the flow through containing 

cleaved MaPatB were pooled and used for assays. 

In vitro acetylation and deacetylation assays. Assays were performed as described 

(Burckhardt et al., 2019). Briefly, reactions containing HEPES buffer (50 mM, pH 7 @ 24ºC),  

tris(2-carboxyethyl)phosphine (TCEP, 1 mM), [1-14C]-AcCoA (40 M; spec. rad. = 

57.1mCi/mmol), MaPatB (3 M), and CoA ligase (3 M) or lysine variant of a CoA ligase (3 

M) were incubated at 37ºC for 2 h to transfer the radiolabeled acetyl group to a target 

protein. Reactions were quenched with loading dye (60% (v/v) glycerol, Tris-HCl pH 6.8 (0.3 

M), EDTA (12 mM), 12% SDS, 2-mercaptoethanol (0.87 mM), bromophenol blue (0.05%, 

w/v) and reaction mixtures were resolved by SDS-PAGE on a 12% (w/v) polyacrylamide gel 

with Tris-HCl buffer pH 8.8 (resolving gel)/Tris-HCl pH 6.8 (stacking gel). The SDS-PAGE 

gel was stained using Coomassie Brillant Blue R (MPBiomedicals), and radioactivity 

distribution was visualized using a phosphor imager after 24-36 h of exposure. A Typhoon 

Trio+ Variable Mode Imager (GE Health Life Sciences) with ImageQuant v5.2 software was 

used to quantify the intensity of signals. Optimal assay conditions for SlPatA were reported 

previously (Tucker & Escalante-Semerena, 2013).

  For deacetylation assays, LbuL (EFD65795), MlaL (EFD68037), and Ambl (EFD66106) 

were first acetylated using MaPatB as described above. Reaction mixtures containing LbuL 

and MlaL were buffer exchanged using Amicon® Ultra Centrifugal Filters (Millipore; 3,000 

NMWL) to remove un-incorporated [1-14C]-AcCoA while reaction mixtures containing AmbL 

(EDF66106) were not buffer exchanged because AmbL fell out of solution during buffer 

exchange. Instead, 1 mM CoA was added to outcompete un-incorporated [1-14C]-AcCoA in 

reactions containing AmbL. The sirtuin SeCobB (3 M) was added to acetylated CoA ligases 

(3 M) and incubated at 37ºC for 2 h. NAD+ (1 mM). Samples from deacetylation reaction 

mixtures resolved by SDS-PAGE on a 12% (w/v) polyacrylamide gel and radioactivity 

distribution was determined as described above. Deacetylation assays were performed with 

DhbLAc (EFD64524Ac), but the protein was unstable and its deacetylation status could not be 

assessed. A
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In vitro acyl-CoA ligases activity assays. Activity of S. lividans CoA ligases was 

measured using a continuous spectrometric assay (Crosby et al., 2012a, Burckhardt et al., 

2019). Reactions mixtures (100 L) contained HEPES buffer (50 mM, pH 7 @ 24ºC), TCEP 

(1 mM), ATP (2.5 mM), CoA (0.5 mM), MgCl2 (5 mM), KCl (1 mM), phosphoenolpyruvate (3 

mM), NADH (0.1 mM), pyruvate kinase (1 U), myokinase (5 U), lactate dehydrogenase (1.5 

U), and purified CoA ligase (10- 300 nM). Reactions were started by the addition of either 

acetate, propionate, butyrate, valerate, caproate, heptanoate octanoate, nonanoate, 

decanoate, undecanoate, laurate, tridecanoate, myristate, oxalate, malonate, succinate, 

glutarate, adipate, pimelate, suberate, azelate, sebacate, undecanedioate, dodecanedioate, 

fumarate, acetoacetate, hydroxybutyrate, butyrate, isovalerate, crotonate, isobutyrate, 

methylmalonate, benzoate, methylsuccinate, 3-(methylthio)propionate, 3-phenylpropionate, 

4-phenylbutyrate, 2-phenylpropionate, 2-aminobenozoate, 3-aminobenzoate, and 4-

aminobenzoate (0.2 mM) or 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate, 3,4-

dihydroxybenzoate, and 3,5-dihydroxybenzoate (2 mM). NADH-consumption was measured 

at 340 nm every 5 s over an 8-min time span at 30ºC using a SpectraMax Plus 384 

microplate spectrophotometer (Molecular Devices). Enzyme activities were calculated as 

described (Garrity et al., 2007) and graphed using Prism v6 (GraphPad) software. Specific 

activity data are presented with standard deviations from duplicate experiments performed in 

technical triplicate.
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Figure legends
Figure 1. Two-step conversion of acetate into acetyl-CoA by AMP-forming 
acetate:CoA ligase (Acs). A. The first half of the reaction yields acetyl-AMP plus 

pyrophosphate and in the second half of the reaction CoA displaces AMP, yielding acetyl-

CoA. The first half reaction is unfavorable (Gº’ = 10.04 kJ mol-1), but the hydrolysis of 

pyrophosphate (Gº’ = -21.92 kJ mol-1) helps drive the reaction forward. B. The second half 

of the reaction is also favorable (Gº’ = -55.65 kJ mol-1) (Thauer et al., 1977, Frey & 

Arabshahi, 1995). Each half reaction is catalyzed by Acs in a different conformation (Gulick 

et al., 2003, Reger et al., 2007). 
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Figure 2. Reversible protein acetylation in bacteria.  Gcn5-related acetyltransferases 

(a.k.a. GNATs) modify the epsilon amino group (N) of lysine side chains effecting a change 

in the biological function of the protein target. In some cases, the modification is reversed by 

different classes of deacetylases. Some of the latter belong to class III deacetylases that are 

structural homologues to the eukaryotic Sir2 protein, hence the name sirtuin. Sirtuins use 

NAD+ as co-substrate and yield O-acetyl-ADP-ribose (O-AADPR) and nicotinamide (Nm). 

Zn-dependent, acetate-forming deacetylases belonging to the histone deacetylases are 

homologous to the AcuC protein of B. subtilis (Gardner & Escalante-Semerena, 2009). 

Figure 3. Acetylation profiles correlate with PatA in S. lividans. S. lividans lysates from 

cells grown on rich medium (YEME) or minimal medium containing Glucose (10 mM), -

hydroxybutyrate (10 mM), or N-acetylglucosamine (10 mM) were resolved by SDS-PAGE in 

triplicate gels (as described in figure S2). One gel was stained with Coomassie Blue to 

visualize proteins. The remaining two gels for each condition were transferred to PVDF 

membranes and probed with rabbit polyclonal antibodies against SlPatA (-SlPatA) or 

against acetyllysine (-AcK). Binding of the primary antibodies was visualized using 

secondary antibodies conjugated to alkaline phosphatase and NBT/BCIP detection. *, 

molecular mass (kDa).

Figure 4. Resolution of soluble proteins from cell-free extracts of S. lividans patA+ and 

patA strains. Two-dimensional gel electrophoresis was used to resolve the soluble 

proteins of wild-type (A) and patA (B) strains of S. lividans. Equal total proteins were 

loaded for both strains for each isoelectric focusing strip (first dimension, pH 4-8). Two 

technical replicates were run. Shown here is one replicate from each sample stained with 

Coomassie Brilliant Blue R. The second replicate for each protein sample was transferred to 

a PVDF membrane for Western blot. MMM, molecular mass markers (kDa). Identical gels to 

those in panels A and B were transferred to PVDF membranes for Western blot analysis and 

probed with -AcK antibodies to detect proteins containing AcK [panel C (patA+), and panel 

E (patA)]; prominent AcK-containing proteins in the patA+ strain are shown in the inset in A
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panel D. Proteins represented by each number: 1. EFD65796, 2: EFD65796, 3: EFD68037, 

EFD65795 4: EFD64737, 5: EFD35795. Degradation of proteins EFD65796 (spots 1, 2) and 

protein EFD65795 was detected by mass spectrometry. Notably, proteins EFD68037 and 

EFD65795 had very similar isoelectric points (5.2 and 5.4, respectively) and mass (60362 

and 59124 Da, respectively), explaining why both were detected in spot 3. Spot 6 was 

identified as CTP synthetase.

Figure 5. AMP-forming CoA ligases. A. Two-step CoA ligase reaction. B. Protein 

alignment of putative CoA ligases from S. lividans with known acetyl-CoA synthetase Acs. 

The conserved active site lysine is marked by a black asterisk. Protein sequences were 

aligned using Geneious software (www.geneious.com) and the figure was generated using 

ESPript (Robert & Gouet, 2014). Red highlights indicate conserved residues and boxed 

residues indicate similar residues.

Figure 6. Acetylation of CoA ligases by the type-III GNAT MaPatB. Purified CoA ligases 

and lysine variants were incubated with [1-14C]-AcCoA with or without MaPatB. Reactions 

were resolved on an SDS-PAGE gel and label distribution was visualized by phosphor 

imaging. Top panel shows the SDS-PAGE and the bottom panel shows the phosphor image 

of the above gel. MMM (kDa), refers to molecular mass markers, expressed in kilo-Daltons. 

A positive control of SlAcs and MaPatB was included in each gel, as this acetylation event 

has been previously characterized (VanDrisse & Escalante-Semerena, 2018).

Figure 7. Streptomyces CoA ligases are deacetylated by the S. enterica CobB sirtuin 
deacylase. CoA ligases were acetylated with [1-14C]-AcCoA and incubated with SeCobB 

with or without NAD+ (1 mM) to remove the radiolabel. Reactions were resolved on an SDS-

PAGE gel and label distribution was visualized by phosphor imaging. Top panel shows the 

SDS-PAGE and the bottom panel shows the phosphor image of the gel. 
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Figure 8. Characterization of new AMP-forming CoA ligases. Purified CoA ligases were 

tested with a variety of organic acids and activity was measured using an NADH 

consumption assay (see Experimental procedures). Data represent mean ± S.D. of duplicate 

experiments done in technical triplicate. 

Figure 9. Acetylation of CoA ligases impacts enzyme activity. CoA ligases MlaL (A) and 

LbuL (B) were incubated with MaPatB with or without acetyl-CoA (AcCoA). After incubation, 

CoA ligase activity was determined for acetylated and unacetylated proteins using a CoA 

ligase activity assay (see Experimental procedures) with caproate used for MlaL and 

isovalerate used for LbuL. Data represent mean ± SEM (standard error of the mean) of 

duplicate experiments. 
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