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Numerical solutions of the full Navier—Stokes equations are used to investigate the steady and
unsteady deformation of a bubble in a biaxial straining flow for Reynolds numbers in the range
0<R<400, and Weber numbers up to O(10). The steady-state bubble shape and the frequency
of small amplitude oscillations of shape are both identical for biaxial and uniaxial straining
flows in the potential flow limit. However, for a large, but finite Reynolds number, the bubble
shape in the biaxial straining flow is found to be fundamentally different from the shape in
uniaxial flows. This is shown to be a consequence of vorticity enhancement via vortex line
stretching in the biaxial flow, which does not occur in the uniaxial flow. At the highest
Reynolds number considered here, R = 400, the steady-state bubble behavior for low W is
qualitatively similar to the potential flow case, with a limit point for existence of the low W
branch of steady solutions occurring at W~ 6. However, in this case a second branch of steady
solutions is found for larger W7, which exhibits oblate bubble shapes for large W, and has no
counterpart in the potential flow limit. In unsteady flows, the behavior of bubble deformation

is fundamentally different in the uniaxial and biaxial flows for both high Reynolds numbers
and the potential flow limit. This suggests that breakup will oceur in far different ways in the

two cases.

I. INTRODUCTION

An outstanding, largely unresolved problem of fluid
mechanics is the conditions for breakup of bubbles or drops
in flows at large or moderate Reynolds numbers. This is not
because the problem is unimportant. Indeed, theoretical
models for bubble size distributions in blenders, mixers, and
a variety of more general two-phase flows requires an a priori
prediction of a breakup criteria. The main problem from an
experimental point of view is the difficulty of observation in
well-characterized flows, while theoretical analyses have
been restricted by the lack of an effective solution method for
large deformation free-boundary problems at finite Reyn-
olds numbers. Generally, in the mainly empirical results that
have been reported to date (cf. Hinze' or Lewis and David-
son?), it has been assumed that breakup will occur at a criti-
cal Weber number that is independent of the details of the
flow.

Here, we take advantage of the recent development of an
effective numerical method for solution of free-boundary
problems at a finite Reynolds number to pursue a fundamen-
tal, theoretical investigation of bubble and drop breakup at
moderate and large Reynolds numbers. Specifically, the
present paper is the second in a series (see Kang and Leal,’
hereafter denoted by I) in which we use numerical methods
to study bubble deformation in axisymmetric flow fields at
finite Reynolds numbers R. In I, we considered uniaxial
straining flow. Here we consider the same problem for a
biaxial straining flow. From a mathematical point of view,
the two problems are identical except for a change in sign in
the velocity at infinity, and the predicted steady-state bubble
shapes for the two types of flow are identical in the potential
flow limit. However, we shall see that the simple change in
the far-field boundary condition can result in fundamentally
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different bubble behavior for finite R. Specifically, whereas a
limit point is observed for the existence of steady axisymmet-
ric bubble shapes at a Weber number of 0(2-3) in uniaxial
flow for all R>10, a corresponding limit point was not found
for biaxial flow at any W<O(10) for R up to 200. This
strongly suggests that the flow type plays a critical role in
bubble breakup, in contrast to the assumptions of previous
studies.

The deformation of a bubble in a uniaxial straining flow
has been studied extensively via numerical analyses®® as
well as by approximate analytic theories,”~'* and is now fair-
ly well understood. The most important result is that steady
bubble shapes exist only for Weber numbers below a certain
critical value W_, which depends on the Reynolds number.
This was first suggested by Miksis® and Ryskin and Leal,®
based on the breakdown of steady numerical solution algo-
rithms, and was later supported in I by full transient solu-
tions which showed that the breakdown of the steady solu-
tions occurred precisely at the point of onset of a “waist” in
the bubble shape, and was followed by a continuous stretch-
ing of the bubble along the principal axis of strain. In I, and
in a companion paper,'® we have also examined oscillations
in the bubble shape for a steady uniaxial, straining flow. The
basic conclusion from these works is that the frequency of
the lowest mode [ P,(cos 8) ] decreases monotonically as the
Weber number increases, reaching zero at a critical Weber
number that is identical to the limit point of the steady solu-
tion branch. Besides being of interest in its own right, this
provides further evidence for the existence of the limit point
for steady solutions. Since the governing equations for small
oscillations are identical to the linearized equations for sta-
bility of the steady state, the existence of a zero frequency
point (zero eigenvalue) implies a singularity in the Jacobian
matrix for evolution of a disturbance about the steady state.
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In contrast to the uniaxial straining flow problem, rela-
tively little is known about the behavior of a deforming bub-
ble in a biaxial straining flow. Indeed, we are aware of only
one analysis for this problem by Frankel and Acrivos'* who
calculated the bubble shape in the creeping flow limit to a
moderate value of capillary number (Ca<0.2). Although
Hinze,' and Lewis and Davidson? also mention the biaxial
flow problem at higher Reynolds numbers, they do not pro-
vide any analysis. We can only surmise that previous investi-
gators have not examined biaxial flows because they as-
sumed that the results would not differ in any fundamental
way from the uniaxial flow problem. In this paper, we con-
sider both steady and unsteady deformations of a bubblein a
biaxial straining flow at finite Reynolds numbers. As we
shall see, there are extremely important fundamental differ-
ences between the uniaxial and biaxial flow problems.

Il. STATEMENT OF THE PROBLEM

We consider the steady and unsteady deformation of an
incompressible gas bubble of volume $7a* in a biaxial strain-
ing flow of a fluid with constant density p and constant vis-
cosity u (see Fig. 1). The density and viscosity of the gas
inside the bubble are assumed to be negligible in comparison
with those of the liquid. Furthermore, the surface of the bub-
ble is assumed to be characterized completely by a uniform
surface tension y. Finally, we neglect all effects of gravity
including the hydrostatic pressure variation in the fluid. If
the x axis of a cylindrical coordinate system (x,0,¢) is di-
rected along the axis of symmetry, the (dimensional) veloc-
ity field far from the bubble is given by

-1 0 0
u=E.r, E=E| O 1§ O] E>o, (1)
0 0 !

where E is the principal strain rate. We use the equivalent
radius a of the bubble as a characteristic length scale, the
product Ea as a characteristic velocity scale, and E ~' as a
characteristic time scale. The relevant dimensionless param-
eters in this problem are the Reynolds number
R=2p(Ea)a/u, based on the equivalent diameter 2a of the
bubble, and the Weber number W=2p(Ea)?a/y.

4 O .
\Y
FIG. 1. A bubble in a biaxial straining flow.
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From a mathematical point of view, the biaxial strain-
ing flow problem is exactly the same as the uniaxial straining
flow problem, except that the signs are changed in the
boundary condition at infinity [Eq. (1)]. However, as we
shall see, this simple change in boundary conditions results
in fundamentally different solution behavior.

lil. PRELIMINARY ANALYTICAL RESULTS

In this section, we present several analytical results that
can be obtained without any detailed numerical analysis.
These results will play an important role in understanding
and interpreting the numerical computations that will be
considered in later sections.

A. Steady-state shape and oscillation frequency of a
bubble in potential flow

We begin by considering bubble deformation in the po-
tential flow limit. In this limit, we first assert that the steady-
state shape of a bubble is identical in biaxial and uniaxial
straining flows. In itself, this assertion may not seem particu-
larly noteworthy, and we shall see that its proof is trivial.
However, it is well known>%!3 that a bubble in a uniaxial
straining flow is elongated in the axial direction [i.e,
J(0) > f(7w/2) when the surface is given by r =1+ f(8) ],
and the identity of shape between uniaxial and biaxial flows
implies that the bubble should be elongated in the same di-
rection in a biaxial flow. This conclusion does seem quite
surprising at first, because it implies the counterintuitive re-
sult of bubble elongation against the primary flow direction.

To prove that the steady-state shape must be identical in
uniaxial and biaxial potential flow, we need only to examine
the dimensionless governing equations and boundary condi-
tions for the steady-state potential flow. The governing equa-
tion is

V4 =0. (2)
For the boundary conditions at the bubble surface
[r =1+ f(6)], we have the kinematic condition

Vé-n=0, 3)
and the normal stress condition
G +VoVo=(4/W)V-n. 4)

In (4), the unknown constant G must be determined from
the condition of volume conservation. The far-field condi-
tion corresponding to the velocity field (1) is given by

¢— +1(3cos?0—1)P, as r-w, (5

where “ + ” and ““ — ” refer to the uniaxial and the biaxial
straining flows, respectively [hereafter the upper and lower
signsof + (or JF ) refer to the uniaxial and biaxial straining
flows, respectively].

Now, it is a trivial matter to show that for any given W
where a steady shape exists, exactly the same steady-state
shapes must be obtained for both flow types. Let us assume
that a steady-state shape exists (denoted as f;) for the uniax-
ial flow problem, with a corresponding velocity potential
( #,), so that the pair ( f,4,) represents a solution of (2)-
(5) for the given W {in fact, the velocity potential can be
determined uniquely for a given shape from (2), (3), and
(5), but the uniqueness is not necessary in this proof]. Now,
our assertion is that ( f, — ¢,) is a solution for the biaxial
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straining flow problem. Clearly, ¢ = — ¢, satisfies the far-
field condition (5), the governing equation (2), and bound-
ary condition (3), i.e.,
VZ(“"¢1)= ”‘V2¢1=0: (6)
V(—¢))n= —V¢,n=0. 7N

The left-hand side of the normal stress condition, on the
other hand, does not change sign upon transformation from

i to — ¢,
G+V(—¢,): V(-4

=G+v¢1'v¢1=(4/W)V°n{,=l+ﬁ. (8)
Thus if £, is a solution for the shape for ¢ = ¢,, it is also a
solution of (8) for ¢ = — ¢,. This proves our assertion. In

physical terms, the change in direction of the steady-state
potential flow does not result in any shape change, because
the dynamic pressure distribution ( — u° + const along a
streamline) remains unchanged.

In spite of the fact that steady-state shapes for uniaxial
and biaxial flow are identical, a relationship between tran-
sient shapes in uniaxial and biaxial flow could only be ob-
tained for W« 1. In particular, for this limit the oscillation
frequency of the primary deformation mode [P,(cos 8)] is
identical in the two types of flow. Kang and Leal'* showed
that the oscillation frequency of the primary deformation
mode of a bubble in a uniaxial straining flow decreases as the
Weber number increases, i.c.,

0} =k (1—-031W) +o(W), 9

where o, ;, is the frequency of the primary mode for an oscil-
lating bubble in an otherwise quiescent fluid. Here we pre-
sent only the minimum analysis necessary to show that (9) is
also true for the biaxial straining flow problem. For this pur-
pose, we only need to introduce characteristic velocity,
length, and time scales that are appropriate to the oscillation
problem, "’

b. = (ya/ p)'?, t.=(pa’/p)V?, L =a.
The result*? is that the oscillation problem for either uniaxial
or biaxial flow is characterized by a single dimensionless

parameter, + /W, which appears in the far-field boundary
condition for the two types of flow,

&w = i\'W/2(300520— 1)(%’2)’ (10)

where “ + > and “ — ” of ““ 4+ ” refer to the uniaxial and the
biaxial straining flows, respectively. However, the oscilla-
tion frequency (9), for the uniaxial case, depends on the
square of this parameter. Hence if we designate a dimension-

less parameter £ as being + VW for uniaxial flow, and
— JW for biaxial flow, it is evident that the result (9) must
have the invariant form
0} =0l (1—-0.31£%) +0(£?),
for both types of flow.

B. Steady bubble shape for W<« 1 and large, but finite
Reynolds number

A bubble in a biaxial straining flow, as shown in Sec.
III A, has a steady-state shape in the potential flow approxi-
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mation that is elongated in the axial direction. On the other
hand, a bubble in the creeping flow limit is known to deform
into an oblate shape in a biaxial straining flow. Thus, pro-
vided that the potential flow solution is the solution for the
real flow in the limit R — w0, there must be an intermediate
Reynolds number where the transition from oblate to pro-
late shapes takes place. We call this the marginal Reynolds
number R,,. In this section, we obtain an analytic estimate
for R,, in the limit of a small deformation, W« 1, by solving
for the bubble shape at large, but finite R.

Let us begin by writing the normal stress condition in a
form that is accurate to O(R 1),

g8 9%

—2p, + V¢, V4, + "E"(—?'HTP

=iv-n, at r=1+£9), (11)
/4

where p, denotes the dimensionless viscous pressure correc-
tion defined as p, = p,/( pU?2) and #, denotes the steady-
state velocity potential. If we restrict curselves to the limit of
small deformation with W«1, a first approximation to the
shape can be calculated by solving (11) with the left-hand-
side evaluated using the solution for a spherical bubble.

To do this, we must first evaluate the viscous pressure
correction. For this purpose, we can use the general formula
for the viscous pressure correction around a spherical bubble
that was derived in our earlier paper'* under the assumption
that the velocity perturbation resulting from viscosity ap-
proaches zero everywhere as R — w, i.€.,

ol <llu, . for R>1.
Here, u, and u, denote the potential flow velocity and the
velocity perturbation resulting from viscosity, respectively.
Since the vorticity is solenoidal (V + @ = 0), it can be ex-
pressed in terms of toroidal (T) fields for any arbitrary axi-
symmetric problem,

m=T=Vx(z T, (r,t)P,(cos B)e,). (12)

n=0
Then the leading-order viscous pressure correction at the
surface of a spherical bubble in an arbitrary axisymmetric

flow (steady or unsteady) at a high Reynolds number is
given by (see Kang and Leal”® for a detailed derivation)

p,,(l,&,t)=§[nf ron-t i Suie (DT, g dr
o] k

e = —

+[ S Al

1 I=_—oo

—r " (D]T,, }dr

+ n(%)T,,(l,t)}P,,(cos 0, (13)
where
Z( Z f;t,an-{»-k)Pn
n=0\k= — o
o % Ju
- b [ n S a0,
,.Z—_:o[(up o a6
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s (T  dP
e (T 45
*’) 2\ 4 g

Now, we want to estimate the first-order deformation
with respect to W (for W< 1) using (11), with the left-hand-
side evaluated using (13) and the steady-state potential flow
solution for the spherical bubble in uniaxial and biaxial
straining flows,

¢, = £ P(cosO)(JX +4r 7). (14)
As we can see in (13), however, an exact evaluation of the
pressure correction on the surface of the bubble requires the
vorticity distribution in the region outside the bubble, and
this would require us to solve the vorticity equation. Instead,
for present purposes we adopt the ad hoc approximation that
the vorticity is strictly confined to the interface and is zero
everywhere else in the fluid. [In fact, the contribution of the
vorticity distributed inside the boundary layer is of the same
magnitude, O(R ~'), as that of the vorticity at the interface,
i.e., as the last term in (13). The neglect of the boundary-
layer contribution to (13) will be justified by comparing the
estimated shapes with the full numerical solution in Fig. 2.]
With this ad hoc approximation, (13) reduces to

p=3 n(%)T,,(l)P,,(cos 0 .

The coefficients T, (1) are determined, via Eq. (12), from
the vorticity distribution at the bubble surface. The surface
vorticity distribution is obtained using the condition of van-
ishing shear stress, i.e.,

1 du P,)

r 06

with the velocity components calculated from the potential
flow approximation. The result for w(1,0) is

Z( z 8niT,

I= —

(15)

+o(l),

r=1

@(1,0) = 2(&‘1 -
r

5 dP,
w(1,0) =
3 do
3.0 NN T -4
25 | ]
20 f ]
1.5 r b
Lok
sE . uniaxial
Ag TF e
. -
sF .
3 biaxial
o F ]
-1.5
2.0 IR PUUNS BT 1 P T .1
0 S0 100 150 200 250 300 350 400 450
R

FIG. 2. Here, Ag = g(0) — g(n/2) in terms of the Reynolds number,
where the shape of the bubble is given by r,(0) =1+ (W /4)g(6) (—:
small deformation analysis for biaxial straining flow; - - -: small deforma-
tion analysis for uniaxial straining flow; @: full numerical solution for biax-
ial straining flow).
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Comparing this with Eq. (12), we find
T,(1)=TF5/3

and
T,(1) =0, for n#2.

Finally, by substituting (14)—(16) into the left-hand-side of
(11), we obtain

(16)

Ven=2+ W[———P4(cos0)
( iﬁ)Pz(cos 0)] .

To solve this equation for a first-order approximation to the
bubble shape (for W« 1), let us assume that the bubble sur-
face is described in the form

(17)

r=l+f=1+ 2@ =147 5 B,P.cos6). (18)

n=2

Then, the curvature is given by

V-n=2+%/ 3 (n—1)(n+2)B,P, (cos 6)

n=2
+O(W?) . (19)
Finally, by comparing (17) and (19), we obtain
5
g(8) = (—15 + )P2 (cos 8) — EP,, (cos @) . (20)

The solution (20) for the bubble shape is identical in the
limit R — o with the small deformation solution obtained
for potential flow in Ref. 13. As noted in Sec. III A, the
potential flow limit of (20) does not depend upon whether
the undisturbed flow is uniaxial or biaxial in form. In both
cases, the shape is prolate, with the P, term contributing a
modification from the prolate ellipsoid (P,) toward a barrel-
like shape, with maximum radii occurring between the axis
of symmetry and the equatorial plane. The term -+ (40/
3R)P,(cos O) represents the leading-order viscous contri-
bution to the bubble shape. Although the functional form is
the same for the biaxial and uniaxial flows, the sign of this
term is positive in the uniaxial case and negative in the biax-
ial case. Thus in the uniaxial flow, the effect of viscosity (i.e.,
finite R) is to make the bubble more prolate, while the con-
tribution in biaxial flow is in the opposite direction.

In view of the fact that the bubble shape in biaxial flow at
small R is oblate, the tendency of the viscous shape correc-
tion toward an oblate shape may be viewed as “expected.”
Nevertheless, it is of interest to dig slightly below the surface
to consider the mechanism of the viscous modification of
shape. In fact, the viscous term in (20) has two sources, both
of the same sign. First, the vorticity generated at the bubble
surface is swept downstream (i.e., toward the axis of symme-
try for the uniaxial flow, and toward the equatorial plane for
the biaxial flow), and this causes the pressure to decrease in
that region relative to its potential flow values (10/3R of 40/
3R is from this effect). Second, there is a viscous normal
stress contribution, coming from the third term on the left-
hand-side of Eq. (11), which has the same sign (30/3R of
40/3R is from this effect). Thus the total normal force at the
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interface is decreased near the axis of symmetry for the un-
iaxial flow, and the bubble elongates slightly in that direc-
tion. For the biaxial flow, on the other hand, the total normal
force at the interface decreases near the equatorial plane, and
the bubble responds by adopting a less prolate shape.

One qualitative result from our earlier studies of bubble
deformation and breakup at both high and low Reynolds
numbers, is that “breakup” (more accurately continuous
elongation of bubble shape) occurs when the bubble devel-
ops a “waist,” and in all cases examined to date this corre-
sponds to achieving a sufficiently prolate shape. Thus in un-
iaxial flow, where the viscous correction in (20) produces a
more elongated shape with a decrease in R, one might sur-
mise that a decrease in R should cause the bubble to be more
susceptible to breakup via the continuous stretching mecha-
nism. In fact, this trend was found numerically by Ryskin
and Leal® who showed that the critical Weber number for
breakup actually increased as R increased. On the other
hand, the small perturbation theory presented here suggests
thatadecreasein R for a biaxial flow will cause a bubble to be
less prolate, and thus less susceptible to breakup than for
R — «. In other words, we might expect for biaxial flow that
the critical Weber number should actually decrease toward
the potential flow limit as R is increased. We shall see that
this trend toward greater stability for finite R is, in fact,
observed in the numerical results obtained later. However,
provided that the assumptions underlying the theory are
correct (particularly the assumption ||u, || <||u, ||), another
implication is that there should be a smooth transition with
increase of R to the potential flow limit for both uniaxial and
biaxial flows. This conclusion is correct for small deforma-
tions of shape (W< 1), but the numerical results show that it
does not carry over in any simple way to cases involving
finite deformation, at least up to R = 400.

Finally, we may ask whether the approximation theory
presented here can predict the transition Reynolds number
R, between oblate and prolate shapes, in accord with our
initial goal. Roughly speaking, the transition point can be
said to occur when

Ag=g(0) —g(n/2)
passes through zero [see the definition of g(8) in (18)].
Now, according to (20), the deformation along the symme-
try axis (6=10) is
g(0) =5/72 +40/3R,
and the deformation along the equatorial plane (6 = #/2) is
g(m/2) = —5/48 F20/3R .
Therefore

Ag=g(0) —g(w/2) =25/144 + 20/R,

where “ + »” and “ — ” of + indicate the uniaxial and the
biaxial straining flows, respectively. The Ag’s for both types
of flow are plotted as functions of R in Fig. 2, where the Ag’s
obtained from full numerical solution are also presented for
the biaxial flow case. The Weber numbers for the numerical
solutions are chosen to correspond to small deformation
cases (W = 0.5 for R = 50, 100, 200, and 400), and the nu-
merical results show good agreement with the asymptotic
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results. From Fig. 2, we can see that the bubble in a uniaxial
straining flow always becomes less elongated as the Reyn-
olds number increases, which is qualitatively consistent with
the numerical solution of Ryskin and Leal.® However, in a
biaxial straining flow, the elongation direction is predicted
to change from oblate to prolate at a marginal Reynolds
number, R,, = 115.2. As we can see by the comparison with
numerical results in Fig. 2, this is a relatively good estimate
of R, for small W.

C. Vorticity stretching and the vorticity distribution in
the wake

The small deformation theory of Sec. III B demon-
strates a qualitative difference between bubble deformation
in uniaxial and biaxial extensional flows for large, but finite
R. In particular, the advection of vorticity at the bubble sur-
face produces a decrease in pressure in the “downstream™
direction, which causes less prolate shapes for biaxial exten-
sion and more prolate shapes for uniaxial extension. Al-
though the changes in shape are small in the perturbation
theory, the fact that they are largely associated with vorticity
produced at the bubble surface means that one may expect
increased sensitivity to flow type for finite W, where the bub-
ble will be more deformed and surface vorticity will be larg-
er. Indeed, if we believe that the vorticity has a major role in
determining bubble shape, as the small deformation theory
suggests, then we may anticipate a rather profound differ-
ence between bubble deformation in uniaxial and biaxial
flows. This is because there is active vorticity enhancement
in the biaxial case, as a result of vortex line stretching, which
has no counterpart in the uniaxial extensional flow.

To demonstrate that the assertions of the preceding
paragraph are true, we may examine the vorticity transport
equation for an axisymmetric inviscid flow without swirl,
which takes the following simple form (Batchelor'®):

Dlw/o) _ . 21)
Dt

In fact, Eq. (21) is equivalent to Kelvin’s circulation
theorem. Equation (21) suggests that vorticity generated at
the boundaries can grow indefinitely in an inviscid, biaxial
straining flow, because a fluid particle travels in the direction
of increasing 0— « as f— «. For a uniaxial flow, on the
other hand, the particle path is toward decreasing values of
o, so that the vorticity in an inviscid flow would become
smaller. This suggests a fundamental and very important
difference between uniaxial and biaxial flows, essentially re-
sulting from the possibility of vortex stretching by the flow in
one case, but not in the other. Now, the following question
can be cast. Can the vorticity grow indefinitely in the down-
stream direction for a biaxial straining flow if the Reynolds
numbser is large but finite? This question is answered by the
following analysis for the wake region.

Let us begin by writing the vorticity transport equation
in the cylindrical coordinate system that is illustrated in Fig.
1 ’
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* ox ? o o
_2[3%

1 df( dw @

Rl ox* + o 30(0 aa) az] ) (22)
For R> 1, the vorticity is assumed to be confined to a thin
layer with a thickness that we denote as O(8) near the equa-
torial plane (i.e., wake). Then, in the wake region,
x=0(8),0=0(1),u, = 0(8),and u, = O(1). Now, let
us introduce the rescaled variables such that

i, =u/8, x=x/6.
Then Eq. (22) becomes
. dw do @4, 2(1 3% )
— —_———={—=———q40(1)].
“ax e T o R(52 s T oW
Therefore the most appropriate choice for & is
5=2/JR .

The introduction of a new variable } =w/o further reduces
the equation to the following simple form:

208, %0 _10%

*ox o 2

Equation (23) is a parabolic partial differential equation, so
we need an initial condition for the variable o and two
boundary conditions for the variable X. The initial condition
can be given by the vorticity distribution [} = Q,(X)] ata
certain point o= 0, which is outside the bubble. The
boundary conditions in X are quite obvious. At the equatorial
plane outside the bubble (X = 0,0>0,), the vorticity from
the two sides of the bubble is cancelled because of the sym-
metry of the flow, and §) = 0. The other condition is that the
vorticity vanishes at the outer edge of the wake region, i.e.,
1-0asX— o0.

To make the problem simpler, let us assume that
o, = O(1), but is sufficiently large, so that the velocity field
in the wake region can be approximated by the undisturbed
biaxial straining flow. This assumes implicitly that the vorti-
city in the wake region is small enough so that the velocity
perturbation, resulting from vorticity, is negligible in the
wake region. This assumption is valid if the vorticity in the
wake is O(1) at any o. The validity of the assumption will be
examined a posteriori. The undisturbed velocity field is given
by '

U

(23)

= —X, u,=}0o.

x

Now, the governing equation and boundary conditions for
the vorticity distribution in the wake are

odQ _9dQ

2 do ax

1 3%
—_—— 24
2 9x? 24
with
Q=Qo(i),
0=0, at x=0 (o30,),
-0, (o20,) .

at 0=0’0,

as X— o

The solution of (24) can be easily obtained by separation of
variables, and is given as
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Q=3 Ce PHy_, (o~ *,

k=1
where H,, _ , (X) is the (2k — 1)st Hermite polynomial and
the coefficient C; is given by

_ a*
2% =27 (2k — 1)}
Since = w/0, the final expression for w is

(25)

f Qo (X)H,, _, (X)dx .
0

C

o=y Cie~¥Hy,_, (R)o' —%.
k=1

(26)

The primary and important conclusion we can draw
from the result (26) is that although vorticity can grow lo-
cally for finite o because of the vortex stretching mechanism,
it eventually vanishes because of diffusion as 0 — «. Physi-
cally, the equatorial plane plays the role of a vorticity sink,
because w = O there as a result of the exact cancellation of
vorticity of opposite signs from the two halves of the bubble.
Therefore the effectiveness of diffusion for removal of vorti-
city requires that a large gradient of vorticity be maintained
near the equatorial plane. In the biaxial straining flow, such
a large gradient is achieved by convection of vorticity with
the velocity component, #, = — X. This convection effect is
sufficient to maintain a large gradient of vorticity close to the
vorticity sink (note that the vorticity has a maximum at a
certain finite position X for all o, < & < ¢ ). It should be not-
ed that Eq. (26) gives a theoretical basis for using the far-

field boundary condition for vorticity, w—0 as yx* + o°
— oo, for the numerical analysis in the following sections.

IV. PROBLEM FORMULATION FOR NUMERICAL
ANALYSIS

In Sec. II1, we have discussed some preliminary analyti-
cal results that will play an important role in understanding
the deformation of a bubble in a biaxial straining flow. How-
ever, these analyses have been mainly limited to small defor-
mations (i.e., W«1), the exception being the invariance of
steady bubble shapes to changes of flow direction in the po-
tential flow limit. To complete our investigation, we need to
examine finite deformation effects. Thus in the following
sections, we discuss numerical results for steady and un-
steady (finite-amplitude) bubble deformation in a biaxial
straining flow for 0< R <400, and for the potential flow limit,
R= .

In the numerical analysis that follows, we have used the
numerical scheme for unsteady free-boundary problems that
was developed in I, except for modifications in the difference
scheme for the vorticity transport equation, which will be
discussed later. Therefore, in this section, we present only
the minimum description necessary for the present work.

All of the computations are performed on a time-depen-
dent (or time-independent, in the case of steady-state analy-
sis) boundary-fitted orthogonal coordinate system (£,7) as
described in I. Thus the boundary coordinate at any instant ¢
is connected with the common cylindrical coordinate (x,o)
(with the axis of symmetry being the x axis) via a pair of
mapping functions x(&,7,¢) and o(£,7,t), which satisfy the
covariant Laplace equations
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T R
(g0

Here, the function £ (£,7) is the so-called distortion function
representing the ratio h, /h, of scale factors [4, = (g,,)"/%
he=(8e) /2] for the boundary-fitted coordinate system.

The fluid mechanics part of the problem is to obtain
solutions of the Navier—Stokes equations using a finite-dif-
ference approximation in the boundary-fitted (£,7) coordi-
nate domain. With axisymmetry assumed, the Navier—
Stokes equations are most conveniently expressed in terms of
the streamfunction ¥ and vorticity @ in the form

R[/{ dw 1
7[(37),,, Tk

n

(22024 v o
LY+w=0, (29)

where (dw/dt), , is calculated according to the transforma-
tion

() —(2) 4L (Bmde_owdoyix)
at X,0 at ] hﬂh§ a§ 377 87’ 3§ at &
L (3o do xydo)

hoh \OE 37  dn G\ )en
and

v el a) al )

The streamfunction 1 in (28) and (29) is defined, so as to
satisfy

1 & , -1 %
oh, a " oh, 9 '

We assume, for convenience, that the coordinate map-
ping is defined with £ = 1 corresponding to the interface
(Fig. 3), where 7 = 0 and 7 = 1 are the symmetry axes. The

boundary conditions at the symmetry axes are

ug-—

FIG. 3. A boundary-fitted coordinate system and an arbitrary axisymmet-
ric closed volume Vin the flow.
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Y=0,0=0, at 5=0,1. (30)
At the gas-liquid interface (£ = 1) we require
K K 1 JgF
= [ —uproh,an= [~ ZE)on, ay,
i .[)( “ )0y 1= |\~ 9F] T )
31)

corresponding to the kinematic condition. In (31), Fis a
function that describes the bubble shape as F(x,t) = 0 and
u, is the inward normal velocity. In addition, the vorticity at
the bubble surface is given by
2 du,
0=——q42,,U,,
hr/ 317 (m %y
corresponding to the condition of zero tangential stress
(where x,, is the normal curvature of the interface in the 7
direction and u,, is the tangential velocity ). Finally, the nor-
mal stress contributions resulting from pressure and viscous
forces, on the one hand, and the capillary force, on the other,
are required to balance

T — (/W) k() +K) =0. (33)

In (33), k4, is the normal curvature in the ¢ direction, W'is
the (dimensionless) Weber number, and 7, is the total nor-
mal stress, which includes both static and dynamic pressure
and viscous stress contributions.

The far-field boundary condition for the biaxial strain-
ing flow is given as

Y~ —Ixd?, ©-0, as £-0(x*+0*->w). (34)

Since the streamfunction tends to — oo as £-0, a new un-
known streamfunction #* is introduced, which is bounded
(see I and Ryskin and Leal'®),

P =y +ixo*(1-£%),
where — Jxo?(1 — £2) is subtracted instead of — jxo?, in
order to have a simple boundary condition at the bubble

surface (£ = 1) and ¢*=0 for the limiting case of potential
flow around a sphere.

(32)

V. NUMERICAL SCHEME

The problem, from a numerical point of view, is to solve
simultaneously the governing differential equations (27)~
(29), subject to boundary conditions (30)-(34), as indicat-
ed above. In the present analysis, the transient algorithm
described in I has been used with only a modification in the
difference scheme for the vorticity equation as described be-
low (note that the transient algorithm given in I with the
time step At = o degenerates to the steady-state algorithm
of Ryskin and Leal'$).

InIand in the paper by Ryskin and Leal, a nonconserva-
tive difference scheme was used for the vorticity equation.
This led to a highly stable solution algorithm for the uniaxial
flow problem considered in I, and a scheme that was stabi-
lized up to moderately large Reynolds numbers, 0(200), in
the buoyancy-driven bubble translation problem that was
considered by Ryskin and Leal.!” However, in the present
biaxial flow problem, we have found that this nonconserva-
tive difference scheme is unconditionally unstable for
R>O0(5). It appears to us, on the basis of the stability analy-
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sis presented below, and other factors, that there is a general
tendency for the nonconservative difference formulation to
be unstable at moderate or large Reynolds number, which is
realized to a greater or lesser degree, depending upon the
nature of the flow. In particular, for axisymmetric flows with
converging streamlines in the streamwise direction, such as
the uniaxial flow problem considered in I, any tendency to
generate disturbance vorticity in the azimuthal direction (all
that is possible with the velocity field restricted to axisym-
metry) is counteracted to a larger extent by the contraction
of vortex lines. On the other hand, for axisymmetric flows
with streamlines that diverge in the streamwise direction,
such as the biaxial flow considered here, any disturbance
vorticity is enhanced via vortex stretching and any natural
tendency to inhibit instability is lost. Finally, flows such as
the streaming motion past a bubble where streamlines first
diverge (locally) over the front half of the body and then
converge at the back, will tend by this qualitative picture, to
be somewhere between these extremes, insofar as inhibition
of numerical instability is concerned.

The natural tendency of some flows to be more suscept-
ible than others to numerical instability cannot be changed,
but the intrinsic stability of the numerical scheme can be
influenced-by the choice of the difference formulation. In the
present work, we therefore follow the recommendation of
Roache,'® and utilize a conservative formulation for the dis-
cretized vorticity transport equation. As we shall see, from
both a stability analysis and the actual performance of the
resulting numerical algorithm, the modified finite-difference
scheme is stable for both uniaxial and biaxial straining flows
up to of at least R = 400. In addition, preliminary compari-
sons with the calculations of Ryskin and Leal, for the rising
bubble problem indicate that the conservative formulation
of the vorticity transport equation substantially improves
stability in that case also.

In the remainder of this section, we first discuss the sta-
bility of the nonconservative difference scheme of Ryskin
and Leal (also used in I), and then contrast this with the
conservative difference scheme that was used for the calcula-
tions that are reported in the next section. We shall see that
the stability analyses of the two difference schemes largely
corroborate the qualitative statements of the preceding para-
graphs.

A. Nonconservative difference scheme for the vorticity
equation

We are concerned with both unsteady- and steady-state
numerical solutions. Nevertheless, for convenience, we re-
strict our discussion in this and in Sec. V B to the steady-
state algorithm. A discussion of the stability for the unsteady
algorithm will be essentially the same, with only minor mod-
ifications.

Let us start with the steady-state vorticity transport
equation in the form used by Ryskin and Leal,'®

Vo —o-Vu= (2/R)V?e . (35)
For axisymmetric problems, we have o = (0,0,0),
u = (u,,u,,0), and
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ovan [Loe L0 105 30, 1o d0)]

o 3 o ¢ ’a("@ag h, o
in the (£,7,4) coordinate system. Thus the equation for @
can be expressed in the following form:

v Jw dw )
2
e o =0,
[ 352 + 3772 +4q 3§+q2 aﬂ‘*‘?aw‘*'%
(36)
where
R u§' aU R u17 30'
=N gpp £ 00 Ry Tn 00
% 2f "o d 27 o Iy
_ (_l ﬁ?_)z _ (L ﬁ)’
o & o dn
=gt — lﬁ)z_(La_”)z 37
% (a € o dn) GD

The other coefficients in (36) are not given explicitly, be-
cause only g, is required in the following discussion. The
term g3 corresponds to vorticity enhancement through
stretching in the ¢ direction in a biaxial flow and, as we shall
see, is responsible for numerical instability in a nonconserva-
tive formulation. The last two terms are curvature contribu-
tions from V2w and act to stabilize the numerical scheme.
Now, let us consider the simplest model problem of an
axisymmetric straining flow around a spherical bubble. For
a spherical bubble, if we take the distortion factor f = 7€ /2,
then the coordinate transformation of Eq. (27) is given by

x=¢§ “lcos[(n/2)n], o=¢£& 'sin[(7/2)/9], (38)
with
hy=(a/2)¢ ", he=£72.

Furthermore, let us assume that the velocity field is given by
the potential flow solution around a spherical bubble,

1 do dx
- 1-g9(x 2240 %), 39
ug :F2h,,( &7 a’?+aa77 (39a)
1 do
=F— —2x(1 — £°)—
wy= Fo( 201 -6
— ol —§S)Z—z+5m§4), (39b)
where “ —” and “ + ” of “F” refer to the uniaxial and

biaxial straining flows, respectively. By substituting (38)
and (39) into (37), we get

o=+ {(B[58) ()
- )

=1 05) ()

for R»1. (40)

Now, let us consider the numerical solution of (36) on an
N X N grid system for the domain 0<£,7< 1, with the bound-
ary conditions

w=0, at =0, 7=1, and £=0,
at £=1.

@ =wy(7n),
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Spatial discretization of (36) with a second-order central
difference scheme gives us a system of linear algebraic equa-
tions of the form

Aw=Db, (41)
where
w= (a)“ ,...,wlN,...,le ,...,wNN)

and Aisa N 2 X N *matrix. The solution method developed by
Ryskin and Leal’® used in I for (41) is the alternating direc-
tion implicit (ADI) method, which is based on the transfor-
mation of (41) into a fictitious initial value problem,

W Aw—b.

-
In this case, the stability of the numerical scheme is com-
pletely determined by the eigenvalues of matrix A. The nec-
essary condition for stability is that the trace of A should be
negative, ie.,

Z A = 2 ay <0,

k=1
otherwise at least one eigenvalue must be positive, implying
instability. The diagonal elements of A can be expressed as

(42)

(43)

2
Ay = —F(ffj +1)+4q;5,
2 2
~—](3) e +1]
(1 — &3

Yy

where s = 1/N, k = (i — 1) XN 4+ j, and the indices / and j
stand for the grid point (£;,7;) = (ih, jh). The necessary
condition for stability is satisfied for all R in the case of uni-
axial straining flow, because a,, < 0for all £, as we can see in
(44) (** — > of F is for the uniaxial straining flow). How-
ever, the necessary condition for stability is violated as
R - o in the case of biaxial straining flow, because

L= |- E3)e+1]
(| (FY) +ereor(z )]}

2 1 7\ 1
) e ()
> [(2 M PO Y A

—14+RA
2t

Therefore, if R > 14/A, the numerical scheme must be unsta-
ble. In fact, when a 40 X 40 grid system was used in our nu-
merical computation, the ADI scheme with a nonconserva-
tive difference scheme failed to converge for R > 5 in the case
of biaxial straining flow, while convergent solutions were
obtained for all R up to the maximum value considered
(R<100) in the uniaxial straining flow problem.

Now, the question is whether we can avoid this numeri-
cal instability while maintaining second-order accuracy in
the spatial discretization. The answer is given in Sec. V B.

(45)
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B. Modified difference scheme for the vorticity
transport equation

Let us begin again with the vorticity transport equation
for an axisymmetric problem in the (&,7,¢)-coordinate sys-

tem,
R @ U do o U, c?a) 2
—_ ov —_—] — = — =L )
5 [u (7] ( +— - h 3 ] (w0)

o h

(46)

where the second term on the left-hand side is still just @ = Vu

from (38). To express (46) in a conservative form, we first

note

n-Vo =V: (wu)
5

“h ¢h,o\ 98

because of the continuity equation (V - u = 0). Hence sub-

stituting (47) into (46), and combining the two sets of re-
sulting terms on the left-hand side, we have

(h,o0u )+—(h oou )) 47
¢ a7 ¢

1
V.
[ ( ) 2 heh, (ag( 7hs)
+5;7-(h§a)u,7 )) =L2(€()0') . (48)
Then Eq. (48) can be expressed in the form
0w  Jdw o oo | . -
f23§2 3172"‘ 1 é_+42aﬂ+93a’+q$
where
o[£ %) +G5)]
: o 9 oagll’
and
és=—(R/2)f.

In discretizing (49), we apply the central difference form
directly to the last two terms. For example,

a (h,oug);, ,; —(h,ou.),;__
h — n Eli+ 14 n Ei—-1y
(hytty) 2

O(h?).
G + O(h%)

(50)
Here we must note that the difference formula (50) requires
the boundary conditions at £ = 0(yo? + x> = ) in the
form of 4, wu, as well as w itself. From the earlier parts of
this paper, we see that o = O(o™3) = O(£3) [Eq. (26)]
and h,u, = O(£ ~%) [Eq. (39)] in the limit £ 0. There-
fore, we have b, wu; =Oaswellasw =0at £ =0.
Now, let us consider the discretized equation of the ficti-
tious initial value problem for (49) in the form

™ Aw—b.
dr

In (51), the diagonal element of A is given as
dy = — (2/h)(fE+1) +§;,;<0, for all k,

where # = 1/N, k= (i — 1) X N +j. Therefore the neces-

(51)
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sary condition for stability is automatically satisfied for all
types of axisymmetric flow and for all Reynolds numbers,
while second-order accuracy is preserved, as we can see in
(50).

Finally, before proceeding to discuss numerical results,
it is of interest to discuss the sense in which the difference
scheme in (50) conserves vorticity. To do that we consider
the term

193 1 aJ a )
A = —(h ou —(h R
(a“) kgh,,a(ag( ng) + 5 (et )
which is in the first term of (48). The differential term on the
left is conservative in the sense that

[

a d
= 2ﬂ'J;z (a—é_(h,,o)u;) + %(hgwu,, ))d§ dﬂ

[ (zapo= (23 v

where ¥V is an arbitrary, axisymmetric closed volume in the
flow region and S is the closed surface of V.

We will show that the discretized approximation of the
right-hand side, based on (50), satisfies the same conserva-
tion relationship. Consider any domain, such as the shaded
region in Fig. 3, for which the grid system is given as

n(j) —IKIKN()) + 1,
m(i) — ij<M(i) + 4,
Then,

where n<n(j)KN(jH<N,
where m<m () <M <M.

N MO ((hga)u,,),-,j,”-—(hga)u,,),;j_l).h2
2h

Y M N ((h,,wug),»+1,j - (h,,a)ug),-_l,j) k427 S
ji=mi=n(j 2h i=nj=m()
-2 & ((hn“’“g)mnu.j + (hyoug ) nes, s _ (hyoue)n 1, + (hn“’“é)nu).j) B
e 2 2
N f(h MG h MG h (i h imli
+ 27 Z (( £OUy ) imip +12+( £@Uy )i miy . ( Ew“n)um(')—lz'*'( fOU, ), ()) h

M

N
=27 2 [(h'qmug)N(j)+ 1/2,j — (hnwug)n(j)— l/2.j] “h +2m z [(hga)un)i,M(i)+l/2 - (hgwu'r])i,m(i) - 1/2] “h
j=m

=£(%u)-nds.

Therefore the difference scheme of (50) satisfies the conser-
vative property. One consequence of this is that the vorticity
distribution in an axisymmetric, steady inviscid flow must
satisfy the so-called Kelvin’s circulation theorem. Since
V: [(w/0)u] =0, we have

f(-“lu)-ndS=o. (53)
\o
We also know that

fu-ndS=0 (54)

is true, since we have used the streamfunction and vorticity
formulation in the numerical analysis. The only way to satis-
fy both conditions simultaneously is that w/o = const along
a streamline, which is, in fact, a steady-state version of Kel-
vin’s circulation theorem. Therefore the conservative differ-
ence scheme in the present study is guaranteed to satisfy
Kelvin’s circulation theorem. Further, as we have seen, it is
inherently stable in either uniaxial or biaxial straining flows.

In the following sections, the numerical results obtained
via the modified scheme will be presented.

VI. STEADY-STATE NUMERICAL SOLUTIONS
A. Results

We have done computations for R =0, 1, 10, 50, 100,
200, 400, and for potential flow, gradually increasing W in
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t=n

(52)

r

each case. For all R<200, this procedure was continued until
a highly deformed shape was reached that required more
resolution than was available with the 40<40 grid system
used here in conjunction with the coordinate mapping
scheme. In the potential flow limit, on the other hand, W was
increased until a value of 2.7 was reached, beyond which
additional steady-state solutions could not be achieved. The
procedure for R = 400 was different, and will be discussed
below. The computed bubble shapes for various Reynolds
numbers and Weber numbers are shown in Fig. 4, and the
streamlines and vorticity contours for selected Reynolds
numbers and Weber numbers are also shown in Fig, 5. The
most obvious difference between the biaxial flow problem
considered here, and the uniaxial flow problem considered
earlier in I and by Ryskin and Leal® is that steady solutions
were obtained up to quite large Weber numbers for all finite
R. Indeed, in the present case, no limit point was found over
the whole range of W considered for any R<200.

For R = 400, however, the behavior was different, with
an apparent limit point occurring around W~6 for the
branch of steady solutions that begins at W = 0. The use of
solid and dashed lines to outline bubble shapes at R = 400 is
intended to indicate that the solutions lie on two separate
branches. The solutions at W = 2, 4, and 5 were obtained,
starting from a sphere at W = 0, and gradually incrementing
W. The solution at W = 5 was obtained without any particu-
lar difficulty. However, when W was incremented upward to
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FIG. 4. The steady-state shapes of a bubble in a biaxial straining flow for
various Reynolds and Weber numbers (in all figures, the horizontal axis is
the axis of symmetry and the vertical axis is the equatorial plane).

W = 6, no steady solution could be obtained (therefore a
limit point for this branch is expected between W =5 and
W = 6). On the other hand, the solutions for W=7, 8§, 10,
and 12 were obtained, starting with the solution for
R =200/W =12 as an initial guess of the shape for
R = 400/W = 12, and then incrementing W downward to
W = 7. Again, no particular difficulty was experienced in
obtaining the solution at W=7, but no steady solution
could be found on this branch when W was decreased to
W = 6 (again, another limit point for this second branch is
expected between W =6 and W = 7). Of course, the fact
that we could not obtain a converged, steady solution for
W = 6 does not prove that such a solution does not exist.
However, we see no reason to believe that there is anything
intrinsically more difficult about the numerical problem at
W = 6, than for W = 5 or W = 7. Another factor that seems
to corroborate our suggestion of a limit point for both solu-
tion branches at W~ 6 for R = 400, is the observation that
any added increment in W above W =5 or below W =7
tends to produce a shape with a waist. We have already noted
that all of our earlier studies of bubble or drop deformation
at both large and small R suggested that a limit for steady
solutions occurs when (if) the bubble developed a “‘waist.”
In spite of our confidence in these arguments, however, we
are currently exploring the solution behavior between
W=735 and W=7 in more detail, using a full Newton’s
scheme'” to determine whether true limit points exist or not.
Unfortunately, we were not able to carry the present solution
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R/W =50/12

R/W =100/10
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(a)

R/W = 200/2
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R/W =200/8.5
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FIG. 5. The streamlines and vorticity contours for various Reynolds and
Weber numbers (in all figures, the horizontal axis is the axis of symmetry
and the vertical axis is the equatorial plane).

scheme above R = 400, due to a lack of available computing
resources (higher R would require a finer grid and more
computing effort because of impending instabilities in the
scheme at higher R).

The fact that no limit point was found numerically for
the smaller values of R<200, is apparently a consequence of
the fact that the bubble is either oblate for all W, or else
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undergoes a transition from prolate to oblate shapes before
reaching a degree of elongation along the symmetry axis that
leads to a “waist” (which we believe to correspond to a limit
point). For R = 400, on the other hand, a critical degree of
elongation along the symmetry axis is apparently reached
before the bubble can begin to contract toward less elongated
shapes. Our numerical evidence suggests that the limit point
for steady solutions lies between W = 5 and W = 6 when the
Weber number is increased from below, and between W = 6
and W=7 when the Weber number is decreased from
above. Thus it is our current belief that the two sets of solu-
tions shown in Fig. 4 for R = 400 represent two distinct
(nonintersecting) solution branches. We will address two
obvious questions about these statements shortly: first, why
does the transition from prolate to oblate shapes take place
(see, also, Sec. III B) and, second, why does the oblate shape
exhibit steady solutions over a much wider range of W ? The
existence of oblate solutions up to relatively large W does not
imply, of course, that a limit point may not appear at still
larger values of W. However, if so, it must occur for W con-
siderably in excess of O(10), and examination of Fig. 4 sug-
gests that it would be a consequence of reaching a configura-
tion where the normal stress balance can only be satisfied by
an unacceptable shape in which the two sides of the bubble
intersect.

We will discuss the details of the steady-state solutions
shown in Figs. 4 and 5, including an attempt to answer the
two questions that were posed above. First, however, we at-
tempt to conclude the present discussion by summarizing
the conditions in the R-W parameter space for existence of
steady solutions for the bubble shape, including both uniax-
ial and biaxial extensional flows. For the uniaxial extension-
al flow, the numerical solutions of I and Ryskin and Leal®
indicate that there is a critical W, (R), forall R> 10, which s
a limit point for the branch of steady solutions that begins
with a sphere at W = 0. Further, this limit point is a mono-
tonically increasing function of R and coverges smoothly to
W, (=), which is the potential flow limit. Physically, the
limit point seems to correspond to the first appearance of a
“waist” in the slightly prolate shapes that are obtained,
though it is not obvious to us that this should necessarily be
the case. We shall discuss this point in more detail shortly.
Finally, although we have not made an exhaustive search,
we believe it likely that the steady solution branch that we

have obtained numerically for the uniaxial flow problem is

unique; i.e., no other stable steady solutions exist for larger
values of W. The situation for biaxial extensional flow is
quite different. In the potential flow limit, the behavior is
identical to the uniaxial flow case with a limit point appear-
ing at W, ~2.7, when the bubble shape approaches a prolate
configuration with a waist. For R = 400, this same behavior
is found at W, ~ 6 if Wis increased from zero, and, presum-
ably, for 400 < R < «, we would also obtain a critical W,
corresponding to prolate shapes with a “waist,” with a gra-
dual transition to W, ( « ) from above. It may be noted that
the approach of W, (R) to W, ( « ) from below for the un-
iaxial extension flow, and from above for the biaxial exten-
sional flow is qualitatively consistent with the small defor-
mation analysis of Sec. III B, which shows that the bubble
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will be more prolate at finite R in the uniaxial case, but less
prolate at finite R in the biaxial flow. For R<200, in the
biaxial flow problem, this limit point corresponding to pro-
late shapes with a waist no longer exists because the bubble
shapes transform to a fundamentally different (and stable)
oblate form at relatively small values of W. For these cases, it
appears likely, from the trends exhibited in Fig. 4, that
steady solutions will exist all the way to a critical
W > 0(10), where the normal stress balance would require
the two sides of the bubble to intersect. Finally, even for
R > 200, it appears from the solutions obtained at R = 400
that indented oblate shapes can appear as steady solutions
for large W. However, above some critical R, this second
branch of the steady solutions is apparently distinct from the
branch that begins with a sphere at W= 0.

B. Discussion

In the remainder of this section, we present a more de-
tailed discussion of the results shown in Figs. 4 and 5, includ-
ing an explanation of the transition to oblate shapes at finite
R, and a discussion of the observed stability of oblate shapes
for relatively large values of W. We begin with the results at
low Reynolds numbers.

At very low Reynolds numbers, represented in Fig. 4 by
R =0and R = 1, there is a general trend for a bubble to be
flattened monotonically to an oblate shape with an increase
in the capillary number, Ca = uEa/y = W /R(if R #0). As
a consequence of this deformation of shape, the curvature of
the interface becomes very large at the edge of the bubble,
but positive curvature is maintained at the stagnation points
on the symmetry axis for all values of Ca that we have con-
sidered. It should be noted that the maximum values of Ca or
W shown in Fig. 4 for the lowest values of R do not represent
a limit to the existence of steady solutions. Rather, the com-
putation was simply terminated when the maximum curva-
ture on the rim reached a point where adequate resolution
was not possible with the 40X 40 mapped coordinate grid
that was being used.

Since no theoretical work is available for this extremely
deformed (flattened) bubble, no explicit comparison can be
given. Indeed, as stated earlier, we are aware of only one
previous analysis of the problem of a bubble in a biaxial
straining flow by Frankel and Acrivos.!* They computed
bubble shapes in the creeping flow limit (R = 0) up to an
intermediate capillary number (Ca = 0.2) via a semianalyti-
cal approach. The results of Frankel and Acrivos for R = 0
are compared with those of the present work in Fig. 6. Also
shown are the numerical results for a uniaxial creeping flow
by Youngren and Acrivos* and Ryskin and Leal.® In Fig. 6,
the magnitude of deformation is measured in terms of
D = (I — b)/(l + b), where / is the radius of the longer axis
and b is the radius of the shorter axis.

As the Reynolds number increases, the edge of the bub-
ble at the equatorial plane first becomes more rounded and
then flattened at higher Reynolds numbers, and the surface
near the stagnation point on the symmetry axis also becomes
increasingly flattened until eventually it becomes indented,
with negative curvature, for large W and R>50. Negative
curvatures may also occur at very high W values for lower
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FIG. 6. A comparison of the present results for a bubble in a biaxial strain-
ing fiow at R = O with the result of Frankel and Acrivos,' and the results
for the problem of uniaxial straining flow {—: present result for biaxial
flow; @: Frankel and Acrivos for biaxial flow: - - -: Youngren and Acrivos®
for uniaxial flow; @: Ryskin and Leal® (R = 0.1) for uniaxial flow].

Reynolds numbers, but this is not evident in the present solu-
tions. The existence of negative curvature at the axial stagna-
tion points is not, in itself, particularly surprising. Since the
pressure inside the bubble is uniform, the bubble shapes at
the higher Reynolds numbers are primarily determined by
the dynamic pressure distribution in the external fluid, and
this pressure exhibits maximum values at the two stagnation
regions where the bubble surface intersects the axis of sym-
metry and the orthogonal symmetry plane. The bubble re-
sponds to these dynamic pressure maxima by being pushed
inward to either reduce the positive curvature or yield a re-
gion of negative curvature, and thus produce a correspond-
ing increase in the normally directed capillary force.

Of course, the same basic scenario is also relevant to
bubble shapes in the uniaxial extensional flow. However, in
this case it is the stagnation region at the equatorial plane
that is most influenced by the dynamic pressure maxima and
the bubble tends toward a slightly elongated shape with a
waist. The fundamental difference between the uniaxial and
biaxial cases is that no steady solution exists in the uniaxial
case with a waist (i.e., with negative curvature at the equa-
torial plane). Indeed, the numerical solutions of Ryskin and
Leal and I show that the dividing point between shapes with
positive and negative curvature in the axial direction corre-
sponds to a limit point in Weber number beyond which
steady solutions are not possible.

Thus, we see that the primary difference between the
uniaxial and biaxial cases is that the dimpled configuration
with negative curvature can exist as a steady state in the
biaxial flow, whereas the corresponding waisted configura-
tion with negative curvature in the axial direction cannot
exist as a steady state in the uniaxial flow. As a consequence,
steady solutions can exist to a much higher Weber number in
the biaxial flow than in the uniaxial flow. The critical differ-
ence between the two cases is the sign of the total curvature
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in the region of the indentation. In the dimpled configura-
tion, the total curvature is negative, and increases in W can
be compensated by an increased degree of dimpling. In the
waisted configuration, on the other hand, the situation is
more complicated, and an increase in W cannot necessarily
be compensated by an increase in the magnitude of indenta-
tion at the waist. Indeed, the fact that this does not occur is
clearly demonstrated by the observation that the limit point
for steady solutions is actually coincident with the initial
appearance of a waist!

In the waisted configuration, an increase in the depth of
the indentation produces increased negative values of the
curvature component

1 3%

= 20 ag=1
h% on K

Koy =

(as is necessary to balance an increase in the external pres-
sure), but increased positive values of the component,

Ky =1/0, at =1,

Thus increased indentation of the waist does not necessarily
produce a configuration with increased negative curvature,
as would be necessary to balance the increased external pres-
sure that is associated with an increase of W. This depends
on the relative magnitudes of «,,, and x4, . If the length of
the dropis “large” (and the “wavelength” of the indentation
is also large), then increased indentation actually yields a
more positive value of the total curvature (i.e., Ky +Kegy)
and the bubble cannot attain an equilibrium shape for larger
W, once it reaches a steady shape with «,, = 0 at the equa-
torial plane. On the other hand, if the bubble is relatively
short when it achieves the incipient waist configuration, then
|k ¢y | > K4y |, and we should expect to be able to achieve
steady waisted configurations for larger W. Apparently, in
the parameter ranges considered here, the bubble is always
sufficiently long (relative to its cross-sectional radius) when
it reaches an incipient waist configuration that no stable
“waisted” continuations of shape are possible.

A somewhat different way to understand the difference
in stability between dimpled oblate shapes and waisted pro-
late shapes, is to consider what would happen if the exten-
sional flow were suddenly removed. In the oblate case, the
capillary effect produces a maximum in pressure at the dim-
ple, and this tends to drive fluid away from the dimpled
region, thus allowing the bubble to return toward a spherical
shape. For the prolate case, on the other hand, the tendency
toward increased external capillary pressure because of neg-
ativex(,, can be compensated by the increase in 4, . In this
case, the capillary pressure contribution resulting from the
formation of a waist will be a local minimum instead of maxi-
mum, and fluid will be drawn inward toward 7 = 1, causing
the waist to pinch off into a pair of bubbles. The clear impli-
cation, in this case, is that the waisted configuration does not
provide a mechanism to resist an increase in dynamic pres-
sure (unlike the dimpled configuration), and the Weber
number corresponding to incipient formation of a waist
must also be a limit for existence of steady solutions.

The present results, at the highest Reynolds numbers,
exhibit especially interesting behavior. Specifically, for small
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Weber numbers, the bubble is at first elongated in the axial
direction, and only reverts to the flattened pill-like shape for
finite R at higher W values. Alternatively, we may note that
for any fixed (small) W, there is a marginal Reynolds num-
ber, as predicted in Sec. III, at which the elongational direc-
tion is changed. The estimated marginal Reynolds number
in Sec. Il was R,, = 115, and it can be seen from Fig. 4 that
the numerical solution does change form between R = 100
and R = 200. The bubble at R = 100 (for either W= 2o0r4)
is elongated in the direction of the equatorial plane, but the
bubble at R =200 (W =2 or 4) is elongated in the axial
direction. This trend toward shapes that are elongated in the
axial direction for slightly deformed bubbles is smoothly
continued to the potential flow limit for small . However,
for R = 200, the elongation in the direction of the symmetry
axis is not maintained as the Weber number increases. In-
stead, as the curvature at the bubble shoulders is increased,
there is an increasing accumulation of vorticity in the vicini-
ty of the equatorial plane and a corresponding decrease in
the pressure in this region relative to that on the upstream
face of the bubble. This transition is shown in Fig. 7. As a
consequence, the bubble surface moves out in the equatorial
plane and the bubble becomes increasingly flattened for
higher Weber numbers. For R = 400, on the other hand, the
tendency toward elongation in the axial direction is more
pronounced, and before the accumulation of vorticity can
produce a significant change in shape, the bubble hits a limit
point near W = 6 that is similar in character to the limit
behavior at R = o . As we have already noted, the solutions
for W>7, shown in Fig. 4, are believed by us to lie on a
separate solution branch. Although the difference in behav-
ior between the potential flow limit and the present solutions
up to R =200 might seem quite unexceptional, since
R = 200is hardly R = o, the fact is that the corresponding
solutions for a bubble in a uniaxial straining flow obtained by
Ryskin and Leal® converge smoothly toward the potential
flow solutions. At the largest Reynolds number considered
by them, R = 100, the solution is already very similar to the
potential flow solution, including the existence of a limit
point for steady solutions at W, ~ 2.2, which is quite close to
the potential flow value, W_ ~2.7. Comparison between the
present solutions and those of Ryskin and Leal® shows clear-
ly that there is a fundamental difference in behavior for
large, but finite R, in spite of the fact that the ultimate limit-
ing behavior in both cases appears to approach the same
potential flow limit.

Now, the question is what kind of fundamental differ-
ence exists between the uniaxial and biaxial flow cases for
R # «, which may explain the differences in behavior for the
two cases. The basis of the answer to this question lies in the
interaction between the bubble shape, the production of vor-
ticity resulting from the curvature of the bubble surface, and
the enhancement of vorticity in the near-wake region down-
stream of the bubble by vortex stretching. Indeed, for finite
R where vorticity can be produced, the fundamental differ-
ence between uniaxial and biaxial flow is that the principal
axis of elongation in the near wake downstream of the bubble
is orthogonal to the vorticity axis for the uniaxial case (so
that vorticity only convects and diffuses, but is not enhanced
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through vortex stretching), while for the biaxial case the
elongation direction and the vorticity are parallel so that the
vorticity can be increased in magnitude by vortex-line
stretching. Thus, all else being equal, the vorticity levels
downstream (near the equatorial plane) for the biaxial case
should be larger than downstream (along the axis of symme-
try) in the uniaxial case. For a given Reynolds number R,
the magnitude of the vorticity at the bubble surface is pro-
portional to the local curvature, which increases as W in-
creases. In particular, the pressure induced indentation
along the symmetry axis, combined with stretching in the
equatorial plane, produces shapes with increasing curvature
at the shoulder between these two regions, and this, in turn,
leads to increasing vorticity production with an increase of
R, for fixed W> 4 (or for an increase of W).

VIl. NUMERICAL SOLUTIONS FOR UNSTEADY BUBBLE
DEFORMATION

The numerical solutions of Sec. VI show that steady-
state solutions exist for large, but finite, R up to very large
values of the Weber number. In the present section, we con-
sider transient deformations for both finite R and for the
potential flow limit, R = co. Our goals are twofold: for finite
R, we show that the steady-state solutions of Sec. VI are
stable in the sense that they represent the final steady-state
shapes for a wide range of initial shapes; for R = «, on the
other hand, we investigate the transient changes in shape for
step changes to both supercritical and subcritical values of
W. The numerical scheme used to obtain these transient so-
lutions was the same as developed in I, except that we em-
ploy the conservative difference scheme for the vorticity
transport equation, as discussed in Sec. V.

A. Unsteady deformation in potential flow

We begin by considering transient shapes for the poten-
tial flow limit. It may be recalled from Sec. III, that the
oscillation frequencies of the primary deformation mode in
an inviscid fluid should be the same in uniaxial and biaxial
flows up to O( W). However, no general relationship exists
between transient bubble deformation for uniaxial and biax-
ial flows, and we have thus done two different numerical
experiments for the biaxial flow case, in order to comple-
ment the transient solutions for uniaxial flow that were re-
ported in I. One is for unsteady deformation following a step
increase to a supercritical Weber number, and the other is
for oscillatory deformation following a step decreasein W to
a subcritical value.

First, we consider the unsteady deformation following a
step increase to a supercritical Weber number, W> W_.
Starting from the steady-state solution for W = 2.7, the We-
ber number was increased to 2.9 at # = 0. In Fig. 8, the un-
steady deformation is shown for 1.7<7<4.5. Surprisingly,
the bubble initially elongates against the flow direction.
However, later, the elongation in that direction is stopped,
and the bubble becomes waisted with increasing magnitude
for increasing time. In order for a bubble to be elongated
against the flow direction, the bubble must do enough work
on the fluid to overcome the inertia of the flow. Therefore
indefinite elongation against the flow is impossible for this
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pressure

FIG. 7. Pressure distributions along the bubble surface for R = 200.

biaxial straining flow. Indeed, as this elongation against the
flow slows down, the region near the equatorial stagnation
plane shows negative curvature («x,, <0), which increases
rapidly as ¢ increases. Therefore, in spite of the fact that the
steady bubble shape is identical in the potential flow limit for
uniaxial and biaxial straining flows, the transient deforma-
tion for supercritical Weber numbers is fundamentally dif-
ferent. A bubble is extended indefinitely in the axial direc-
tion in a uniaxial straining flow, while in a biaxial
extensional flow the deformation at large times corresponds
to an increase of negative curvature (x,, ) along the equa-
torial plane, without much extension in the axial direction.

The oscillation of a bubble in a biaxial straining flow was
also computed for the case W = 1 in the potential flow limit.
Starting with the steady-state solution for W = 2.7, the We-
ber number was decreased to 1.0at 7 =0.In F ig. 9, the radi-
us of the bubble in the axial direction is plotted as a function
of a surface tension based time scale ¢ (fst’/tc, see Sec.
II A), and the result is compared with that of a bubble in a
uniaxial straining flow. For the uniaxial flow problem, the
initial condition is also the steady-state solution for W = 2.7.
As we can see in Fig. 9, the phases are different, but the
frequencies are almost the same for the two cases. This result
is consistent with the fact that the formula o} = w3,
X (1 —0.31W) + o( W) is valid for both cases, but extends
the result to finite W.

FIG. 8. Consecutive deformations of
abubble in an inviscid, biaxial strain-
ing flow at W= 2.9, starting from
the steady state for W =27
(1.7€1<4.5).
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B. Unsteady deformation in high Reynolds number flow

As shown in Sec. V, a bubble in a biaxial straining flow
at a high Reynolds number has a steady shape with negative
curvature at the axial stagnation points if the Weber number
is sufficiently large (see Fig. 4). In this section, we show that
the steady-state shapes obtained in Sec. VI are stable by de-
monstrating that an initially deformed bubble, with a small
disturbance, or even with a large disturbance, is eventually
attracted to the steady-state shape obtained via the steady-
state analysis.

The first case that we consider is the unsteady deforma-
tion of abubble at R = 100 and W = 12, whose initial state is
the R = 100 and W = 10 steady-state solution. The consecu-
tive bubble shapes are overlapped in Fig. 10. As we can see in
Fig. 10, the bubble is attracted directly to the steady-state
shape for R = 100 and W = 12. In addition, we considered
the unsteady deformation of a bubble started from rest for
two cases (R = 50/W =12 and R = 100/W = 10), i.e., at
t =0, the flow is turned on with the bubble shape initially
being spherical. The consecutive bubble shapes are shown in
Figs. 11(a) and 11(b). As we can see, the bubble shapes are
smoothly attracted once again to the steady-state shapes.
The poles (the intersections of the bubble surface and the
symmetry axis) move inward monotonically, except for a
nearly negligible overshoot near the steady state. However,
the behavior of the surface near the equator is different. Ini-
tially, the surface moves inward at the equatorial plane as a
result of the high stagnation pressure at the equator. How-
ever, very quickly the vorticity levels increase in this region
because of the vortex stretching mechanism, the pressure
begins to decrease, and the bubble surface subsequently
moves monotonically outward. By comparing the R = 50/
W = 12 and R = 100/ W = 10 cases, we can see that the ini-
tial effect of higher stagnation pressures is more prominent
for the higher Reynolds number. However, in both cases, the

FIG. 9. Oscillation of a bubble in an inviscid, straining ﬁow at W=1(—:
biaxial straining flow: - - -: uniaxial straining flow; and ¢ is the surface ten-
sion based dimensionless time, t = /(2/W)1).
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FIG. 10. Unsteady deformation of a bubble in a

biaxial straining flow at R = 100 and W= 12

(starting from the steady solution of R = 100/
=10).

bubble shape eventually recovers positive curvature
(#(y, >0) on the equatorial plane. Finally, in order to test
the stability of steady shapes for a wider range of initial con-
ditions, we again studied the unsteady deformation of a bub-
ble for the case of R = 200/ W = 10, but this time starting
with a prolate initial shape [see Fig. 11(c)]. In fact, the
initial shape was the steady potential flow solution for
W =2.7. As we can see in Fig. 11(c), the steady-state solu-

(8)

000000
00000d
0003000

000000
DODUUU
000010

()

FIG. 11. Unsteady deformations of a bubble in a biaxial straining flow: (a)

R = 50/W = 12 starting from the spherical shape, (b) R = 100/W =
starting from the spherical shape, and (c) R = 100/ W = 10 starting from
the steady solution of R = o /W= 2.7.
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(a) (b)

FIG. 12. (a) Unsteady deformation of abubble in a biaxial straining flow at
R = 100 and W = 1000 starting from spherical shape. (b) The velocity
field at £ = 0.575.

tions for biaxial straining flows [at least for R<200 and
W<0(10)] are stable for a very wide range of initial condi-
tions. Formation of the negative curvature (x,, <0) near
the equatorial plane at the early stage of deformation is more
prominent than for the case in 11(b). However, later the
curvature reverts to positive values as a result of the pressure
drop effect discussed previously, and the same steady shape
is obtained as before.

Although the decrease in pressure at the equatorial
plane because of the increasing vorticity levels seems to pro-
vide a self-consistent explanation for the transition in defor-
mation behavior at the equatorial plane, one question that
we have not explored directly is the role of surface tension in
the transient evolution of the bubble shape. In order to assess
the effects of surface tension, we did the same computation
for R = 100 and W = 1000, where the surface tension effect
may be neglected. The consecutive deformations are shown
in Fig. 12. As we can see in Fig. 12, the negative curvature
grows monotonically and very high curvature edges are
formed as time increases. Clearly, surface tension has played
a critical role in the previous observations, presumably by
limiting the degree of initial deformation at the equatorial
plane, so that the vorticity increase/pressure decrease mech-
anism can come into play [compare Figs. 11(b) and 12(a)].
In this regard, it is interesting to examine the flow field
around the deformed bubble at ¢ = 0.575, as shown in Fig.
12(b). However, it is unclear whether the shape can ever
revert to outward movement at the equatorial plane. Finally,
it should be mentioned that the present result for R = 100/
W = 1000 is not complete, and we do need more systematic
analyses for the bubble deformation when the Weber num-
ber is asymptotically large.
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