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I. COMPARING THE THERMAL EXPANSION IN QUASIHARMONIC AND ANHARMONIC
THEORIES

A. Classical Thermodynamics

The (volumetric) thermal expansion coefficient, β, is defined as

β =
1

V

dV

dT
(1)

at P = 0, or at a constant pressure. This Section I obtains β from the thermodynamic free energy F (V, T ), which
includes the variables of Eq. 1. Classical thermodynamics provides relationships involving partial derivatives of F
with respect to V and T . Thermal expansion requires both types of partial derivatives to second order. Expansion is
a change in volume, of course, but thermal expansion occurs with a change of temperature.

We start with a thermodynamic identity

β = − 1

BT

∂2F

∂T∂V
, (2)

where BT is the isothermal bulk modulus, defined as

BT = −V ∂P
∂V

= V
∂2F

∂V 2
. (3)

Thus, we have

β = − 1

V

(
∂2F

∂T∂V

)/(∂2F

∂V 2

)
. (4)

One strategy to calculate thermal expansion is to solve for f(T, V ) ,
∂F

∂V
= 0 for V = V (T ) in quasiharmonic or

anharmonic models, and then obtain the thermal expansion coefficient from Eq. 1. This is done for the quasiharmonic
approximation in Sect. III with Fig. 4. Here we employ an alternative strategy of calculating Eq. 4 directly. The two
approaches are equivalent because

dV

dT
= −

(
∂f

∂T

)/( ∂f
∂V

)
= −

(
∂2F

∂T∂V

)/(∂2F

∂V 2

)
. (5)

B. Phonon Statistical Mechanics

We address the underlying physics by calculating the phonon free energy, ignoring possible contributions from
electronic or magnetic excitations. The key quantities are the energies {~ωi}, where ωi is the frequency of a phonon
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added to the ith vibrational mode. In general, this frequency depends on V and T , ωi(V, T ). In the “quasiharmonic
approximation” (QHA), the ωi and the phonon free energy depend only on V . In the QHA, the effects of T are only
from the occupancies of phonon modes. The QHA is convenient for calculating thermal expansion, requiring only a
set of mode Grüneisen parameters.

It was recently proved that the QHA gives the leading term of the quantity ∂F/∂V [1], also [2]. This does not
guarantee that the QHA gives the leading term of the thermal expansion coefficient, however, because a temperature
derivative is still needed. (For example, consider the functional y = y0 + ∆y, where y0 = 100 + 0.001 sinx and
∆y = sinx. Here the x-derivative is dominated by the small term ∆y, rather than the leading term y0.)

Less well known are anharmonic theories of thermal expansion developed with many-body theory [3, 4]. To our
knowledge, there has been no direct comparison of thermal expansion from the QHA and anharmonic theory, so the
goal of this section is an comparison of their relative importance.

Ignoring the entropy from free electrons or magnetic excitations, for a simple solid with N atoms the Helmholtz
free energy originates with the electronic energy, i.e., the internal energy of the lattice, U0, plus the free energy from
phonons

F = U0 + Fph ,

F = U0 +

〈∑
k,j

[
1

2
~ωk,j + kBT ln

(
1− e−

~ωk,j
kBT

)]〉
BZ

. (6)

where ~ωk,j is the phonon energy at the k-point for the jth phonon branch. The sum is taken over all phonon branches
and k-points in reciprocal space, and 〈...〉BZ is the average over the first Brillouin zone. For clarity in what follows,
the subscripts of ω are suppressed.

Because the free energy depends on V and T , we expect U0 = U0(V, T ) and ω = ω(V, T ). Derivatives of these
quantities are needed for Eq. 4. The volume derivative is essential for expansion

∂F

∂V
=
∂U0

∂V
+

〈∑ ~
2

∂ω

∂V
+

kBT

1− e−
~ω

kBT

(
−e−

~ω
kBT

)(
− ~
kBT

)
∂ω

∂V

〉
BZ

=
∂U0

∂V
+

~
2

〈∑ ∂ω

∂V
coth

(
~ω

2kBT

)〉
BZ

. (7)

From Eq. 7, we calculate the additional derivatives needed in Eq. 4

∂2F

∂T∂V
=

∂2U0

∂T∂V
+

~
2

〈∑[
∂2ω

∂T∂V
coth

(
~ω

2kBT

)
− ∂ω

∂V
csch2

(
~ω

2kBT

)(
~

2kBT

∂ω

∂T
− ~ω

2kBT 2

)]〉
BZ

, (8)

and

∂2F

∂V 2
=
∂2U0

∂V 2
+

~
2

〈∑[
∂2ω

∂V 2
coth

(
~ω

2kBT

)
− ∂ω

∂V
csch2

(
~ω

2kBT

)(
~

2kBT

∂ω

∂V

)]〉
BZ

. (9)

C. Internal Energy

The first terms with U0 in Eqs. 8 and 9 are familiar from the elastic energy of a solid. They are typically obtained
from a Taylor expansion of the internal energy. For cubic crystals near the ground-state equilibrium volume V0,

U0(V, T ) = U0(V0, T ) +
B0(T )V0

2

(
V − V0

V0

)2

+ ... , (10)

gives

∂U0

∂V
= B0(T )

(
V − V0

V0

)
, (11)

then

∂2U0

∂V 2
=
B0(T )

V0
, (12)
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and

∂2U0

∂T∂V
=
dB0

dT

(
V − V0

V0

)
, (13)

where B0 = −V (∂P/∂V )P=0 is the zeroth-order bulk modulus (i.e. B0 = BT ).

D. Phonon Contributions at Medium to High Temperatures

To simplify the second terms in Eqs. 8 and 9, notice that coth (x) =
1

x
+
x

3
−x

3

45
+. . . and csch(x) =

1

x
−x

6
+

7x3

360
+. . .,

so for ~ωmax < kBT ,

coth

(
~ω

2kBT

)
' csch

(
~ω

2kBT

)
' 2kBT

~ω
. (14)

Using Eq. 14 greatly simplifies Eq. 8 and 9, with the restriction to higher temperatures where ~ωmax < kBT ,

∂2F

∂T∂V
=
dBT
dT

(
V − V0

V0

)
+ kB

〈∑(
T

ω

∂2ω

∂T∂V
− T

ω2

∂ω

∂T

∂ω

∂V
+

1

ω

∂ω

∂V

)〉
BZ

, (15)

and

BT = V
∂2F

∂V 2
' V

{
BT
V0

+ kBT

〈∑[
1

ω

∂2ω

∂V 2
− 1

ω2

(
∂ω

∂V

)2
]〉

BZ

}

BT =
V

V0
BT + kBTV

〈∑ ∂2(lnω)

∂V 2

〉
BZ

, (16)

which indicates

∣∣∣∣kBTV

〈∑ ∂2(lnω)

∂V 2

〉
BZ

∣∣∣∣� BT , since V/V0 ' 1.

E. Quasiharmonic Approximation

In the quasiharmonic approximation, U0 = U0(V, T = 0) and ω = ω(V, T = 0), so(
∂2U0

∂V 2

)QH

=
BT (T = 0)

V0
,

(
∂2U0

∂T∂V

)QH

= 0 ,

(
∂ω

∂T

)QH

= 0 . (17)

For ~ωmax < kBT , Eqs. 8 and 9 are simplified(
∂2F

∂T∂V

)QH

= kB

〈∑ 1

ω(V, T = 0)

∂ω(V, T = 0)

∂V

〉
BZ

, (18)

and

BQH
T = V

(
∂2F

∂V 2

)QH

' V

V0
BT (T = 0) + kBTV

〈∑ ∂2 [lnω(V, T = 0)]

∂V 2

〉
BZ

' BT (T = 0) ' BT , (19)

assuming BT is not strongly dependent on temperature, which is often true in practice.

F. Comparison of Quasiharmonic and Anharmonic Results for Thermal Expansion

The results from Sections I D and I E allow a direct comparison of the difference in thermal expansion predicted by
anharmonic and quasiharmonic theory. For moderate to high temperatures the difference between β and βQH is

β − βQH =

(
− 1

BT

∂2F

∂T∂V

)
−

(
− 1

BQH
T

∂2FQH

∂T∂V

)
,

' − 1

BT

∂2
(
F − FQH

)
∂T∂V

,
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assuming the bulk modulus does not vary strongly with temperature. Using the derivatives of F from Sections I D
and I E

β − βQH = − 1

BT

dBT
dT

(
V − V0

V0

)
−

kB

BT

〈∑(
T

ω

∂2ω

∂T∂V
− T

ω2

∂ω

∂T

∂ω

∂V
+

1

ω(V, T )

∂ω(V, T )

∂V
− 1

ω(V, T = 0)

∂ω(V, T = 0)

∂V

)〉
BZ

' − 1

BT

dBT
dT

(
V − V0

V0

)
− kB

BT

〈∑[
T

ω

∂2ω

∂T∂V
− T

ω2

∂ω

∂T

∂ω

∂V
+ T

∂

∂T

(
1

ω

∂ω

∂V

)]〉
BZ

= − 1

BT

dBT
dT

(
V − V0

V0

)
− 2kB

BT

〈∑(
T

ω

∂2ω

∂T∂V
− T

ω2

∂ω

∂T

∂ω

∂V

)〉
BZ

= − 1

BT

dBT
dT

(
V − V0

V0

)
+

2kBT

BT

〈∑(
− 1

ω

∂2ω

∂T∂V
+

1

ω2

∂ω

∂T

∂ω

∂V

)〉
BZ

, (20)

thus we have

βQH
/
β = 1 +

1

BTβ

dBT
dT

(
V − V0

V0

)
− 2kBT

BTβ

〈∑(
− 1

ω

∂2ω

∂T∂V
+

1

ω2

∂ω

∂T

∂ω

∂V

)〉
BZ

' 1− 2kBT

BTβ

〈∑(
− 1

ω

∂2ω

∂T∂V
+

1

ω2

∂ω

∂T

∂ω

∂V

)〉
BZ

, (21)

since
1

BTβ

dBT
dT

(
V − V0

V0

)
<

1

BTβ

dBT
dT

βT =

(
dBT
dT

T

)/
BT ∼ 0.1� 1 (e.g. in MgO [5]).

G. Simplifying Parameters

Introducing the mode Grüneisen parameter,

γV , −V
ω

(
∂ω

∂V

) ∣∣∣∣
T

, (22)

the thermal Grüneisen parameter (unitless),

γT , −T
ω

(
∂ω

∂T

) ∣∣∣∣
V

, (23)

and the anharmonicity parameter (unitless),

γV,T , −V T
ω

(
∂2ω

∂T∂V

)
, (24)

Eq. 21 can be rewritten as

βQH
/
β = 1− 2kB

BTβV

〈∑
(γV,T + γTγV )

〉
BZ

. (25)

Normally, we have γT ∼ O(10−1) [1] and γV ∼ O(100∼1). Thus, in highly anharmonic solids with γV,T ∼ O(1), the
anharmonicity parameter becomes the dominant term, which gives

βQH
/
β ' 1− 2kB

BTβV

〈∑
γV,T

〉
BZ

= 1− 2kB

BTβV
(3N)γ

V,T
= 1− 6kB

BTβv
γ

V,T
, (26)

where v = V/N is the volume per atom, and γ
V,T

=
1

3N

〈∑
k

3N∑
j=1

γ(j)
V,T

〉
BZ

is the average anharmonicity parameter.

An interesting and compact result from Eq. 26 is

β ' βQH +
6kB

BT v
γ

V,T
. (27)

This shows that the thermal expansion differs from that of the QHA owing to the mixed second derivative of the
phonon energy of Eq. 24. In general, thermal expansion requires the consideration of both the volume and temperature
dependence of the free energy.
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H. Why is the QHA Unreliable for Thermal Expansion?

Eq. 27 shows why the quasiharmonic model predicts a small thermal expansion coefficient when phonon frequencies
have a temperature dependence that varies with volume. Only in the limit of no temperature dependence, which
means γV,T = 0, Eq. 27 reduces to βQH = β. Here we estimate some magnitudes of these effects.

The change of internal energy is estimated as

∆U0 =
1

2
B0V0

(
∆V

V0

)2

' B0V · (0.01)2 ' 100∼1meV , (28)

which gives

BTV = B0V ' 104∼5 meV = 101∼2 eV . (29)

Thus,

6kB

BTβV
' 6× 8.617× 10−5 eV ·K−1

10−5∼−4 K−1 · 101∼2 eV
∼ O

(
10−2∼0

)
[unitless] , (30)

and in some solids, some modes are possible with 0 < γV,T ∼ O(1).
Finally, we have

βQH
/
β ∼ 1−O

(
10−2∼0

)
· O(1) . (31)

Under some circumstances, the thermal expansion coefficient can be several times larger than the quasiharmonic
prediction, which means the QHA fails to get the first-order term for thermal expansion. If the QHA accounts for the
leading term of thermal expansion, it is either because 1) the solid is not so anharmonic (γV,T is small), or 2) there is
a cancellation of positive and negative γV,T for different phonon modes despite the anharmonicity.

I. Estimate of Thermal Expansion of NaBr

To obtain these γV,T , we need the phonon frequencies on a temperature-volume (T -V ) grid to calculate the second

derivative of
∂2ω(T, V )

∂T∂V
. It is risky to perform such approximation with limited experimental data (phonon information

at only three T -V points). We developed an alternative way to obtain this mixed derivative using our richer set of
computational results that provided the phonon DOS on a 5 × 5 T -V grid for predicting the thermal expansion.
(These calculated anharmonic phonons proved reliable by comparing with the experimental results at the equilibrium
volumes at 10, 300 and 700 K.)

For ω(T, V ), the Taylor expansion to second order gives

∆ω = ω(T + ∆T, V + ∆V )− ω(T, V ) , (32)

' ∂ω

∂T
∆T +

∂ω

∂V
∆V

+
1

2

(
∂2ω

∂T 2
(∆T )2 + 2

∂2ω

∂T∂V
(∆T∆V ) +

∂2ω

∂V 2
(∆V )2

)
. (33)

The first two terms in Eq. 33, with linear shifts of frequency with ∆T and ∆V , give the shifts from anharmonicity
and quasiharmonicity. The term in (∆T )2 is beyond the anharmonicity from cubic and quartic perturbations, which
give frequency shifts linear in ∆T . We expect it to be smaller in the anharmonic effects of NaBr at constant volume
(the alternative would be exotic).

The remaining term in Eq. 33 with ∆T∆V describes how a Grüneisen parameter changes with temperature, or how
the anharmonicity changes with volume. If mode Grüneisen parameters change with temperature, the anharmonic 3-
and 4-phonon processes will have a different dependence on volume at low and high temperatures, owing to changes
in the kinematically-allowed 3- and 4-phonon processes that conserve energy and momentum. This is a change in
anharmonicity with volume.

∆ω ' ∂ω

∂T
∆T +

∂ω

∂V
∆V +

∂2ω

∂T∂V
(∆T∆V ) +

1

2

∂2ω

∂V 2
(∆V )2 . (34)
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The second term in Eq. 34, the quasiharmonic correction, is a first order term. It is expected to be larger than the
third term. However, the temperature dependence is still needed for thermal expansion, so the third term proves
important.

Therefore, we fit the phonon frequencies with

ω(T, V ) = ω0 + a ∗ T + b ∗ (V − V0) + c ∗ T ∗ (V − V0) + d ∗ (V − V0)2 , (35)

where ω and ω0 are in units of meV, T is in K, and V and V0 are in Å
3
. (The constant V0, which emphasizes the

role of volume changes, was set as the smallest volume on the T -V grid evaluated during the fitting process.) By the
least-square method, we got the following fitting parameters (units ignored):

ω(T, V ) = 13.50− 9.731× 10−4T − 0.924(V − 27)− 2.869× 10−4 · T (V − 27) + 2.554× 10−2(V − 27)2 (36)

The coefficient of determination is R2 = 0.9668, indicating Eq. 35 is a suitable choice. The derived unitless parameters
are γT ' 0.1, γV ' 1.6, γV,T ' 0.6. The relative contributions to the averaged anharmonicity parameter, γV,T , from
individual phonon modes are shown in Fig. 1.

FIG. 1. The relative contributions to the averaged anharmonicity parameter. It shows that the optical phonons
(especially LO) contribute most to the anharmonicity parameter.

We take the value of β = 3α = 3 × 60.63 × 10−6 K−1 = 182 × 10−6 K−1 [6], BT = 18.5 GPa [7] and a =
6.1376 Å (700 K) [6], which gives the volume per atom as v = a3/8 = 2.89 × 10−29 m3. So finally, due to the
dominance of γV,T , we can roughly estimate that

βQH
/
β = 1− 6kB

BTβv
γ

V,T
' 0.48 . (37)

Or by using a more rigorous relation, we have

βQH
/
β = 1− 6kB

BTβv

(
γ

V,T
+ γ

V
γ

T

)
' 0.35 . (38)

II. INELASTIC NEUTRON SCATTERING EXPERIMENTS

A. Details about the experiment

The INS measurements used a high-purity single crystal of NaBr. Crystal quality was checked by X-ray and neutron
diffraction. The INS data were acquired with the time-of-flight Wide Angular-Range Chopper Spectrometer, ARCS,
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at the Spallation Neutron Source at the Oak Ridge National Laboratory. The neutrons had an incident energy of
30 meV. The single crystal of [001] orientation was suspended in an aluminum holder, which was mounted in a closed-
cycle helium refrigerator for the 10 K measurement, and a low-background electrical resistance vacuum furnace for
measurements at 300 and 700 K. For each measurement, time-of-flight neutron data was collected from 201 rotations
of the crystal in increments of 0.5◦ about the vertical axis.

Data reduction gave the 4D scattering function S(Q, ε), where Q is the 3D wave-vector and ε is the phonon energy
(from the neutron energy loss). Measurements with an empty can were performed to evaluate the background. To
correct for nonlinearities of the ARCS instrument, offsets of the q-grid were corrected to first order by fitting a
set of 45 in situ Bragg diffractions, which were transformed to their theoretical positions in the reciprocal space
of the NaBr structure. The linear transformation matrix had only a small deviation (less than 0.02) from the
identity matrix, showing that the original data had good quality and the linear correction for q-offsets was adequate.
After subtracting the empty-can background and removing multiphonon scattering calculated with the incoherent
approximation (discussed below), the intensities from the higher Brillouin zones were folded back into an irreducible
wedge in the first Brillouin zone to obtain the spectral intensities shown in Fig. 2 in the main text.

The multiphonon scattering in the incoherent approximation [8] is given by

Sn>1(Q, ε) =

∞∑
n=2

∑
d

e−2Wd
(2Wd)

n

n!

σtotal,d

Md
An,d(ε) , (39)

where Q is the reciprocal space vector, ε is the phonon energy, and for atom d ∈ (Na,Br), σtotal,d is the total neutron
scattering cross section, Md is atomic mass, and

2Wd = 2Wd(|Q|) =
~2|Q|2

2Md

∫ ∞
0

dε
gd(ε)

ε
coth

(
ε

2kBT

)
(40)

is the Debye-Waller factor. The nth-order partial phonon spectra of atoms d and d̄, An,d and An,d̄, were calculated as

A1,d(ε) =
gd(ε)

ε

1

eε/kBT − 1
, (41)

A1,d̄(ε) =
gd̄(ε)

ε

1

eε/kBT − 1
, (42)

An,d(ε) =
1

2

(
A1,d ~An−1,d +

1

n
A1,d ~An−1,d̄ +

n− 1

n
A1,d̄ ~An−1,d

)
, (43)

An,d̄(ε) =
1

2

(
A1,d̄ ~An−1,d̄ +

1

n
A1,d̄ ~An−1,d +

n− 1

n
A1,d ~An−1,d̄

)
. (44)

Here, d̄ refers to the other atom in the unit cell. The temperature-dependent partial phonon density of states (DOS),
gd(ε), was obtained by our sTDEP method that used ab initio DFT calculations.

For NaBr, we truncated Eq. 39 at n = 8, and a global scaling factor was applied to the multiphonon scattering
function for normalization. Finally, the folded-back data was corrected for the phonon creation thermal factor.
This folding technique cancels out the polarization effects and improves the statistical quality by assessing phonon
intensities over multiple Brillouin zones. Fig. 2 shows a set of enlarged, separated figures of the scattering data along
the Γ-X and Γ-L directions.

B. Extracting the phonon DOS

Since the thermal expansion is now obtained from a free energy in which the phonon contribution was determined
by the phonon DOS, we also confirmed that the anharmonic phonon DOS at elevated temperatures agrees with the
experimentally-measured phonon DOS. This is shown in Fig. 3. Because the measurements were on a single crystal,
the phonon DOS was obtained by integration of the first Brillouin zone after folding back the inelastic neutron
scattering data from higher zones. This method is not so well established as simpler measurements on powder
samples. Fortunately the effects from alignment of scattering vectors along the polarization vectors of phonons should
be largely absent when more Brillouin zones were folded back. There are also effects from instrument resolution
function and multiple scattering in a large crystal. These effects could distort the intensities of the different peaks
in the phonon DOS, but the energies of the peaks should be reliable. These results are good enough to establish the
reliability of our anharmonic phonon calculations at elevated temperatures.
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FIG. 2. Experimental phonon dispersions of NaBr along Γ-X and Γ-L. Phonon dispersions are shown by 2D slices of
the S(Q, ε) data along the high symmetry lines of Γ-X (a-c) and Γ-L (d-f) at the temperature of 10 K (a, d), 300 K (b, e)
and 700 K (c, f).

FIG. 3. Comparison between the experimental phonon DOS extracted from the INS data and the calculated
anharmonic phonon DOS at elevated temperatures: 300 K (left) and 700 K (right).
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FIG. 4. Intermediate results for expansion coefficients of NaBr calculated with the QHA. a, The Helmholtz free
energy as a function of temperature and volume. The volume-energy data was fitted to a Birch-Murnaghan equation of state.
b, The equilibrium volumes with temperature, obtained by minimizing the free energy at each temperature.

III. AB INITIO CALCULATIONS

A. General

All DFT calculations were performed with the VASP package using a plane-wave basis set [9–12] with projector
augmented wave (PAW) pseudopotentials [13] and the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional
[14]. All calculations used a kinetic-energy cutoff of 550 meV, a 5×5×5 supercell of 250 atoms, and a 3×3×3 k-
point grid. Quasiharmonic calculations used PHONOPY [15]. The sTDEP [16–18] method was used to calculate
anharmonic phonons at elevated temperatures. The Born effective charges and dielectric constants were obtained
by DFT calculations in VASP [19]. The non-analytical term of the long-ranged electrostatics was corrected for both
quasiharmonic and anharmonic calculations [20]. The phonon self-energy was calculated with a 35×35×35 q-grid.

B. Quasiharmonic calculations

The free energy and the equilibrium volumes calculated with the QHA are shown in Fig. 4. The linear ther-
mal expansion coefficients from measurements and QHA calculations are compared in Fig. 5. We did not calculate
detailed linear thermal expansion coefficients with the stochastically-initialized temperature dependent effective po-
tential method (sTDEP) method, but we compared lattice constants at several temperatures to illustrate thermal
expansion (see Fig. 1 in the main text).
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FIG. 5. Thermal expansion coefficients of NaBr, measured and calculated by QHA. The ab initio quasiharmonic
predictions (red solid line) are compared to the experimental results [6, 21, 22]. The linear thermal expansion coefficients, α,
are a factor of four lower than experimental results.

FIG. 6. Measured and calculated phonon lineshapes at Q = [0.1, 0.2, 0.3] r.l.u. and the real part of the phonon
self-energy. a, The 1D cut of S(Q, ε) at a constant Q = [0.1, 0.2, 0.3] r.l.u. (reciprocal lattice units), showing the temperature
dependence of phonon lineshapes in NaBr. At this Q-point, the LO phonon peak has an energy decrease with temperature of
3 ∼ 4 meV. This can be attributed to the real component of the phonon self-energy as shown in (b). The intensity data were
scaled and offset for clarity. c, By nulling the third-order force constants, Φααα

NaNaBr or Φααα
NaBrBr, associated with the nearest-

neighbor degenerate triplets, where α = (x, y, z) represents the direction along the Na-Br bond, the lineshapes at this Q-point
become narrow Lorentzian peaks at 700 K and the energy decrease of the LO mode vanishes.
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FIG. 7. Measured and calculated phonon lineshapes at Q = [0.1, 0.5, 0.7] r.l.u. and the real part of the phonon
self-energy. The panels are the same quantities in the previous figure, but for Q = [0.1, 0.5, 0.7] r.l.u. It is seen again that the
LO phonon mode shifts to a lower energy at 700 K, mainly due to the cubic interactions.

C. Anharmonic calculations: sTDEP method

With harmonic forces, the instantaneous position (ui) and velocity (u̇i) of the ith atom are the sums of contributions
from 3N normal modes

ui =

3N∑
s=1

εisAis sin(ωst+ δs) , (45)

u̇i =

3N∑
s=1

εisAisωs cos(ωst+ δs) , (46)

where As is the normal mode amplitude, δs is the phase shift, ωs and εs are eigenvalue and eigenvector corresponding
to mode s.

To obtain a set of positions and velocities that correspond to a canonical ensemble, we choose the As and δs so
they are normally distributed around their mean value. Each mode s should contribute, on average, kBT/2 to the
internal energy. Then

〈Ais〉 =

√
~(2ns + 1)

2miωs
≈ 1

ωs

√
kBT

mi
, (47)

where the approximate result is in the classical limit, ~ω � kBT . The appropriate distribution of atomic positions
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and velocities are

ui =

3N∑
s=1

εis〈Ais〉
√
−2 ln ξ1 sin 2πξ2 , (48)

u̇i =

3N∑
s=1

ωsεis〈Ais〉
√
−2 ln ξ1 cos 2πξ2 , (49)

where ξn(n = 1, 2) represent a uniform distribution of random numbers between (0, 1), which are transformed to a
normal distribution using the standard Box-Muller transform [23, 24].

In practice, we performed first-principles calculations on a temperature-volume grid covering five temperatures and
five volumes. We chose the five temperatures as T = {10, 300, 450, 600, 700} K and the five volumes linearly spaced
within ±5% around the equilibrium volumes. We iterated for 3 to 5 times until the force constants were converged.

Using results from many-body theory, the phonon frequencies were obtained from the dynamical matrix for the
constants {Φij}, and then corrected by the real (∆) and imaginary (Γ) parts of the phonon self-energy. The imaginary
part of the phonon self-energy was calculated with the third-order force constants,

Γλ(Ω) =
~π
16

∑
λ′λ′′

|Φλλ′λ′′ |2
{

(nλ′ + nλ′′ + 1)

× δ(Ω− ωλ′ − ωλ′′) + (nλ′ − nλ′′) (50)

× [δ(Ω− ωλ′ + ωλ′′)− δ(Ω + ωλ′ − ωλ′′)]
}
,

where Ω(= E/~) is the probing energy. The real part was obtained by a Kramers-Kronig transformation

∆(Ω) = P
∫

1

π

Γ(ω)

ω − Ω
dω . (51)

Equation 50 is a sum over all possible three-phonon interactions, where Φλλ′λ′′ is the three-phonon matrix element
obtained from the cubic force constants Φijk by Fourier transformation, n is the Bose-Einstein thermal occupation
factor giving the number of phonons in each mode, and the delta functions conserve energy and momentum.

IV. PHONONS AWAY FROM HIGH SYMMETRY LINES

The anharmonicity and its origin with first-neighbor Na-Br bonds are not only true for phonons along the high-
symmetry lines, but for the whole Brillouin zone. Figures 6 and 7 (similar to Fig. 3 in the manuscript) show lineshapes
from experiment and computation at two arbitrary points in the Brillouin zone, along with the calculated real part
of the phonon self-energy. The thermal softening of the LO phonon modes at 700 K is seen over the Brillouin zone.
The real part of the phonon self-energy, arising from cubic anharmonicity to second order, is the main cause of these
thermal shifts and broadenings.
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