states.

There is thus no polarization state that can go
through a longitudinal and then a transverse shift
amplifier (or the contrary). In other words, as
these two shifts have no common eigenfunctions,
their eigenvalues cannot be simultaneously dis-
played.
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A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any
theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The
foundation consists of (i) a gloSsary of fundamental concepts, (ii) a theorem that delineates the overlap
between Lagrangian-based theories and metric theories; (iii) a conjecture (due to Schiff) that the weak
equivalence principle implies the Einstein equivalence principle; and (iv) a plausibility argument
supporting this conjecture for the special case of relativistic, Lagrangian-based theories.

I. INTRODUCTION

Several years ago our group initiated' a project
of constructing theoretical foundations for experi-
mental tests of gravitation theories. The results
of that project to date (largely due to Will and Ni)
and the results of a similar project being carried

out by the group of Nordtvedt at Montana State
University are summarized in several recent re-
view articles.?™ Those results have focused al-
most entirely on “metric theories of gravity” (rel-
ativistic theories that embody the Einstein equiva-
lence principle; see Sec. III below).

By January 1972, metric theories were suffi-
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ciently well understood that we began to broaden
our horizons to include nonmetric theories. The
most difficult aspect of this venture has been com-
munication. The basic concepts used in discussing
nonmetric theories in the past have been defined so
vaguely that discussions and “cross-theory analy-
ses” have been rather difficult. To remedy this
situation we have been forced, during these last
eleven months, to make more precise a number

of old concepts and to introduce many new ones.
By trial and error, we have gradually built up a
glossary of concepts that looks promising as a
foundation for analyzing nonmetric theories.

Undoubtedly we shall want to change some of our
concepts, and make others more precise, as we
proceed further. But by now our glossary is suf-
ficiently stabilized, and we have derived enough
interesting results using it, that we feel compelled
to start publishing.

This paper presents the current version of our
glossary (Secs. II-IV), and uses it to outline some
key ideas and results about gravitation theories,
both nonmetric and metric (Secs. V and VI). Sub-
sequent papers will explore some of those ideas
and results in greater depth.

Central to our current viewpoint on gravitation
theories is the following empirical fact. Only two
ways have ever been found to mesh a set of gravi-
tational laws with all the classical, special rela-
tivistic laws of physics. One way is the route of
the Einstein equivalence principle (EEP) - (i) De-
scribe gravity by one or more gravitational fields,
including a metric tensor g,,; and (ii) insist that
in the local Lorentz frames of g, all the nongrav-
itational laws take on their standard special rela-
tivistic forms. The second way of meshing is the
route of the Lagrangian - (i) Take a special rela-
tivistic Lagrangian for particles and nongravita-
tional fields, and (ii) insert gravitational fields in-
to that Lagrangian in a manner that retains gener-
al covariance. The equivalence-principle route
always leads to a metric theory. (Example: gen-
eral relativity.) The Lagrangian route always
leads to a “Lagrangian-based theory.” [Example:
Belinfante-Swihart theory (Table IV, later in this
paper).] Thus, in the future we expect most of our
attention to focus on metric theories and on La-
grangian-based theories; and in the nonmetric
case we might be able to confine attention to theo-
ries with Lagrangians.

Since metric theories are so well understood,*
it would be wonderful if one could prove that all
nonmetric, Lagrangian-based theories are defec-
tive in some sense. A conjecture due to Schiff’
points to a possible defect. Schiff’s conjecture
says® that any complete and self-consistent theory
that obeys the weak equivalence principle (WEP)

must also, unavoidably, obey the Einstein equiva-
lence principle (EEP). (See Sec. III for precise
definitions.) Since any relativistic, Lagrangian-
based theory that obeys EEP is a metric theory,
this conjecture suggests that nonmetric, relativ-
istic, Lagrangian-based theories should always
violate WEP.

The experiments of Eotvos ef al.® and Dicke et
al.,” with modifications by Braginsky et al.® (ED
experiments), are high-precision tools for testing
WEP. Hence, the Schiff conjecture suggests that,
if one has a nonmetric Lagrangian-based theory,
one should test whether it violates the ED experi-
ments. (Such tests for the Belinfante-Swihart and
Naida-Capella theories reveal violations of ED and
WEP.?)

In this paper, after presenting our glossary of
concepts (Secs. II-IV), we shall (i) derive a crite-
rion for determining whether a Lagrangian-based
theory is a metric theory (“principle of universal
coupling,” Sec. V), and (ii) discuss and make
plausible Schiff’s conjecture (Sec. VI).

II. CONCEPTS RELEVANT TO SPACETIME THEORIES

This section, together with Secs. III and IV, pre-
sents our glossary of concepts. To understand
these concepts fully, the reader should be familiar
with the foundations of differential geometry as
laid out, for example, by Trautman.!° He should
also be familiar with Chap. 4 of Anderson’s text-
book'! (cited henceforth as JLA), from which we
have borrowed many concepts. However, he
should notice that we have modified slightly some
of JLA’s concepts, and we have reexpressed some
of them in the more precise notation and terminol -
ogy of Trautman'® and of Misner, Thorne, and
Wheeler (MTW).?

The concepts introduced in this section apply to
any “spacetime theory” (see below for definition).
In Secs. III and IV we shall specialize to “gravita-
tion theories,” which are a particular type of
spacetime theory. To make our concepts clear,
we shall illustrate them using four particular
gravitation theories: the Newton-Cartan theory
(Table I), general relativity (Table II), Ni’s theo-
ry (Table III),’® and the Belinfante-Swihart theory
(Table IV).'*:15 Of these theories, general relativ-
ity and Ni’s theory are metric; the Newton-Cartan
and Belinfante-Swihart theories are nonmetric.

Mathematical representations of a theory. Two
different mathematical formalisms will be called
“different representations of the same theory” if
they produce identical predictions for the outcome
of every experiment or observation. Here by “out-
come of an experiment or observation” we mean
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TABLE I. Newton-Cartan theory.

1. Reference for this version of the theory:
Chapter 12, and especially Box 12.4 of MTWY

2. Gravitational fields.

a. Symmetric covariant derivative (affine connection).......... ... ... .. L i i i, v
b, Spatial metric. ... .. .. i i e i i e e e i i Y
c. Universal time............. et ie i ettt et t

3. Gravitational field equations:

a, Vdt=0.
b, ®(u, n)w=0,

where ® is the curvature operator formed from V; » and z are arbitrary vectors; w is any spa-
tial vector ({dt,w) =0).

c. R(v,w)=0
for every pair of spatial vectors, v,w. [Note: a,b,c guarantee the existence of the metric, y or
“s”  defined on spatial vectors only, such that

Yy v)=(Vyw) v +w- (Yy2)

for any » and for any spatial w, v.]
d. v @ nwl =w- [, n)v]

for all spatial v,w and for any u,n, where
Ju,n) p=3(R(p,n)u+R(p,u)n] .
e. Ricci=4mpdt ® dt ,
where Ricci is the Ricci tensor formed from V, and p is mass density.

4. Influence of gravity on matter:

a, Test particles move along geodesics of V, with¢ an affine parameter.

b. Each test particle carries a local irnertial frame with orthonormal, parallel-transported spatial
basis vectors (¢j * €3=0y, V,e; =0) and with e§j=d/d¢ =(tangent to geodesic world line).

c. All the nongravitational laws of physics take on their standard, Newtonian forms in every local
inertial frame,

the raw numerical data, before interpretation in on geodesics but the field equations differ signifi-
terms of theory. Any theory can be given a vari- cantly from those of Einstein; and (ii) the confor-
ety of different mathematical representations. mally transformed representation,® in which the
[Example - The Dicke-Brans-Jordan theory has scalar field produces deviations from geodesic
two “standard representations: (i) the original motion but the field equations are nearly the same
representation,'®!” in which test particles move as Einstein’s.] A theory can be regarded as the

TABLE II. General relativity theory.

1. Reference: Standard textbooks, e.g., MTW.!?
2. Gravitational field:
The metric of spacetime. .. .. ... ...ttt e g
3. Gravitational field equations:
G=81T ,
where G is the Einstein tensor formed from g, and T is the stress-energy tensor.
4. Influence of gravity on matter:

a. Test particles move along geodesics of g, with proper time 7 an affine parameter.

b. Each test particle carries a local inertial (“local Lorentz”) frame with parallel-transported, or-
thonormal basis vectors ey, and with e§ =d/d T =(tangent to geodesic world line).

c. All the nongravitational laws of physics take on their standard, special-relativistic forms in ev-
ery local inertial frame (aside from delicate points associated with “curvature coupling”; see
Chap. 16 of MTW),
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TABLE III. Ni’s “New Theory.”

1. Reference: Ni!®

2. Gravitational fields:

o

3. Gravitational field equations:
a. Background metric is flat,
Riemann(n) =0 .
b. “Meshing” of 7, ¢, y:
tiap=0,

bt gn®B=—-1,

t!a¢ﬂ"a8=0 ’

Background metric (signature +2)..........
Universal time..............covveivennny.
Scalar field. . ....... .. .ciiiiiiii i
One-form field. .. ........................
e. Physical metric............... ... i

where “” denotes covariant derivative with respect to 7, and || n*/|| is the inverse of || ny| .

c. g=f1@)n+[f2@) —f1(@) dt® dt —y ®dt -dt QY .
Here f(¢) and f,(¢) are arbitrary functions to be determined finally by experiment,
d. Field equations for ¢ and y follow from the action principle

6[ £d'=0, where £=8,; +L; ,

1

1
£6 =—'8;{ 2 Yoty ¥B1s 78 0¥ —g), ¢|e77°‘B+[f3(¢)+1][<P|at|s7l°‘612}‘/:ﬁ ;

e is a constant to be determined by experiment, £yxg=LygV—-g , and Ly is the standard Lagran-
gian density of special relativity with the metric of special relativity replaced by g.

4. Influence of gravity on matter:

Governed by action principle

5f £, dx=0,

where particle world lines and nongravitational fields are varied.

equivalence class of all its representations. Ta-
bles I-IV present particular representations for
the theories described there.

Spacetime theory. A “spacetime theory” is
any theory that possesses a mathematical repre-
sentation constructed from a 4-dimensional space-
time manifold and from geometric objects defined
on that manifold. (For the definition of “geometric
object,” see Sec. 4.13 of Trautman.'°) Henceforth
we shall restrict ourselves to spacetime theories
and to the above type of mathematical representa-
tions. The geometric objects of a particular rep-
resentation will be called its variables; the equa-
tions which the variables must satisfy will be
called the physical laws of the representation.
[Example - general relativity (Table II): The

physical laws are the Einstein field equations,
Maxwell’s equations, the Lorentz force law, etc.]
[Example - Belinfante-Swihart theory (Table IV):
The physical laws are Riemann (n)=0, and the
Euler-Lagrange equations that follow from 6 f Ldix
=0.]

Manifold mapping group (MMG). The MMG is
the group of all diffeomorphisms of the space-
time manifold onto itself. Each diffeomorphism
h, together with an initial coordinate system
x%(®), produces a new coordinate system

x*' (@) =x%h"'®). (1)

(Events are denoted by capital script letters.)
Kinematically possible trajectory (kpt). Consid-
er a given mathematical representation of a given
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TABLE IV. Belinfante-Swihart theory.

. References: Summary and analysis of the theory by Lee and Lightman“; original paper by Belinfante
and Swihart.!5

. Gravitational fields:

. Nongravitational variables:

a. Electromagnetic vector potential. ... ..v.vuiintnnrenereeneneeeosooseeosassosnsoennonenns A

b. Electromagnetic field tensor (second-rank, antisymmetriC)........cevevereerenenenenceonns H

c. World line of particle J, parametrized in an arbitrary manner...........c.coeeueueenn.. z? Ap
[in a given coordinate system, world line is x* = z? (Al

d. Velocity vector of particle J (defined along world line). ..........covvvineennnnecnnnnn. ay(ry)

e. Momentum vector of particle J (defined along world lin€)..........ccovveivnrnenennnnnn Tr(Ay)

. Gravitational field equations:

a. Metric is flat: Riemann(n)=0 .
b. Field equation for k follows from varying kg in 6 [ £d% =0, where £ is given below.

. Influence of gravity on matter:
Equations for A, H, z,, a ;, 7 ; follow from varying these quantities in [ £d% =0.
. Lagrangian density:

a. £=£G +£NG .

b, £6=—(1/16mn*B M 0P @hy g0 hyo1p+f Iapialpor) =2,
where “| ”” denotes covariant derivative with respect to 77; @ and f are constants to be determined
by experiment, and 7= det || ny,] .

c. £ng=(1/4m)GH  H, )y, —H P Ay,) ()72

+o0
W f [=myb,+(nyy —es A EE —m5,ab1640x = 2,0 ldA,
J -c0
+co
Y +K;f m by n%Bhyg6ilx — z (A ldA, .
d. Here e; and m, are the charge and rest mass of particle J; 2} = dz}/dr;; b;= (~aFa,,)1?%; K is
a constant to be determined by experiment; indices are raised and lowered with 7,g; and

THY = (1/47)(HM H\Y -3 n*"H*BH ;)

+e0
D> f abr2oilx - 2, dA, .

e. In the action principle one varies kyy, Ay, Hyy, z?()\‘,), ay(Ay), my(A;) independently; but one
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holds 7, fixed.

spacetime theory. A kpt of that representation is
any set of values for the components of all the
variables in any coordinate system. A kpt need

not satisfy the physical laws of the representation.

(Example - general relativity (Table II): A kpt is
any set of functions {g,5(%) =g5(x); Fqs(x)
==Fgo(x); 2%(7y);...} in any coordinate system,
which - if they were to satisfy the physical laws —
would represent metric, electromagnetic field,
particle world lines, etc.) (Example — Belinfante-
Swihart theory (Table IV): A kpt is any set of
functions { 1, 5(x) = Nga(x), es(x) =hga(x), A (x),
chﬂ(x) =-118a(x), z?(AJ)) a.(lx(x.f)! ’";‘()‘1)} in any co-
ordinate system.)

Dynamically possible trajectory (dpt). A dpt is

any kpt that satisfies all the physical laws of the
representation.

Covariance group of a rvepresentation. A group
§ is a covariance group of a representation if (i)
$ maps kpt of that representation into kpt; (ii) the
kpt constitute “the basis of a faithful realization
of §” (i.e., no two elements of $ produce identical
mappings of the kpt)'®; (iii) $ maps dpt into dpt.
(Example — MMG is a covariance group of each of
the representations of theories in Tables I-IV.)
(Example - Electromagnetic gauge transforma-
tions, A, -~ A, +¢ ,, are a covariance group of
the representation of Belinfante-Swihart theory
given in Table IV.) By complete covariance group
we shall mean the largest covariance group of the
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representation. By generally covariant vepresen-
tation of a theory we shall mean any representation
for which MMG is a covariance group. (An argu-
ment due to Kretschmann® shows that every
spacetime theory possesses generally covariant
representations.) By internal covariance group
we shall mean a covariance group that involves no
diffeomorphisms of spacetime onto itself. (Ex-
ample - Electromagnetic gauge transformations
are an internal covariance group.) By external
covariance group we shall mean a covariance
group that is a subgroup of MMG. The complete
covariance group of a representation need not be
the direct product of its complete (i.e., largest)
internal covariance group with its complete exter-
nal covariance group. It may also include trans-
formations that are “partially internal” and “par-
tially external” and cannot be split up. [Example —
When one formulates Newton-Cartan theory in a
Galilean coordinate representation (see the Appen-
dix, which should not be read until one has fin-
ished this entire section), one obtains a complete
covariance group described by Eqs. (A5). The
complete external covariance group consists of
(A5a) and (A5b). There is no internal covariance
group. The transformations (A5c) are mixed in-
ternal-external transformations that belong to the
complete covariance group.]

We shall use the following notation to describe
a particular element G of the covariance group,
and its effect. G consists of a diffeomorphism 2
[Eq. (1), above] and an internal transformation H:

G=(h,H). (2)

If G is an external transformation (element of
MMG), thenH must be the identity operation; if G
is an internal transformation, then# is the iden-
tity mapping; if G is a mixed internal-external
transformation, then neither # nor H is an identity.
Denote the variables of the representation (geo-
metric objects) by y, and their components at a
point @ in a coordinate system {x°} by y,(®, { x*}).
The set of functions

y4(®,{x%}), @ varying and {x°} fixed 3)

constitute a kpt. The diffeomorphism % maps this
kpt into y,(®, {x*"}), where {x®} is the coordinate
system of Eq. (1). The internal transformation H
converts y into a new geometric object,

y'=Hy. 4)
The net effect of G on the kpt (3) is
G: ya@, {x )= yi@,{x}). ®)

It is often useful to characterize G by the functions

Sya@, {21 =y4@, {5} = yath 7@, {x°})

=y:1 'cvaluated at xa (@)
_yAlevaluatedatxo‘:xa’(d’) . (6)

Note that these “changes in y” satisfy the relation
5(yA.u)((P,{x“'})=[5yA((P,{x°"})].u,, (7

where a comma denotes partial derivative, and
also the relation

8ya=(Hy) @, {x*}) = ()@, {x*}), (8)

where 2y is the geometric object obtained by
“dragging along with 2’ (see p. 86 of Trautman'©).

Of particular interest are the infinitesimal ele-
ments of a covariance group. [From them one can
generate that topologically connected component?!
of the group which contains the identity. The other
connected components, if any, are typically ob-
tained by bringing into play a discrete set of group
elements (space reflections, time inversions,
etc.).] Let G.=(h.,H.) be a one-parameter family
of elements (curve in group space parametrized by
€), with G, the identity. Denote by § the infinites-
imal generator of the diffeomorphism #,:

£=[d(h,@)/de], . . (9)

Then, to first order in €, Eq. (8) reduces to

ayA<<P,{xa}>=e{(sgyw,{x“n

+ ﬁ(Hey)A«P,{X“})Lo}’

(10)

where £, is the Lie derivative along £ (Sec. 4.15
of Trautman'?).

Equivalence classes of dpt. Two dpt are mem-
bers of the same equivalence class if one of them
is mapped into the other by some element of the
complete covariance group. (Example — When
MMG is a covariance group, all dpt that are ob-
tained from each other by coordinate transforma-
tions belong to the same equivalence class.) If a
generally covariant representation possesses no
internal covariance groups, then there is a one-
to-one correspondence between equivalence clas-
ses of dpt and the geometric, coordinate-indepen-
dent solutions of its geometric, coordinate-inde-
pendent physical laws.

Confined, absolute, and dynamical variables.
The variables of a generally covariant represen-
tation split up into three groups: “confined vari-
ables,” “absolute variables,” and “dynamical vari-
ables.” The confined variables are those which do
not constitute the basis of a faithful realization of
MMG. (Examples — All universal constants, such
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as the charge of the electron, are confined vari-
ables. The world line of a particle is not a con-
fined variable, as one sees by this procedure: (i)
Characterize the world line by the scalar field

0, if ® is not on world line;
7(®) =< proper time of particle, (11)
if ® ¢s on world line.

(ii) Verify that an element of MMG can be charac-
terized uniquely by the manner in which it maps
the set of all kinematically possible world lines
[all functions 7(x®%) that are zero everywhere ex-
cept along a curve, and are monotonic along that
curve] into each other. (iii) Thereby conclude
that a particle world line does constitute the basis
for a faithful realization of MMG, and therefore
that it is not a confined variable.) To determine
whether an unconfined variable B is absolute or
dynamical, perform the following test: Pick out
an arbitrary dpt, and let B ,(x*) be the functions
which describe the components of B for that dpt.
Then examine each equivalence class of dpt to see
whether these same functions B, appear some-
where in it. If they do, for every equivalence
class and for every choice of the arbitrary initial
dpt, then B is an absolute variable. If they do not,
for some particular choice of the initial dpt and
for some particular equivalence class, then B is
a dynamical variable. Some dynamical variables
contain absolute parts, and some dynamical and
absolute variables contain confined parts. [Ex-
ample — Belinfante-Swihart theory (Table IV): 7.,
is an absolute variable; %z .4 and all the nongravi-
tational variables are dynamical.] [Example - Ni’s
theory (Table III): 7 and ¢ are absolute variables;
¥, @, and g are dynamical. Although ¥ is dynam-
ical, it contains an absolute part —the projection
of y on dt (i.e., Y4t 3n*?). The remaining, “spa-
tial” part of Y(y +P,t gn*°dt) is fully dynamical.
Although ¢ is absolute, it contains a confined part -
its “origin,” or equivalently, its value at some
fixed fiducial event ®,. One can remove this con-
fined part from ¢ by passing from ¢ to the 1-form
field ‘it'] [Example - general relativity (Table II);
All the unconfined variables are dynamical, and
they contain no absolute parts. It is this feature
that distinguishes general relativity from almost
all other theories of gravity (see JLA'; also
Chap. 17 of MTW, where absolute variables are
called “prior geometry”).] (Example — Newton-
Cartan theory: In the representation of Table I,

¢t and y are absolute variables; V is dynamical.
As in Ni’s theory, the origin of ¢ is a confined
variable and can be split off by passing from ¢ to
dt. Although the covariant derivative V is dynam-
ical, it contains absolute parts. A dec—omposition
of V into its absolute and dynamical parts is per-

formed in the Appendix [Eq. (Ale)]. After that de-
composition the theory takes on a new mathemati-
cal representation with absolute variables B, v, D,
and dynamical variables & and V.)

Irrelevant variables. A set of variables of a
generally covariant representation is called irrel-
evant if (i) its variables are not coupled by the
physical laws to the remaining variables of the
representation, and (ii) its variables can be elim-
inated from the representation without altering the
structure of the equivalence classes of dpt and
without destroying general covariance. A variable
that is not irrelevant is called “relevant.” Some
variables contain both relevant and irrelevant
parts. (Example — The gauge of the electromagnet-
ic vector potential is irrelevant. So is any other
variable that can be forced to take on any desired
set of values by imposing an appropriate internal
covariance transformation.) [Example —In Ni’s
theory (Table IV) and the Newton-Cartan theory
(Table I) the origin of universal time ¢ is an irrel-
evant variable.]

Fully veduced, generally covariant vepresenta-
tion. A generally covariant representation is
called “fully reduced” if (i) it contains no irrele-
vant variables, (ii) its dynamical variables con-
tain no absolute parts, and (iii) its dynamical and
absolute variables contain no confined parts. [Ex-
ample — Newton-Cartan theory: The representa-
tion of Table I is generally covariant, but not fully
reduced. To reduce it one must follow the proce-
dure of the Appendix: (i) Remove the irrelevant
origin of ¢ by passing from ¢ to 8=d¢; (ii) split V
into its absolute and dynamical parts. The result-
ing representation is not quite fully reduced be-
cause it possesses the internal covariance trans-
formation (A3’a) with an associated, irrelevant
“gauge arbitrariness” in D and . When one re-
moves that irrelevance by fixing the “gauge” once
and for all (e.g., by requiring, for an island uni-
verse, that {§,}=0 in any Galilean frame where
the total 3-momentum vanishes), then one obtains
a fully reduced representation.]

Boundary conditions, priorv geometric con-
straints, decomposition equations, and dynamical
laws. In a given mathematical representation of
a given theory, the physical laws break up into
four sets: (i) boundary conditions — those laws
which involve only confined variables; (ii) prior
geometric constraints® - those which involve ab-
solute variables and possibly also confined vari-
ables, but not dynamical variables; (iii) decom-
position equations —those which express a dynam-
ical variable algebraically in terms of other vari-
ables; (iv) dynamical laws - all others. [Ex-
ample — Ni’s theory (Table III): Equations (3a)
and (3b) are prior geometric constraints; Eq. (3c)
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is a decomposition equation; and the equations
that follow from the variational principle are all
dynamical. If one augments the theory by cosmo-
logical demands that y and ¢ go to zero at spatial
infinity, those demands are boundary conditions. ]
[Example - general relativity (Table II): All phys-
ical laws are dynamical.] [Example - Belinfante-
Swihart theory (Table IV): Riemann (n)=0 is a
prior geometric constraint; the equations obtained
from the variational principle are dynamical.]
[Example - Newton-Cartan theory (Table I): In
the mathematical formulation of Table I, Egs.
(3a)=(3d) are all dynamical laws. One has the
feeling, however, that they ought not to be dynam-
ical, because they involve only gravitational
fields; they make no reference to any source of
gravity. Only (3e) contains a source, so only it
“ought to be” dynamical. The failure of one’s
“ought-to” intuition results from one’s failure to
split V up into its absolute and dynamical pieces.
Such a split (see Appendix) results in a new math-
ematical formulation of the theory, with just one
dynamical gravitational law: (A1lf), which is
equivalent to (3e) of Table I. Of the other gravi-
tational equations in the new formulation,
(Ala)-(Ald) are prior geometric constraints, and
(Ale) is a decomposition equation. ]

Symmetry group. Let G be an element of the
complete covariance group of a representation.
Examine the change produced by G in every vari-
able B that (i) is absolute, and (ii) has had all ir-
relevant, confined parts removed from itself. If

5B ,(@,{x*'})=0 at all ® and for
all coordinate systems {x*'}

(12)

for every such B, then G is called a symmetry
transformation. Any group of symmetry transfor-
mations is called a symmetry group; the largest
group of symmetry transformations is called the
complete symmetry group of the representation.
[Note: That component of the complete symmetry
group which is topologically connected to the iden-
tity is generated by infinitesimal transformations.
One can find all the infinitesimal generators by
solving Egs. (10) and (12) for £, and for (dH./
de). -o.] [Another note: If the absolute variables
B are all tensor or affine-connection fields, then
5 B are all tensor fields, so

(6B, =0 for all @ in one coordinate system)

= (6 B, =0 for all ® in every coordinate
system). (13)

Hence, in this case one can confine attention to

any desired, special coordinate system when test-
ing for symmetry transformations.] [Example -
Belinfante-Swihart theory (Table IV): The com-
plete symmetry group consists of the Poincaré
group (inhomogenecus Lorentz transformations)
together with the electromagnetic gauge transfor-
mations. One proves this most easily in a global
Lorentz frame of n; one can restrict calculations
to this frame because the absolute variable 7 is a
tensor.] [Example — Ni’s theory (Table III): Sym-
metry transformations are analyzed most easily
in a coordinate system where x°=¢ = (universal
time), and 7, has the Minkowski form. Any
symmetry transformation must leave 87,4 =05t
=6(n® Bt.a ¥g)=0. Thus, the symmetry transfor-
mations are (i) electromagnetic gauge transfor-
mations; (ii) spacetime translations, x* =x% +a®
with a® a constant; (iii) time-independent spatial
rotations, x° =x°and x’ = R**x* with |R™| a
rotation matrix; (iv) spatial reflections.] [Ex-
ample — general relativity (Table II): There are
no absolute variables, so the complete covariance
group and the complete symmetry group are iden-
tical; they are the MMG plus electromagnetic
gauge transformations.] (Example — Newton-Car-
tan theory: See Appendix.) An external symmetry
group is a symmetry group that is a subgroup of
MMG. An internal symmetry group is a symmetry
group that involves no diffeomorphisms of space-
time onto itself. The complete symmetry group
need not be the direct product of the external sym-
metries and the internal symmetries; it may also
include symmetries that are partially internal and
partially external and cannot be split up. [Ex-
ample — Newton-Cartan theory in the representa-
tion of the Appendix: Transformations (A5c) are
partially internal and partially external.]

III. GRAVITATION THEORIES AND
EQUIVALENCE PRINCIPLES

We now turn from general spacetime theories
to the special case of gravitation theories. We
cannot discuss gravitation theories without making
somewhat precise the distinction between gravita-
tional phenomena and nongravitational phenomena.
There seem to be a variety of ways in which one
might make this distinction. Somewhat arbitrari-
ly, but after considerable thought, we have chosen
to regard as “gravitational” those phenomena
which either are absolute or “go away” as the
amount of mass-energy in the experimental labo-
ratory decreases. In other words, gravitational
phenomena are either prior geometric effects or
effects generated by mass-energy. This means
that the flat background metric n of Belinfante-
Swihart theory is a gravitational field; the metric
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of general relativity is a gravitational field; but
the torsion of Cartan’s modified general relativi-
ty,2® which is generated by spin rather than by
mass-energy, is not a gravitational field.

We try to make the above statements more pre-
cise by introducing the following concepts.

Local test experiment. A “local test experi-
ment” is any experiment, performed anywhere in
spacetime, in the following manner. A shield is
set up around the experimental laboratory. When
analyzed using the concepts and experiments of
special relativity, this shield must have arbitrar-
ily small mass-energy and must be impermeable
to electromagnetic fields, to neutrino fields, and
to real (as opposed to virtual) particles. The ex-
periment is performed, with freely falling appara-
tus, in the center of the shielded laboratory, in a
region so small that inhomogeneities in all exter-
nal fields are unimportant. One makes sure that
external inhomogeneities are unimportant by per-
forming a sequence of experiments of successive-
ly smaller size (with size of shield and external
conditions unchanged), until the experimental re-
sult approaches a constant value asymptotically.
(Examples — The experiment might be a local mea-
surement of the electromagnetic fine-structure
constant, or a Cavendish experiment with two lead
spheres, or a series of Cavendish experiments in-
volving lead spheres and small black holes.)

Local, nongravitational, test expeviment. A
“local, nongravitational test experiment” is a lo-
cal test experiment with these properties: (i)
When analyzed in the center-of-mass Galilean
frame, using the Newtonian theory of gravity, and
using all forms of special relativistic mass-ener-
gy as sources for the Newtonian potential &, the
matter and fields inside the shield must produce
a ¢ with

|® (at any point inside shield)

—& (at any point on shield)|<1.

(ii) When the experiment is repeated, with succes-
sively smaller mass-energies inside the shield
(as deduced using special relativity theory) — but
leaving unchanged the characteristic sizes, intrin-
sic angular momenta, velocities, and charges
(electric, baryonic, leptonic, etc.) of its various
parts — the experimental result does not change.
(Examples: A measurement of the electromagnet-
ic fine-structure constant is a local, nongravita-
tional test experiment; a Cavendish experiment is
not.)

Gravitation theory. A “gravitation theory,” or
“theory of gravity,” is any space-time theory
which correctly predicts Kepler’s laws for a bina-
ry star system that (i) is isolated in interstellar

space (“local test experiment”); (ii) consists of
two “normal stars” (stars with |®|< 1 throughout
their interiors); and (iii) has periastron p large
compared to the stellar radii, p>R. The theory’s
predictions must not deviate from Kepler’s laws
by fractional amounts exceeding the larger of

|® | e and p/R. (Note: To agree with experiment
in the solar system, the theory will have to repro-
duce Kepler much more accurately than this.)
(Examples — The theories in Tables I-IV are all
gravitation theories.)

In the absence of gravity. The phrase “in the
absence of gravity” means ‘“when analyzing any
local, nongravitational test experiment for which
the shield is spherical, has arbitrarily large radi-
us, and is surrounded by a spherically symmetric
sea of matter.” ‘“To turn off gravity” means “to
pass from a generic situation to a situation where
gravity is absent.” “To turn on gravity” means
“to pass from a situation where gravity is absent
to a generic situation.”

Gravitational field. In a given representation of
a given gravitation theory, any unconfined, rele-
vant variable B is a “gravitational field” if, in the
absence of gravity, it reduces to a constant, or to
an absolute variable, or to an irrelevant variable.
In particular, every absolute, relevant variable
is a gravitational field. [Example - general rela-
tivity (Table II): For local, nongravitational test
experiments, analyzed using Fermi-normal coor-
dinates, one gets the same result whether one uses
the correct g or one replaces it by a flat Minkow-
ski metric 7 (absolute variable). Thus g is a
gravitational field.] [Example - Newton-Cartan
theory (Table I): ¢ and y are already absolute, so
they are gravitational fields; V can be replaced
by the Riemann-flat D of the Appendix without af-
fecting local, nongravitational experiments, so it
is also a gravitational field.] (Example — Cartan’s
modification of general relativity, with torsion®3:
The torsion is generated by spin. Therefore, it
must remain a dynamical variable in analyses of
local, nongravitational test experiments. It is not
a gravitational field.)

Dicke’s* weak equivalence principle (WEP).%
The weak equivalence principle states: If an un-
charged test body is placed at an initial event in
spacetime, and is given an initial velocity there,
then its subsequent world line will be independent
of its internal structure and composition. Here
by “uncharged test body” is meant an object (i)
that is shielded, in the sense used above in defin-
ing “local test experiments”; (ii) that has negligi-
ble self-gravitational energy, when analyzed using
Newtonian theory; (iii) that is small enough in size
so its coupling (via spin and multipole moments)
to inhomogeneities of external fields can be ig-
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nored. These constraints guarantee that any test
of WEP is a local, nongravitational test experi-
ment.

WEP is called “universality of free fall” by
MTW,? and is called “equality of passive and in-
ertial masses” by Bondi.2®

The experiments of EStvds ef al.,® Dicke ef al.,”
and Braginsky ef al.® are direct tests of WEP.
Braginsky, whose experiment is the most recent,
reports that the relative acceleration of an alumi-
num test body and a platinum test body placed in
the sun’s gravitational field at the location of the
earth’s orbit is

(relative acceleration)<0.9 x10™2(GM_ /7 owit*)
=0.5%10"'2 ¢cm/sec?
(95% confidence).

If WEP is correct, then the world lines of test
bodies are a preferred family of curves (without
parametrization) filling spacetime — with a single
unique curve passing in each given direction
through each given event. But WEP does notf guar-
antee that these curves can be regarded as geode-
sics of the spacetime manifold; only if these
curves have certain special properties can they
be geodesics.?”

Einstein equivalence principle (EEP). The Ein-
stein equivalence principle states that (i) WEP is
valid, and (ii) the outcome of any local, nongravi-
tational test experiment is independent of where
and when in the universe it is performed, and in-
dependent of the velocity of the (freely falling) ap-
paratus. (Example — Dimensionless ratios of non-
gravitational physical constants must be indepen-
dent of location, time, and velocity.) The experi-
mental evidence supporting EEP is reviewed in
Secs. 38.5 and 38.6 of MTW. 2

Dicke’s*! strvong equivalence principle (SEP).
SEP states that (i) WEP is valid, and (ii) the out-
come of any local test experiment — gravitational
or nongravitational - is independent of where and
when in the universe it is performed, and indepen-
dent of the velocity of the (freely falling) appara-
tus. (Example — The Dicke-Brans-Jordan theory,
with its variable “gravitational constant” as mea-
sured by Cavendish experiments, satisfies EEP
but violates SEP.)

Two types of effects can lead to a breakdown of
SEP: “preferred-location effects” and “preferred-
frame effects.” Perform a local test experiment,
gravitational or nongravitational. If the experi-
mental result depends on the location of the freely
falling experimenter, but not on his velocity there,
the phenomenon being measured is called a pre-
ferred-location effect. If it depends on the velocity
of the experimenter, it is called a preferred-

frame effect.?® [Examples — A cosmological time
variation in the “gravitational constant” (as mea-
sured by Cavendish experiments) is a preferred-
location effect. Anomalies in the earth’s tides
and rotation rate due to the orbital motion of the
earth around the sun and the sun through the gal-
axy?® are preferred-frame effects.]

A theory of gravity obeys SEP if and only if it
obeys EEP, and it possesses no preferred-frame
or preferred-location effects.

Any theory for which the complete external sym-
metry group excludes boosts will presumably ex-
hibit preferred-frame effects. But preferred-
frame effects can also show up when boosts are in
the symmetry group. (Example — The vector-ten-
sor theory of Nordtvedt, Hellings, and Will*® ex-
hibits preferred-frame effects but possesses MMG
as a symmetry group.) For further discussion
see “metric theory of gravity,” below.

IV. PROPERTIES AND CLASSES
OF GRAVITATION THEORIES

Completeness of a theory. A gravitation theory
is “complete” if it makes a definite prediction
(not necessarily the correct prediction) for the
outcome of any experiment that current technology
is capable of performing. (Standard quantum-
mechanical limitations on the definiteness of the
prediction are allowed.) To be complete, the the-
ory must predict results for nongravitational ex-
periments as well as for gravitational experiments.
Of course, it can do so only if it meshes with and
incorporates (perhaps in modified form) all the
nongravitational laws of physics. If a theory is
complete so far as all “classical” experiments
are concerned, but has not yet been meshed with
the quantum-mechanical laws of physics, we shall
call it classically complete.

Self-consistency of a theory. A gravitation theo-
ry is “self-consistent” if its prediction for the out-
come of every experiment is unique —i.e., if, when
one calculates the prediction by different methods,
one always gets the same result.

Reference 2 discusses completeness and self-
consistency in greater detail, and gives examples
of incomplete theories and self-inconsistent theo-
ries.

Relativistic theory of gravity. A theory of grav-
ity is “relativistic” if it possesses a representa-
tion (“relativistic representation”) in which, in
the absence of gravity, the physical laws reduce
to the standard laws of special relativity. (Ex-
amples - General relativity, Ni’s theory, and the
Belinfante-Swihart theory are relativistic; the
Newton-Cartan theory is not, nor is Cartan’s tor-
sion-endowed modification of general relativity.??)
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Metric theory of gravity. By “metric theory”
we mean any theory that possesses a mathematical
representation (“metric representation”) in which
(i) spacetime is endowed with a metric; (ii) the
world lines of test bodies are the geodesics of
that metric; and (iii) EEP is satisfied, with the
nongravitational laws in any freely falling frame
reducing to the laws of special relativity.?® Any
theory or representation that is not metric will
be called nonmetric. [Examples — General relativ-
ity and Ni’s theory are metric theories, and the
representations given in Tables II and III are met-
ric; the Belinfante-Swihart theory is nonmetric,!*
but can be made metric by suitable modifica-
tions.!*'3° The Newton-Cartan theory is nonmet-
ric. The Dicke-Brans-Jordan theory is metric;
the representation of Ref. 16 is a metric repre-
sentation; the representation of Ref. 18 (“confor-
mally transformed representation”; “rubber meter
sticks”) is nonmetric. ]

In any metric theory, the metric that enters in-
to EEP is called the “physical meltric.” All other
gravitational fields are called “auxiliary gravita-
tional fields.” Relevant auxiliary scalar fields
typically produce preferred-location effects; other
relevant auxiliary gravitational fields (vector,
tensor, etc.) typically produce preferred-frame
effects. This is true independently of whether or
not the auxiliary fields are absolute variables or
are dynamical - i.e., independently of whether the
complete external symmetry group is MMG or is
more restrictive.

Clearly, every metric theory is relativistic,
but relativistic theories need not be metric [ex-
ample: the Belinfante-Swihart theory]. Ni®' has
given a partial catalog of metric theories. Will
and Nordtvedt® have developed a “parametrized
post-Newtonian formalism” for comparing metric
theories with each other and with experiment.

Prior geometric theories. Any gravitation theo-
ry will be called a “prior geometric theory” if it
possesses a fully reduced, generally covariant
representation that contains absolute variables.
(Examples — The Newton-Cartan theory, Ni’s the-
ory, and the Belinfante-Swihart theory are prior
geometric; general relativity and the Dicke-
Brans-Jordan theory are not.)

Loventz-symmelric vepresentations and theo-
ries. A generally covariant representation is
called “Lorentz symmetric” if its complete exter-
nal symmetry group is the Poincaré group — with
or without inversions and time reversal. We sus-
pect that, for any theory, all fully reduced, gen-
erally covariant representations must have the
same complete external symmetry group. As-
suming so, we define a theory to be “Lorentz sym-
metric” if its fully reduced, generally covariant

representations are Lorentz symmetric. (Ex-
ample — General relativity is not Lorentz symmet-
ric; the complete external symmetry group of its
fully reduced, standard representation is too big -
it is MMG rather than Poincaré.) (Example —Ni’s
theory is not Lorentz symmetric; as with the New-
ton-Cartan theory, the complete external symme-
try group is too small.) (Example — Belinfante-
Swihart theory is Lorentz symmetric.)

Elsewhere in the literature one sometimes finds
Lorentz-symmetric theories called “Lorentz-in-
variant theories” or “flat-space theories.”

Lagrangian-based vepresentations and theovries.
A generally covariant representation of a space-
time theory is called Lagrangian-based if (i) there
exists an action principle that is extremized with
respect to variations of all dynamical variables
but not with respect to variations of absolute or
confined variables, and (ii) from the action prin-
ciple follow all the dynamical laws but none of the
other physical laws. The issue of whether the
other physical laws (boundary conditions, decom-
position equations, and prior geometric con-
straints) are imposed before the variation or
afterwards does not affect the issue of whether
the representation is Lagrangian-based. A theory
is called Lagrangian-based if it possesses a gen-
erally covariant, Lagrangian-based representa-
tion. (Examples — General relativity, Ni’s theory,
and the Belinfante-Swihart theory are all Lagran-
gian-based.)

The Lagrangian density £ of a Lagrangian-based
representation (which appears in the action prin-
ciple in the form 6f£d “x=0) can be split up into
two parts: £=£;+Ly;. The gravitational part
£ is the largest part that contains only gravita-
tional fields. The nongravitational part £; is the
rest.

V. UNIVERSAL COUPLING

We turn attention, now, from our glossary of
concepts to some applications. We begin in this
section by analyzing the overlap between metric
theories and relativistic, Lagrangian-based theo-
ries.

As motivation for the analysis, consider any
relativistic representation of a relativistic theory
of gravity. In the absence of gravity that repre-
sentation reduces to special relativity — so, in
particular, it possesses a flat Minkowski metric
Nys- BY continuity one expects the representation
to possess, in the presence of gravity, at least
one second-rank, symmetric tensor gravitational
field ¢, that reduces to 7,5 as gravity is turned
off. Indeed, this is the case for all relativistic
theories with which we are familiar. (Example -



3574 KIP S. THORNE, DAVID L. LEE, AND ALAN P. LIGHTMAN 7

general relativity: The curved-space metric g4g
reduces to 7, When gravity is turned off.) (Ex-
ample — Ni’s theory: There are a variety of sec-
ond-rank, symmetric tensor gravitational fields
that reduce to 1,5. They include the flat back-
ground metric 7,5, the physical metric g,5, any
tensor field of the form [ 1+ f(¢)ln,s, where f(¢)
is an arbitrary function with £(0)=0, etc.) [Ex-
ample — Belinfante-Swihart theory: 7,5, Mas +%qss
Ns(l+3h,*) =1Th,*h,® all reduce to 1,5 when
gravity is turned off.f

Next consider any Lagrangian-based, velativis-
tic theory. Being relativistic, it must possess a
generally covariant, Lagrangian-based represen-
tation in which, as gravity is turned off, the non-
gravitational part of the Lagrangian £y ap-
proaches the total Lagrangian of special relativity.
Adopt that representation. Then, in the presence
of gravity £5g Will presumably contain at least one
second-rank, symmetric, tensor gravitational
field ¢, that reduces to 7,5 as gravity is turned
off. Roughly speaking, if £y; contains precisely
one such ¥, and contains no other gravitational
fields, then the theory is said to be “universally
coupled.””33

More precisely, we say that a Lagrangian-based,
relativistic theory is universally coupled if it pos-
sesses a representation (“universally coupled rep-
resentation”) with the following properties: (i)
The representation is generally covariant and La-
grangian-based. (ii) £y contains precisely one
gravitational field, and that field is a second-rank,
symmetric tensor ., with signature +2 through-
out spacetime. (iii) In the limit as gravity is
turned off y g becomes a Riemann-flat second-
rank, symmetric tensor field 7n,5; and whenever
Yqp is replaced by such an 7,5, £5; becomes the
total Lagrangian of special relativity. (iv) The
prediction for the result of any local, nongravita-
tional experiment anywhere in the universe is un-
changed when, throughout the laboratory, one re-
places . by a Riemann-flat second-rank, sym-
metric tensor.

The following theorem reveals the key role of
universal coupling as a link between Lagrangian-
based theories and metric theories: Consider all
Lagrangian-based, velativistic theovies of gravity.
Every such theory that is universally coupled is a
metric theory; and, conversely, every metric
theory in this class is universally coupled.

Proof: Let ¥ be a Lagrangian-based, relativis-
tic, universally coupled theory. Adopt a univer-
sally coupled representation. Use that represen-
tation to analyze any local, nongravitational test
experiment anywhere in spacetime. Use the
mathematical tools of Riemannian geometry,
treating the unique gravitational field ¥, that ap-

pears in £5¢ as a metric tensor. In particular,
introduce a Fermi-normal coordinate system (g
=7ps I'“gy =0 at the center of mass of the labora-
tory). Condition (iv) for universal coupling guar-
antees that the predictions of the representation
will be unchanged if we replace .5 by 1,5
throughout the laboratory. Do so. Then condition
(iii) for universal coupling guarantees that £y is
the total Lagrangian of special relativity. The dy-
namical laws that follow from

5 f(£G +8g)x=0

by varying all nongravitational variables also fol-
low from

5f,cmd4x=o;

in this representation and coordinate system they
are the laws of special relativity. Thus, the out-
come of the local, nongravitational test experi-
ment is governed by the standard laws of special
relativity, irrespective of the location and velocity
of the apparatus. This guarantees that theory ¥ is
a metric theory.

Proof of converse: Let  be a Lagrangian-based,
metric theory. Adopt a Lagrangian-based, metric
representation. Since all unconfined, nongravita-
tional variables are dynamical, they must all be
varied in f £d*x=0. Moreover, since they appear
in £y but not in £;, their Euler-Lagrange equa-
tions are obtained equally well from

5f£md4x=o.

Call those Euler-Lagrange equations (obtained by
varying all unconfined, nongravitational variables
in 6 f £xcd *x =0) the “nongravitational laws.” Let
a freely falling observer anywhere in spacetime,
with any velocity, perform a local, nongravitation-
al test experiment. Analyze that experiment in a
local Lorentz frame of the physical metric g,z us-
ing the above nongravitational laws. Because the
theory is metric, the predictions must be the same
as those of special relativity. Hence, the nongrav-
itational laws — in any local Lorentz frame of g,z
anywhere in the universe — must reduce to the laws
of special relativity. This is possible only if (i)
those laws — and hence also £yg — contain no refer-
ence to any gravitational field except g,;,%* and

(ii) £yx¢ is some version of the total special rela-
tivistic Lagrangian, with 7, replaced by g, z.
These properties of £4;, plus the definition of
“metric theory,” guarantee directly that the four
conditions for universal coupling are satisfied.
Hence, theory $ is universally coupled. QED.
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VI. SCHIFF’S CONJECTURE

Schiff’s conjecture® states that any complete
and self-consistent gravitation theory that obeys
WEP must also, unavoidably, obey EEP.

General relativity is an example. It endows
spacetime with a metric; it obeys WEP by pre-
dicting that all uncharged test bodies fall along
geodesics of that metric, with each geodesic world
line determined uniquely by an initial event and an
initial velocity; it achieves completeness by de-
manding that in every local, freely falling frame
the nongravitational laws of physics take on their
standard special relativistic forms; and by this
method of achieving completeness, it obeys EEP.

The Newton-Cartan theory is another example.

It was complete and self-consistent within the
framework of nineteenth century technology. It
endows spacetime with an affine connection; it
obeys WEP by predicting that all uncharged test
bodies fall along geodesics of that affine connec-
tion, with each geodesic world line determined
uniquely by an initial event and an initial velocity;
it achieves completeness by demanding that in
every local, freely falling frame the laws of phys-
ics take on their standard nongravitational New-
tonian form; and by this method of achieving com-
pleteness, it obeys EEP.

Before accepting Schiff’s conjecture as plausible,
one should search the literature for a counterex-
ample —i.e., for a theory of gravity which some-
how achieves completeness, and somehow obeys
WEP, but fails to obey EEP. Several Lagrangian-
based theories which one finds in the literature
might conceivably be counterexamples, but they
have not been analyzed with sufficient care to al-
low any firm conclusion. Subsequent papers®:!4
will show that the most likely counterexample,
Belinfante-Swihart theory, actually fails to satisfy
WEP, violates the ED experimental results, and
is thus not a counterexample at all.

One can make Schiff’s conjecture seem very
plausible within the framework of relativistic, La-
grangian-based theories (the case of greatest in-
terest; see Sec. I) by the following line of argu-
ment.3

Consider a Lagrangian-based, relativistic theo-
ry, and ask what constraints WEP places on the
Lagrangian. WEP probably forces £y¢ to involve
one and only one gravitational field (and that field
must, of course, be a second-rank symmetric ten-
sor g, g which reduces to 7,4 far from all gravi-
tating bodies). If £y; were to involve, in addition
some other gravitational field ¢, then to satisfy
WEP g, and ¢ would have to conspire to produce
identically the same gravitational accelerations
on a test body made largely of rest mass, as on a

td

body made largely of electromagnetic energy, as
on a body made largely of internal kinetic energy,
as on a body made largely of nuclear binding ener-
gy, as on a body made largely of ... . This seems
implausible, unless g, and ¢ appear everywhere
in £yg in the same “mutually coupled” form

f (@) gqp —in which case one can absorb f(¢) into
&g+p and end up with just one gravitational field in
£ng. Thus, it seems likely that WEP forces £y¢g
to involve only g,g. This means that the theory is
universally coupled — and, hence, by the theorem
of Sec. V, it is a metric theory.

This argument convinces us that Schiff’s conjec-
ture is probably correct, when one restricts atten-
tion to Lagrangian-based, relativistic theories.
And it is hard to see how the conjecture could fail
in other types of theories.

A formal proof of Schiff’s conjecture for a more
limited class of theories will be given in a subse-
quent paper.®

APPENDIX: ABSOLUTE AND DYNAMICAL FIELDS
IN NEWTON-CARTAN THEORY

In order to separate the absolute gravitational
fields of Newton-Cartan theory from the dynamical
fields, one must change mathematical representa-
tions. In place of the representation given in Ta-
ble I, one can adopt the following.

1. Gravitational fields.

a. Symmetric covariant derivatives (two of
them): D and V.

b. Scalar gravitational field: &.

c. Spatial metric [deﬁned on vectors w such that
(Bw)=0]: y.

d. Universal 1-form: g.

(Note: t has been replaced by B in order to remove
from the theory the “irrelevant” choice of origin
of universal time; see “irrelevant variables” in
Sec. TA. D and & will turn out to be absolute and
dynamical parts of V; see below.)

2. Gravitational field equations.

a. B is perfect: dg=0. (Ala)
b. B is covariantly constant: DB=0. (Alb)
c. D is flat: Riemann (D)=0. (Alc)

d. Compatibility of D and y:

D,(v-w)=(D, v) w+v - (D, w) for any vector n, and
for any spatial vectors v, w. (Ald)

e. Decomposition of V:

V=D+A®B®pB, where A is the spatial vector
“dual” to d®: (d®,w)=A-w for all spatial w.

(Ale)
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f. Field equation for &:

D - A =(divergence of A) =4mp. (A1f)

3. Influence of gravity on matter. Same as in
part 4 of Table I where ¢ is any scalar field such
that g =dt.

To_prave that this and the formalism given in
Table I are different mathematical representations
of the same theory, we can show that they become
identical in Galilean coordinate frames. The re-
duction of the formalism of Table I to a Galilean
frame is performed in Exercise 12.6 of MTW.*?
The reduction of the above formalism proceeds as
follows: (i) Let ¢ be any particular scalar field
such that B=dt. (ii) At some particular event in
spacetime plck a set of basis vectors {e } such
that (a) e,, e,, e; are spatial, (8,e;»=0, and or-
thonormal, e, -e,=5;,; (b) ¢, is not spatial, (B, e,)
#0. (iii) From each vector e, construct a vector
field on all of spacetime by parallel transport
with D. The resulting field is unique because D is
flat; and it has De, =0. Hence, the commutators
vanish:

[ﬁa:gs]=2a_€s'_Ds€a=0-

This guarantees the existence of a coordinate sys-
tem { x°} in which e, =8/8x*. (iv) The condition
(valid in any coordinate frame) (dx°, e;) =0, when
compared with (dt, ¢;) =0, guarantees that the sur-
faces of constant x° and constant ¢ are identical,
i.e., t=f(x°). Moreover, because the connection
coefficients of D vanish in this coordinate frame,

{ gv} =(dx % Dyep) =0,

the condition Ddt =0 becomes 8zt/ax “3x 8=0; in
particular, 8%#/8x%x°=0, so {= ax °+b for some
constants a and b. Renormalize x° so t=x° (v)
In the resulting coordinate frame B3, y, and A have
components - -

Bo=1, B;=0, 75r=04,
A°=0, A'=8%/ax’;

(A2a)

(A2b)

so the field equation for & is Poisson’s equation

9%d

oxlox? =4mp; (A2c)

and the connection coefficients of V are I'*g,
=Aat' Bt,}" i.e.,

ad

i 2=
roo"ax.”

all other I‘°‘57 vanish. (A2d)
This Galilean coordinate version of the above
formalism is identical to the Galilean coordinate

version of the formalism of Table I, as given in

Chap. 12 of MTW." Thus, the two formalisms are
different mathematical representations of the same
theory.

In the above formalism it is easy to verify that
D, B, and y are absolute gravitational fields,
wh11e ® is a dynamical gravitational field. In fact,
D, B, and y are the absolute parts of V; & is its
‘dynamical part; Eqs. (Ala)-(Ald) are “the prior
geometric constraints of the theory; Eq. (Ale) is
the decomposition of V into its absolute and dynam-
ical parts; and Eq. (A1lf) is the dynamical field
equation for &.

The covariance group for the above mathematical
representation of Newton-Cartan theory is slightly
larger than that for the representation of Table I.
For Table I the covariance group is MMG. For the
above representation it is the direct product of
MMG with a group of internal covariance transfor-
mations. In a Galilean frame the internal trans-
formations are

{ojo} = { ojo} {ojo} ra'(B=a'@),

®-&'=% -a(t)x’ +constant, (A3)

all other variables, including I'*g,,

left unchanged.

In coordinate-free form the internal transforma-
tions are

o

~D'-D+a®B®p,

(A3a)
$-d'=% -0

’

where a is any vector field which is covariantly
constant in the surfaces of g,

Dya=V,a=0 for all spatial vectors w;
(A3'D)

and where b is any scalar field such that

(db,w)=aw for all spatial vectors w .
(A3’c)

The complete symmetry group for the above
mathematical representation of Newton-Cartan
theory is best analyzed in a Galilean coordinate
system. [Because the absolute objects are all ten-
sors or affine connections, one can restrict atten-
tion to a single coordinate system; see Eq. (13)
and associated discussion in the text.] The sym-
metry transformations are those which leave

Sy,k=33a=8{°‘}=o. (A9)
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Clearly, the symmetry transformations include
(i) spacetime translations
x"‘-—x“'=x°‘+c"‘, (A5a)
where c¢® are constants, and (ii) spatial rotations
x'~x? =RI*x* (A5Db)

|IR?*|| a constant rotation matrix. They also in-
clude (iii) the combination of an arbitrary time-
dependent spatial translation with a carefully
matched internal covariance transformation

x?~x?"=x7+c'(t), where ¢’ are arbitrary

functions of ¢,

; it i ‘ (A5c)
JL_) 7 _) 7 +3 ()
{0 0} {0 0} {00} ( where ¢/ = d;tc: .

o-dT=0 -’ S

Note that these symmetry transformations are
precisely the transformations that lead from one
Galilean coordinate system to another (cf. Sec.
12.3 of MTW??),
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We show that the Belinfante-Swihart (BS) theory can be reformulated in a representation in which
uncharged matter responds to gravity in the same way as in metric theories. The BS gravitationally
modified Maxwell equations can also be put into metric form to first order in the deviations of the
physical metric from flat space, but not to second order; consequently, the theory is nonmetric except
in first order. We also show that the theory violates the high-precision Eotvos-Dicke experiment, but
cannot be ruled out by the gravitational precession of gyroscopes.

L. INTRODUCTION AND SUMMARY

This paper analyzes the most complete and ex-
tensively developed nonmetric theory that exists:
the 1957 theory of Belinfante and Swihart.*™®
Belinfante and Swihart (BS) constructed their the-
ory as a Lorentz —symmetric® linear field theory
which would be easily quantized. However, as we
shall show, in terms of measurable quantities the
theory has all the nonlinearities of typical “curved—
spacetime” theories. Moreover, it is nearly a
metric* theory: We construct a new mathematical
representation which has metric form to first

order in deviations of the physical metric from
flatness, but does not have metric form to higher
orders.

Section II gives a brief summary of the original
BS representation. Included are discussions of
nonlinearities and the behavior of rods and clocks.
Section III presents our new mathematical repre-
sentation of the theory. Section IV gives a pre-
scription for obtaining the post-Newtonian limit® ®
of the theory, and Sec. V considers various exper-
imental tests. Contrary to previous calculations’
it is found that both the geodetic and the Lens-
Thirring precessions of gyroscopes® cannot dis-



