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Abstract

It is a longstanding open problem to devise an oracle r@atvwhich BQP does not lie in the
Polynomial-Time Hierarchy (PH). We advance a natural cciojee about the capacity of the Nisan-
Wigderson pseudorandom generator [NW94] to fddl,, with MAJORITY as its hard function. Our
conjecture is essentially that the loss due to the hybridraent (which is a component of the standard
proof from [NW94]) can be avoided in this setting. This is asgtion that has been asked previously in
the pseudorandomness literatiire [BSWO03]. We then make theén contributions:

1. We show that our conjecture implies the existence of aderalative to which BQP is not in the
PH. This entails giving an explicit construction of unitanatrices, realizable by small quantum
circuits, whose row-supports are “nearly-disjoint.”

2. We give a simple framework (generalizing the setting ofolaon [Aar10b]) in which any effi-
ciently quantumly computable unitary gives rise to a disttion that can be distinguished from
the uniform distribution by an efficient quantum algorithwihen applied to the unitaries we con-
struct, this framework yields a problem that can be solveahtiumly, and which forms the basis
for the desired oracle.

3. We prove that Aaronson’s “GLN conjecturé” [Aar10b] ingdiour conjecture; our conjecture is
thus formally easier to prove. The GLN conjecture was rdggmbved false for depth greater than
2 [Aar10a4], but it remains open for dep2h If true, the depth-2 version of either conjecture would
imply an oracle relative to which BQP is not in AM, which isatsan outstanding open problem.

Taken together, our results have the following interesititgrpretation: they give an instantiation of the
Nisan-Wigderson generator that can be broken by quantunpetars, but not by the relevant modes of
classical computation, if our conjecture is true.
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1 Introduction

Let U; denote a random variable uniformly distributed it strings. Apseudorandom generatgPRG)
is a function

f:{0,1}" — {0,1}"

that stretches a short “seed” into a longer output stringh Wie property thaif (U;) is computationally
indistinguishablefrom the uniform distribution.

There is a vast literature constructing PRGs that achievepatational indistinguishability against a
wide variety of computational models (e.g. small circusisiall nondeterministic circuits, small branching
programs, small constant-depth circuits). These consing are typically “hardness vs. randomness”
tradeoffs in the sense that they make use of a hard functithre{@inconditionally hard, or hard conditioned
on a complexity assumption), and their proof of correctrtakes the form of a reduction that transforms
a computationally efficiendistinguisherinto an efficient algorithm for the hard function (therebyidieag
a contradiction). This transformation entails the use eftiybrid argumen{GM84|,[Yao82] which incurs
a loss of a factotl /m in going from a distinguisher (with gag) to apredictor (with advantage/m) and
from there to an efficient algorithm (with advantagen).

A question that has been raised in the pseudorandomnessuiteis whether this loss of a factoriofm
can be avoided (for an explicit framing of this question, ardiscussion of its motivation, see [BSWO03]).
In certain settings, the answer is known to be “yes” — whemnitigon of “efficient” is small PH circuits,
or bounded-width branching programs [BSWO03]. In the pregaper, we identify a setting in which this
guestion has surprising connections to a central unred@uestion in quantum complexity: whether there
exists an oracle relative to which BQP is not in the PH.

Our setting is a familiar one: we will work with the ubiquiteiNisan-Wigderson PRG [NW94], against
ACy circuits, withMAJORITY as its hard function. We need a precise statement for thestizm below,
which can be given via two standard definitions:

Definition 1.1 (INW94]). A set familyD = {S1,5s,...,S,,} is an (¢, p) design if every set in the family
has cardinality¢, and for alli # j, |S; N S;| < p.

Definition 1.2 (NW94]). Given a functiorf : {0,1}¢ — {0,1} and an(¢, p) designD = {S;,Ss,...,Sn}
in a universe of size¢, the functionNWé :{0,1}" — {0,1}™ is given by

NWé(ﬂﬁ) = (fl(x\Sl)>f2(x\Sg)vf3(x\33)7 s 7fm($|5’m)) s

where eacly; is the functionf with a fixed set of its inputs negalﬂe(andmw denotes the projection afto
the coordinates in the sét.

Generally speaking, the functidﬁWé is a PRG against a class of distinguishers as longj iashard
on average for that class of distinguishers. Recall thatrtgrity function on¢ bits is known to be hard
for ACy: no polynomial-size (or even quasi-polynomial-size), stant-depth circuit can compute majority
correctly on more than &/2 + 5(1/\/?) fraction of the inputs [Smo93, Has87], and this is esstytight,
since the function that simply outputs the first bit of thelihjs correct on a random input with probability
1/2 4+ ©(1/+/¢). We make the following quantitative conjecture:

1The standard setup has egh= f; we need the additional freedom in this paper for technieasons. We know of no settings
in which this alteration affects the analysis of the NW getar



Conjecture 1. LetD = {S1,S52,...,5»} be an(¢,O(1))-design in a universe of size< poly(¢), with
m < poly(¢). Then for every constant-depth circuit of size at mast(poly log m),

| Pr[C(Utsm) = 1] = Pr[C (U, NWEAORTY (1)) = 1]] < o(1).

In this work we abuse notation and refer to constant deptiuiter of size at mostxp(poly logm) as
“ACy.”

By the standard argument from [NW94, Ni$92], a distingughtircuit C' with gape can be converted
to apredictor with advantage /m and then a slightly larger circuit that computesJORITY with success
rate1/2 + ¢/m. Thus the above statement is true for< +//; if the 1/m loss from the hybrid argument
can be avoided (or reduced), it would be truerfoas large apoly(¢) (and even larger) as we conjecture is
true. In Sectiol]6 we discuss intuition supporting this eohjre that relates specifically to the hardness of
MAJORITY for ACY.

This paper contains three main results, which together nGakgecture Il interesting and worthy of
further study:

e We show that our conjecture implies the existence of an erathtive to which BQP is not in the PH,
and would thus resolve a major question in quantum compleiie are encouraged by the fact that
our conjecture is recognizable as a natural question indmsandomness that has been previously
and independently studied (e.g.,in [BSWO03]).

The crucial component in showing that our conjecture is ceffit for the existence of an oracle
relative to which BQP is not in the PH, is an explicit constime of unitary matrices whose row-
supports form ar/, p)-design. We give such a construction and show how to redlieset matrices

with small quantum circuits in Sectign 4. This is the techhiore of the paper.

o We generalize the setting of [AarlOb] (which proposed aalted forrelateddistribution as one that
is easy to distinguish from uniform by a quantum computet,dassibly hard forACy) to a simple
framework in which any efficiently quantumly computabletany U gives rise to a distribution that
can be distinguished from uniform by a quantum computer ¢@abnson’s setup is recovered by
choosingU to be a DFT matrix).

Together with our construction of explicit unitaries whasev-supports form ari/, p)-design, this
framework has the following interesting interpretatiargives an instantiation of the Nisan-Wigderson
generator that can be broken by quantum computers, but nbelelevant modes of classical com-
putation, if Conjecturéll is true.

Also of independent interest is the fact the unitaries thanfthe basis of our quantum algorithms
don’t seem to resemble the DFT matrices for problems in thlieléh Subgroup framework, or even
the few other unitaries used in known quantum algorithmst tBey possess natural extremal com-
binatorial (as opposed to algebraic) properties, and wedesoifi they can be useful elsewhere in the
quantum realm.

e We show that the “Nisan-Wigderson” distributi¢f’;, NWMAJORITY (77,)) is e-almostk-wise inde-
pendent, in the sense of Aaronson [Aar10b], whose “GLN atnje” asserted that all such distribu-
tions fool ACy; a depth-3 counterexample was later found [Aar10a]. Whethesuch distributions
fool depth-2AC, remains open. A distribution in our general framework (teficiently quantumly
distinguishable from uniform) that fools depthAy would imply an oracle relative to which BQP
is not in AM, a weaker (and still unresolved) version of theB@. PH problem. Thus there are



two potential routes to resolving this weaker version ofrtiren problem (the depth-2 version of our
conjecture, and the depth-2 version of the GLN conjectune)s is formally easier, and arguably
conceptually easier because its connection to the psengturaness literature suggests initial lines of
attack.

Finally, since [Aar10b] has shown that the clas$gsK and BPPpath require exponentially many
queries to distinguish-almostk-wise independent distributions from uniform, our constians uncondi-
tionally yield oracles relative to which BQP does not lie in eitherladge classes (and A as well, since
MA C BP Ppaip), just as Aaronson’s construction does.

1.1 The BQP vs. PH question

The quest for an oracle relative to which BQP is not in the Ptéglto the foundational papers of the field;
the question was first asked by Bernstein and Vazirani [B\9#)e early 1990’s. They also gave an oracle
problem,RECURSIVE FOURIER SAMPLING that is regarded as a promising candidate (but there hare be
as yet no real inroads on a potential proof). Currently, lesaare known relative to which BQP is not in
MA [Wat0Q], but no relativized worlds are known in which BQ#rot in AM. Obtaining an oracle relative
to which BQP is not in the PH thus represents a stubborn, tandsg and fundamental problem whose
resolution would help clarify the relationship between B&®I classical complexity classes. In recent
progress, Aaronsomn [Aarl0b] devisededation oracle problem that lies in the function version of BQP
but not in the function version of the PH, but this still leawbe original problem open. Aaronson’s work
[Aarl0b] also has a detailed account of the many motivatfonsevisiting (and hopefully resolving!) this
problem, and we refer the interested reader to the intramluctf [Aar10b] for many more details.

In this paper we will find it convenient to speak almost exiglely about the “scaled down” version of the
problem, which is equivalent via the well-known connecti@mtween PH and Cj. In it, the goal is to design
a promise problem (rather than an oracle) that lies in (pse)pPBQLOGTIME but not (promise}Cy We
will drop the cumbersome “promise” modifiers when they aeacfrom context. The class BQLOGTIME
is the class of languages decidable by quantum computdrbdiia random access to aitbit input, and
use onlyO(log N) steps.

Definition 1.3 (BQLOGTIME). A languageL is in BQLOGTIME if it can be decided by a LOGTIME-
uniform family of circuits{C,, }, where eachC,, is a quantum circuit om qubits. On an(N = 2")-bit
input z, circuit C,, appliesO(log N') gates, with each gate being eithegaerygate which applies the map
li)|z) — |i)|z @ x;), or a standard quantum gate (from a fixed, finite basis). Igisiealent (by polynomially
padding the number of qubits) to allgwly log (V) gates.

Following Aaronson, our goal will be to design, for each ihleingth vV, adistribution on N-bit strings
that can be distinguished from the uniform distribution bBBQLOGTIME predicate, but not by adC
circuit. As described in Appendix|C, such a distribution temneasily converted to a proper oraclefor
which BQP° ¢ PHO.

1.2 Techniques

In this section we briefly discuss the techniques we use fcn eathe main results listed above.



Showing that our NW distribution is e-almost k-wise independent. We prove that wheneveP is an
(¢, p) design in a universe of sizethe random variabléU;, NWNAIORITY (17,1 is O (pk? //¢)-almostk-
wise independent, fat < o(¢'/4p~1/2). The relevant definition of almogt-wise independence (which we
inherit from [Aar10b]) appears in Definitidn 2.1. Recallthiais property of our distribution is the technical
basis of theSZ K and BP P, results, as well as the connections to the depth-2 GLN canjec

This statement amounts to the assertion that after condigioon the value of up t& — 1 coordinates,
the bias (away from /2) of any specified:-th coordinate is at mog@(pk/+/¢). This is an easy calculation
when the conditioned coordinates all lie among the firsbordinates (since the-th coordinate is either
completely independent, if it lies among the fitstoordinates, or else it MAJORITY applied to a subset of
¢ of the firstt coordinates, of which up tb — 1 may be fixed). In the actual proof, when some conditioned
coordinates lieoutsidethe firstt coordinates (which would otherwise be difficult to analyzs® use the
following simple trick to reduce to the easy case: we reptamditioning on coordinaté + ¢ with condi-
tioning onall of the coordinates in se&t; of the (¢, p)-design (which determine it). Since at mpstf these
can affect the bias of thie-th coordinate, we are back in the easy case with ygko- 1) bits fixed instead
of (k —1).

Showing that our conjecture is sufficient to resolve the BQP &. PH question. In order to show that
our conjecture is sufficient to imply an oracle relative taethBQP is not in the PH, we need to discuss the
guantum part of the argument. Conjectlle 1 implies that té dénerator with certain parameters fools
ACy, which is one part of the overall argument. The other parbiexhibit a BQLOGTIME algorithm
that “breaks” this instantiation of the NW generator. Gatieing [Aar10b], our quantum algorit ill
receive a random string € {+1, —1}* (which should be thought of as the input to the NW generater) a
the first half of its input, and as the second half of its inither

1. asecond random string {A-1, —1}¢, or
2. a string containing thsignsof a unitaryU (with entries in{0, 1, —1}) applied tox.

The algorithm distinguishes the two cases (roughly) by yjngrz into the phases, applying, multiplying
the second string into the phases, and measuring in the Haddrasis.

Note that in case (2), each coordinate of the second strittieisign of a+1/ — 1 weighted sum of
certain coordinates af; i.e., it computesmAJORITY (with a fixed pattern of inputs negated) on this subset
of the coordinate of. Thus, if we can construct a unitaby whose row-supports form g, p) designD in
a universe of size, then case (2) will be the distributigit/;, NWMAIORITY (77,)) " and case (1) will be the
uniform distribution. The parameters of this instantiataf the NW generator will be such that Conjecture
[ implies that it foolsAC\. Our task becomes to construct such a unitary

Note that it isnotpossible to simply take an existiig, p) design (random, or other explicit constructions
that appear in the literature [NWE4, HRO03]) and attach- signs to the elements of the sets so as to make
their characteristic vectors pairwise orthogonal, whitwhat is needed for them to come from the rows of
a unitarylU. On the other hand we have a different setting of the paramitenind than usual: we wapt
to be unusually small (a constant), but the number of setseiiésign is also unusually small (omlgly ()
instead ofexp(¢)). For these parameters we manage to obtain the reqUirggl design using a geometric
construction, in which the sets are the characteristicovedaif pairs of lines in an affine plane. The strong
symmetries in this construction allow us to assigf signs to the elements of each set to achieve pairwise
orthogonality of their characteristic vectors. In factdbeset systems have only2 (rather thary) sets in

2\We ignore normalization factors in this discussion.



them, so the resulting unitaries will have the required prbes only among half of their rows, but a small
modification of the distribution given to the quantum altfum in case (2) above can handle this without
difficulty.

In Sectiori 4.2 we give lncal decompositioifisee Section 3|1 for the formal definition) of these unitgrie
which is necessary to have afficientquantum algorithm. This is the most technically involvedt jwd the
paper. We also describe a modification of our constructian ihextremalin the sense that it optimizes
all relevant parameters simultaneousbll rows of the unitary participate, we haye< 2, andt < /2.
This is not required for our results, but it is aestheticgllgasing. We have been unable to find a local
decomposition that would enable us to actually use thistoactson as the basis of an efficient quantum
algorithm, and we leave finding such a decomposition as aiguing open problem.

2 NW distributions are s-almost k-wise independent

Aaronson([Aar10b] used the following definition ofalmostk-wise independence in order to formulate his
“Generalized Linial-Nisan” (GLN) conjecture.

Definition 2.1. A random variableD distributed on{0, 1}" is e-almostk-wise independenif for every k
distinct indicesiy, is, ..., ix € [r], and everyny, ao, ..., ar € {0,1} we have:
Pl“[Dil = a1 A Dy, :Oég/\"'/\Dik :Oék]
92—k
The following is the GLN conjecture, which is now known to laésk for depth 3 and higher [Aar10a],
but remains open for depth 2:

1—e< <l+e.

Conjecture 2 ([Aar10B]). Let D be any random variable distributed oft), 1}" that is 1/7*Y-almost
o(1)

r2()-wise independefit Then for every constant-depth circditof size at mostn = 27",

| Pr[C(D) = 1] — Pr[C(U,) = 1]| < o(1).

We now show that certain instantiations of the NW generaaiuding the ones in our Conjecturé 1,
ares-almostk-wise independent, with parameters such that the GLN camganplies ours.

Theorem 2.2. LetD = {51,S59,...,5,} be an(¢,p) design in a universe of size Then for every
k < o(¢/*p=1/2), the jointly distributed random variable

(C,D) — (Ut,NWgAJORITY(Ut))
is O(pk?//?)-almostk-wise independent.

Proof. Fix k; distinctindices, is, ..., ik, € [t] andk, distinctindicesji, jo, ..., jk, € [m]|with kj+kg <
k, and fiXOzl, a9, ... 70%17517527 ce ,ﬁk2 € {0, 1}.
We compute the probability

p:Pr[Cil:Oél/\CZ'QZOéQ/\”’/\CZ‘kl :Oékl/\Djl:,81/\Dj2:,82/\"'/\Djk2 :,Bk2],

30ne might expect to sde = poly log(r) independence rather than= () in analogy with the Linial-Nisan conjecture.
Aaronson uses the stronger parameter setting (making tiNed®hjecture easier) because it is sufficient for his coesin; it is
for ours too.



which we write as

k1
p = (H Pl“[Ciw = Oéw|CZ'1 =1 NCoy=agAN---A Ciw,1 = Oél'wl]>
w=1

ko
X (HPT[Djw:ﬁj|CZ’1:Oél/\CQZOZQ/\"'/\Cil:Oéikl
w=1

ADj, = Bj; NDj, = Bjy N--- AN Dj,,_, = 5w—1]) .

Clearly the first; terms of the product are exactly2, sinceC is uniform ont¢-bit strings. Now, consider the
w-th factor, denoteg,,, in the second part of the product. The key maneuver is tacephe conditioning
on D;, (for v < w) with conditioning onD, for s € S, N S,. This is permissible becaude;, can affect
D;,, only through the common elements of their associated%easdS,,. Note that becausé,,NS,| < p,
the total number of coordinates that are being conditionmhus< pk.

Recall that.S,,| = ¢, and that the biD,, is the majority (with certain inputs negated) of the spedifie
coordinates of”. Without conditioning, we could computer[D,, = 1] by

¢
1 l
20" Z <r>
r=[¢/2]
We want to compute instead,, which is the same probability conditioned on upfoof the coordinates
of C'. The maximum value gf,, is thus

l
1 14
Puw S 5 E <7‘>
r=[¢/2]—pk

A simple calculation using Stirling’s Approximation showsat (f) < O 2;) for all r, so we obtain the
upper bound of

S

1
pu < 5 + O(pk/ V).
A symmetric argument shows that
1
puw > 5 = O(pk/V0).
Thus we conclude (using that< o(v/¢/(pk))):
k k
p< (1/2+00k/VD) < [(1/2) (14+0wk/VD)| <27 (14 0k*/VD)),
and . i
P> (1/2 - O(pk/\/Z)) > [(1/2) (1 - O(pk/\/z))] > 9k (1 - O(pk?/x/i)) :
as required. O
3 A general framework
In this section we describe how to turn any efficiently quarifucomputable unitary into a distribution that
can be distinguished from uniform by a BQLOGTIME machine.r @amework generalizes the setup in

[Aarl0b]. The “quantum part” of the paper is almost entirebntained within this section, so we review
some relevant preliminaries below before describing the messult.
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3.1 Quantum preliminaries

A unitary matrix is a square matri¥ with complex entries such th&tU* = I, whereU* is the conjugate
transpose. Equivalently, its rows (and columns) form ahasormal basis. We name the standard basis
vectors of theNV = 2"-dimensional vectorspace underlying amubit system byv) for v € {0,1}". A
local unitary is a unitary that operates only ba- O(1) qubits; i.e. after a suitable renaming of the standard
basis by reordering qubits, it is the matfix® I,.—», wherelU is a2 x 2° unitary U. A local unitary can

be applied in a single step of a quantum computeiocal decompositiomf a unitary is a factorization into
local unitaries. We say alv x N unitary isefficiently quantumly computabitthis factorization has at
mostpoly(n) factors.

A guantum circuitapplies a sequence of local unitaries (“gates”) where eatsig drawn from a fixed,
finite set of gates. There are universal finite gate sets fatwdmy efficiently quantumly computable unitary
can be realized (up to exponentially small error) kyody (n)-size quantum circuit [KSV02].

In this paper, the only manner in which our BQLOGTIME algamnit will access the input string is
the following operation, which “multiplies: into the phases”. There are three steps: (1) query with the
query register clean, which applies the mag0) — |i)|0 @ z;) (note eache; isin {0,1}); (2) apply to the
last qubit the mag0) — —|0), |1) — |1); (3) query again to uncompute the last qubit. When we speak of
“multiplying « into the phase” it will be linguistically convenient to sfegboutx as a vector with entries
from {+1, -1}, even though one can see from this procedure that the anfualis a0/1 vector.

The following lemma will be useful repeatedly. It statess@agtially) that a block diagonal matrix, all
of whose blocks are efficiently quantumly computable, iglitsfficiently quantumly computable. This is
trivial when all of the blocks are identical, but not entyrebvious in general. The proof is in Appendix A

Lemma 3.1. Fix N = 2" and M = 2™. LetU be anN x N block diagonal matrix composed of the
blocksU, Us, . .., Uy, where eactU; is a N/M x N/M matrix that has goly(n)-size quantum circuit,
a description of which is generated by a unifopraly(n) time procedure, given input Then given three
registers ofm qubits,n — m qubits, andpoly(n) qubits, respectively, with the third register initializéal
|000 - - - 0), there is apoly(n) size uniform quantum circuit that applid$ to the first two registers and
leaves the third unchanged.

3.2 The quantum algorithm

Let A be anyN x N matrix with entried in {0,1,—1} and pairwise orthogonal rows, and defitieA, 7)
to be the support of theth row of matrix A. Define A to be the matrix4 with entries in row: scaled by
1/+/|S(4,14)], and observe that is a unitary matrix.

Define the random variabl® 4 ,; = (x, z) distributed on{+1, —1}?" by pickingz € {+1, -1}
uniformly, and setting the nexY bits to bez € {+1, -1}V defined byz; = sgn((Az);) = sgn((Az);) for
i < M andz; independently and uniformly random {a-1, —1} for i > M.

It will be convenient to think o/ = N initially; we analyze the general case because we will exadiyt
need to handle\/ = N/2. Below, we usd/zy to denote the random variable uniformly distributed on
{+1,—1}%N.

Theorem 3.2. Let N = 2" for an integern > 0, and letM = Q(N). For every matrix4 € {0,1, —1}V>*V
with pairwise orthogonal rows, there is a BQLOGTIME alghritQ 4 that distinguishesD 4 5r from Uay;

“We could extend this framework to matrices with generaliestbut we choose to present this restriction since it isvall
need.



i.e., there is some constant> 0 for which:

| Pr(Qa(Da,nm) = 1] = Pr[Qa(Uan) = 1] > &.
The algorithm is uniform ifA comes from a uniform family of matrices.

Proof. The input to the algorithm is a pair of stringsz € {+1, —1}V.
The algorithm performs the following steps:

1. Enter a uniform superpositiopk= >, 0.1}~ |i) and multiplyz into the phase to obtaif 3=, (. 1y» ili).
2. Apply Ato obtainﬁ Yicio.1yn (A)ili).
3. Multiply z into the phase to obtain\/% Yic{o}n zi(Ax);]i).

4. Define vectow by w; = \/Lﬁzi(Zx)i. Apply the N x N Hadamar@ H to obtaind ;¢ r 13 (Hw)s|1),
and measure in the computational basis. Accept iff the owciz0”.

We first argue that the acceptance probability is small i ¢asz) is distributed a$/,x. This follows
from a symmetry argument; for fixed andw as defined in Step 4 above, the vecibw above has every
entry identically distributed, becausds independently chosen uniformly frofa-1, +1}" and every row
of H is a vector in{—1,+1}". In particular this implies that the random varialjldw)? is identically
distributed for alli. Together with the fact thgt,(Hw)? = 1, we conclude thaE[(Hw)?] = 1/N. Then
by Markov, with probability at least — 1/v/N we accept with probability at most N /N, for an overall
acceptance probability of at mazty/N.

Next, we argue that the acceptance probability is large $e €a, z) is distributed asD 4 »;. Here we
observe that foi < M, w; = ﬁ|(Zm)i| and henceF[w;] = \/WQ( IS(A,i)]) = Q(1/VN)
(since before scalingy; is just the distance from the origin of a random walk on the,liwith |S(A, )|
steps). Fori > M, we simply haveE[w;] = 0. ThenE[},w;] = M - Q(1/vV/N) = Q(/N), so
E[(Hw)o»] = Q(1). Since the random variablgfw),~ is always bounded above hy we can apply
Markov to its negation to conclude that with constant prdiighit is at leasta constant (and in such cases

the acceptance probability is at leag}. Overall, the acceptance probability(1). O

The BQLOGTIME algorithm for what Aaronson callURIER CHECKINGIn [Aarl0b] is recovered
from the above framework by taking to be a DFT matrix (and/ = N).

4 Unitary matrices with large, nearly-disjoint row support s

In this section we construct unitary matricésvith the additional property that all or “almost all” of thew
supportsS(A, i) are large and have bounded intersections. We also showhtss tinitaries are efficiently
quantumly computable. This is the final part of our main reshk distributionD 4 5/ (it will turn out that
M will be half the underlying dimension) is distinguishabterh uniform by a BQLOGTIME algorithm by
Theoreni 3.2, and at the same titf}g ,; can be seen as an NW distribution that by Conjedilre 1 fddlg
(see Sectioh]5 for the precise statement).

SThis is the matrixd whose rows and columns are indexed{lly1}™, with entry (i, j) equal to—1¢+7 /\/N.



4.1 The paired-lines construction

We describe a collection @f /2 pairwise-orthogonal rows, each of which is a vectofin-+1, —1}‘12. We
identify ¢? with the affine plandF, x F,, whereq = 2" for an integem > 0. Let By, B, be an equipartition
of F,, and let¢ : By — B, be an arbitrary bijection. Our vectors are indexed by a @aib) € F, x By,
and their coordinates are naturally identified withx F,:

-1 y=ax+b

+1 y=ax+ ¢(b) (1)

Ua,b[x7 yl = {

Notice thatv(a,b) is —1 on exactly the points of, x F, corresponding to the line with slopeand y-
interceptb, and+1 on exactly the points df, x F, corresponding to the line with slopeandy-intercept
¢(b). So eactw(a,b) is supported on exactly a pair of parallel lines. Orthogityatill follow from the
fact that every two non-parallel line-pairs intersect imeky one point, as argued in the proof of the next
lemma.

Lemma 4.1. The vectors defined in Eq[](1) are pairwise orthogonal, areirteupports form a2q, 4)
design.

Proof. Consider(a,b) # (a’,V'). If a = o’ then the supports af(a, b) andv(a,b’) are disjoint. Otherwise
a # o' and there are exactly four intersection points (obtaineddbying linear equations ové,):

e (z=U-b)/(a—d),y=ar+b) = (x =0 —-b)/(a—d),y =dx+1), which contributes
1) - (—=1) = 1 to the inner product, and

(=
o (z=(=00)/(a—d)y=ar+é®) = (z =0 —-¢0b)/la—d)y=dz+?), which
contributes(+1) - (—1) = —1 to the inner product, and
b

o (z= (@) —b)/(a—d)y =az+b) = (x = (BV)) —b)/(a— '),y = 'z + ¢(V/)), which
contributes(—1) - (+1) = —1 to the inner product, and

o (z=(¢(t) = 9(b))/(a—d),y = ax + ¢(b)) = (x = (¢(V) — ¢(b))/(a — d'),y = a'x + ¢(¥)),
which contributeg+1) - (+1) = 1 to the inner product.

The sum of the contributions to the inner product from theae points is zero. The computation of the
support size is straightforward. O

In Appendix[B, we give another construction (which is notdesgk for our main result) in which the
number of vectors is exactly equal to the dimension of theetlgithg space (giving rise to a unitary in
which “all rows participate” instead of only half of the rojs

4.2 Alocal decomposition

We new describe ag? x ¢? unitary matrix that is efficiently quantumly computable dvas the (normalized)
vectorsv(a, b) from Eq. [1) as;?/2 of its ¢? rows. We recall thay = 2" for an integem > 0.

Proposition 4.2. The followingg x ¢ unitary matrices are efficiently quantumly computable:
e The DFT matrixF” with respect to the additive group Bf.

e The inverse DFT matri¥'~* with respect to the additive group Bf,.
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e Theq x ¢ unitary matrix B with \1[( Iy 2| — 14/2) as its firstq/2 rows, f( Tosal = 1g/allgal — 1g/a)

asits nexq/4rows,f( Iosl = 1q/l1q sl — 1q/8lqsl — Iqsllq/s| — Iq/s) @s its nexiy/8 rows, etc...

and whose last row |%(1 1,1,...,1).

Proof. The first two matrices are well-known to be efficiently quanky computable. For the last one we
make use of the Hadamard matrix
H = i L -1
2\ 11 '

Let B; be theq x ¢ identity matrix with its lower right2’ x 2¢ submatrix replaced by the matrif ©
I,,—1. EachB; is efficiently quantumly computable by Lemrhal3.1. It is thesyeto verify thatB =
B1ByB3 -+ By, O

Lemma 4.3. Let« be a generator of the multiplicative group Bf. For c € [, let D. denote they x ¢
diagonal matrix

L i _\Tr(atc) [ 1\Tr(a?c) /_1\Tr(a3-c) _N\Tr(ad7 1)
7 g (Va ()T, (Tt (et (o) ).
and let D/, denote the; x ¢ diagonal matrix

L Tr( ) (_\Tr(a@?c) (_1\Tr(a3-c) _ N\Tr(a?7 1)
ﬁ -diag (0, (~1)T "), (~1)Tr ™) (—p)Trle®a) (1) ).
Then the® x ¢* matrix D whose(i, j) block (withi, j € F,) equalsD;; if i = j and Dj; otherwise, is
efficiently quantumly computable.

Proof. Consider the;? x ¢ block-diagonal matrix that has as s, k) block the matrix whoséi, ;) entry
is (—1)T (52") for k e {1,2,...,q — 1} and whosg0, 0) block is I,. Each such block except tH®, 0)
block is the DFT matrix?’ with its rows (or equivalently, columns) renamed accordmthe mapj — ja”.
The F matrix is efficiently quantumly computable and the mjaps jo* is classically and reversibly (and
thus quantumly) efficiently computable. Thus eachk ¢ block on the diagonal is efficiently quantumly
computable. By Lemma_3.1 the entire matrix is efficiently mpuanly computable.

If we index columns by(i,i") € (F,)? and rows by(j, j') € (F,)?, then the desired matrik is the
above block-diagonal matrix with the order of the two inaexcoordinates for the rows transposed, and the
order of the two indexing coordinates for the columns trasspl. O

Theorem 4.4. Theq? x ¢* matrix (I, ® B) - (I, ®F) D - (I, ® F~1), which is efficiently quantumly
computable, has the vectarsa, b) from Eq. [1) as;?/2 of its row@

Proof. Let .S, be thegx ¢ permutation matrixs, that (when multiplied on the right) shifts columns, ideeifi
with F,,, by the mapr — x + c. Let J be the all-ones matrix. The main observation is that

-1
FD.F~!= isc _ Ve J,
NG q
and that 1
FD F~! = S
Vi i

®To be precise, these are théu, b) with respect tasomeequipartitionB; , B> andsomebijection ¢.
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Thus the final matrix has in it§, j) block (withi, j € F,) the matrix

B(%Si»—\@q_l{])

if i = j, and

1 1
2 (5%~ 757)

otherwise. Observe tha@.J has all zero entries except for the last row, so in partictle firstq/2 rows
of the (i, j) block are(1/v/2q)(1,2| — I,/2)Si;. Therefore they/2 rows of the entireg® x ¢ matrix
corresponding to the top halves of blodksj) as; varies, give the vectors(i, b) for b € By, if we identify
columns withF, x I, as follows: columns of thg-th block are identified witH j} x I, and within thej-th
block, By is the firstg/2 columns andB; is the nextg/2 columns (and the bijectiop maps the element
associated with th&-th column to the element associated with the- ¢/2)-th column).

Then, ag varies ovetF,, we find all of the vectors from Eq.](1) as the “top-halves” atle successive
set ofg rows of the large matrix. O

5 Putting it all together

Let A be the matrix of Theorein 4.4, and sét= ¢> andM = N/2. By Theoreni3.2, there is a BQLOG-
TIME algorithm that distinguishe® 4 5, from the the uniform distributiod/, .

By Lemmd4.1, the firsb/ rows of A have supports forming @v/N, 4)-designD. It is also clear that
fori < M, the(N +1)-th bit of D4 p; computesvAJORITY (with a fixed pattern of inputs negated) on those
among the firstV bits that lie inS(A, 7). ThusD 4, is exactly the distributiodUy , NWNAIORITY (7))
followed by N/2 additional independent random bits (which can have no ilpacdhe distinguishability
of the distribution from uniform). Thus by Conjectdré 1, nanstant-depth, polynomial-size circuit can
distinguishD 4 5s from Usx, which completes the argument.

We briefly describe why the standard NW argument fails (ang wé must rely on Conjectuié 1). The
standard argument proceeds as follows: defiNe+- 1 hybrid distributionsD 4 3 = Ho, Hy, ..., Hoy =
Usn, that interpolate betweeR 4 ,; andUsy. Given a distinguishing circui€’ : {0,1}2"Y — {0,1} for
which

| Pr[C(Dav) = 1] — Pr[C(Uan) =1]| > €,
we argue that for some

| Pr[C(H:) = 1] = Pr[C(Hiy1) = 1]| > ¢/M
by the triangle inequality (and here we are making the amldhili observation thatly = H, = --- = Hy
and Hy.pyi1 = Hyinmae = -+ = Hoy SO the gap ok must be spread over only/ differences).
From here, we obtain a next-bit-predictor with advantag&/ and hardwire at most/ lookup tables of
size2P, to obtain a circuit of sizéC| + O(2N) + O(2P M) that computesiAJORITY (on 2v/N bits) with
success probability/2+¢/M. The problem is that this advantage over random guessirg sufficient to
obtain a contradiction for the functianAJORITY, which can be computed easily with success probability
1/2 + Q(N'/%), for the parameters coming from the unitatyfrom Theoreni 44.

Even if we had a unitary whose rows formed (@rnp)-design with better parameters, the standard argu-
ment fails. This is because it must be tliat N, and yet we must also have >> /N for D to be
evenstatistically noticably different from uniform. But the trivial circuibait outputs an arbitrary bit of the
input succeeds with probability/2 + ©(1/+/¢) which is larger than thé/2 4 /M that comes out of the
standard NW argument above.
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6 Our conjecture: discussion

We believe that Conjectulé 1 is quite approachable, giveteilge literature and variety of proof techniques
concerning pseudorandom generators and related objestex@mples, we mention two ideas from the
literature that seem relevant (although obviously theyehdwet led to a solution).

The first is the analysis by Sudan, Trevisan, and Vadhan [3]@Dthe NW PRG when applied to a
“mildly hard” predicate (i.e., one for which small circufiail on only aé fraction of the inputs). They prove
that the output distribution is computationally indistinghable from a distribution having high entropy by
invoking Impagliazzo’s hard-core lemma [Imp95], and anguihat output bits of the NW PRG “often” fall
in a hard core that is considerably harder on average thaorigieal mildly hard predicate.

We also have a hard predicate whose average-case hardiesshéat of what we would need for
Conjecturé L to be true via the standard argument; i.BAJORITY on/ bits werel /2+1/poly(¢) hard, we
would be done. The high-level message of Sudan, TrevisaWaudittan is that this hardness can be achieved
(essentially) at the price of comparing to a high-entropstriiution rather than the uniform distribution.
Our BQP algorithm is fairly robust and would likely still wioon a sufficiently high entropy distribution
(it is only necessary to “kill” correlations with a partieulelement of the Hadamard basis). However, the
central technical component of the proof in [STV01] is theoagliazzo hard-core lemma [Imp95], and a
sufficiently strong hardcore lemma is not known €. In fact, the functiorMAJORITY has no hard core:

Proposition 6.1. No subset oMMAJORITY is e-hardcore forACy, for anye < 1/n.

Proof. Given az € {0,1}", the randomized procedure that picks a random one ofithigut bits and
outputs it succeeds in computiMpJORITY (x) with probability at least /2 + 1/n. This procedure has the
same success probability over any sulfse&t {0, 1}". For any fixedS, there is a fixing of the random bits
that preserves this success probability, and which resulscircuit of sizel (it just outputsx; for some
fixed 7). O

Nevertheless, it may be that replacing the uniform distiiluwith a high minentropy one can be useful in
circumventing the loss from the hybrid argument.

The second approach is to directly circumvent the loss dukeadybrid argument. This is explicitly
addressed in [BSWO03], where they show that the loss candhoieavoided in certain computational models.
One of these models is “PH circuits,” which sounds supeftljdi&e it might be relevant to our setting. What
is actually needed to use their ideas is the ability to agprately count an efficiently recognizable set, in
the same class that recognizes the set. Such a statememtkisono (or expected) foACy, but it is still
possible that other ideas could circumvent the hybrid arpurfor AC.

However, any route to proving Conjectlire 1 faces the samiéecige discussed in [Aarl0b]: the proof
must be “non-black-box” in the sense that it can’t apply toiteary low-degree polynomial functions in
addition to its native Boolean setting. This is because th@tum algorithm of Theorefm 3.2 implies (via
[BHCT01]) the existence of a constant-degree, multivariatepelghomial computing the acceptance prob-
ability (and hence distinguishing the NW distribution framiform). A black-box reduction would trans-
form a distinguisher of this form to a similarly low-degreelynomial approximatingAJORITY, but we
know that no such polynomial for approximatinghJORITY can exist[[Smo93]. So any proof of Conjecture
[ must prove that the distribution in question fodl€'; in some way that doesot replaceAC| circuits by
low degree approximating polynomials and then argue alhmsiet

Here are some ideas that could plausibly form the basis obaf mf Conjecturé L. We consider the
simpler situation in which the distributions being commbaee N2 independent copies of the random vari-
able D —whereD = (Uy,MAJORITY(Uy)) — and N2 independent copies of the random variable.
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distributed uniformly onV + 1 bits. This corresponds to the NW construction we have beekingwith,

if the underlying nearly-disjoint sets are taken todwoenpletely disjoint AC should be incapable of dis-
tinguishing these distributions; here is the intuitionrsEiobserve that there are no correlations between
blocks, so the hypothetical distinguisher must examiné &dmck separately. SincaC, cannot approxi-
mate majority well, we know that the only “accessible” infation about each block is a “noisy bit” saying
whether it is distributed according 0 or Uy 1 — in the case of uniform, this bit iswith probability 1/2,

and in the case of distributiof, this bit is 1 with probability 1/2 + ©(1/+/N). How can a hypothetical
distinguisher aggregate these noisy bits acros@fthsdependent copies? In one case, the expected sum of
these noisy bit§1/2) N? and in the other case it {g/2+©(1/v/N))N?, and by concentration of measure,
the sum is highly likely to be close to these expectationsth8dypothetical distinguisher only needs to tell
the difference betweeV? fair coin flips versusV? slightly biased coin flips. But exactly this task is hard
for ACy (which can be seen by reduction framaJORITY, as written down in Corollary 12 of [Aar10b]).
So, it seems that either the distinguisher must approximate®RITY better than allowed (to get less noisy
bits), or it must be detecting very small bias in a sequenadif flips. In upcoming work [ESUV10], we
are able to show that indeetl”y cannot distinguish these two distributions. This is enaging because it
shows that the aforementioned “non-black-box” requireinenot insurmountable. Extending this result to
the not-completely-disjoint case still seems challengirayvever.

Acknowledgements. We thank Scott Aaronson, Yi-Kai Liu, and Emanuele Viola fetgiul discussions.
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A Omitted proofs

Proof. (Of Lemmd3.1l) Fix a finite universal set of quantum gates aoflinality d, each of which operates
on at mosb qubits. A convenient notion will be that of aliviouscircuit, in which we fix an ordering (say,
lexicographic) orn]®, and the steps of the circuit are identified witbly (n) cycles through this list: when
we are on stefia;, as, . .., a;) € [n]’ in one of these cycles, we operate on quhitsas, . . ., a,. Clearly,
any (uniform) quantum circuit can be converted to a (unifofablivious” circuit with at most am® blowup
by inserting dummy identity gates.

Let n* be an upper bound on the size of the oblivious circuits obthin this way for the variou’;.
The circuit for eaclU; is now a sequence

7O = (058,580,589

with eachj/) € [d] specifying which gate to apply at stégn the oblivious circuit forU; (and because
the circuit is oblivious, the qubits to which this gate slibbk applied are easily determined frdin Let
f+[M] — [d]™* be the function that mapsto the vectorj(®.

Now we describe the promised efficient quantum procedure:

1. Apply the map derived fronf that takegi)|z) to |i)|z & f(4)), to the first and third register. We view
the contents of the third register as a vectoidﬂﬁk.

2. Repeat for = 1,2,3,...,n": apply the “controlled unitary” that consults tiieh component of the
third register, and applies the specified gate to qulitsas, . . ., a;) of the second register (again,
(a1,aq,...,a,) are easily determined frombecause the circuit is oblivious). The important obser-
vation is that this “controlled unitary” operates on onlynstantly many qubits.
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3. Repeat step 1 to uncompute the auxiliary information énttiird register.

B A unitary in which all rows participate

There is a tension between the triple goals of (1) having npamwise orthogonal vectors, (2) maintaining
bounded pairwise intersections of the supports, and (3npahe supports large. It is natural to wonder
whether the above construction (in which we found a numbeeofors equal td /2 the dimension of the
underlying space) is in some sense optimal. For exampleers some barrier to simultaneously optimizing
all three goals?

Here we show that one can indeed optimize all three goaleaaime time, by specifying a construction
that builds on the “paired-lines” construction. Our counstion will have as many pairwise orthogonal
vectors as the dimension of the underlying space (whichvwsoably as many as is possible); it will have
intersections sizes bounded above2i{the upper bound cannot be 0 without constraining the proafutbe
number of rows and the support sizes to be at most the dimen$ibe underlying space, and no pairwise
intersections can have cardinality one without violatinthogonality); the support sizes will be at least
the square root of the dimension of the underlying space ¢aedcan’t exceed that without having larger
intersection sizes).

This construction is not needed for our main results, but we ifi aesthetically pleasing that one can
optimize all three parameters in this way. \den't know of a local decomposition for this matrix, and we
leave finding one as an intriguing open problem.

While the construction of Sectidn 4.1 needed charactertsto, the present construction needs odd
characteristic. We fi¥, with ¢ an odd prime power, and we choose a sulgsét I, of size(q — 1)/2 for
which@Q N —Q = (), where—Q = {—x : € Q}. Our vectors will have;? — 1 coordinates, identified with
the punctured plane® = F, x F, \ {(0,0)}.

We have three types of vectors{f, —1, +1}%:

+1

+1
Ua,b[x7 y] =

first, for alla € F, andb € Q

r=0,y=2>

reEQ,y=ar+b
Q,y @)

-1 z€eQ,y=ax—>b "’
0  otherwise
second, for alk € F, andb € —Q
+1 z=0,y="5>
) 1l ze-Qy=ar+Db
Ua,b[x>y] - 1 ze€ —Q,y:aac—b ) (3)
0  otherwise
and finally, for eactr € I}
| +1 z=cyel,
uel,y] = { 0  otherwise @

Lemma B.1. The vectors defined in Eg&] (4)] (3)
(g, 2)-design.

ahd (4) are pairwise gtimal and their supports form a
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Proof. Itis an easy computation to see that the support of each okttters has cardinality. We now argue
that they are pairwise orthogonal. There are several caggEnding on the two rows under consideration:

1. v, andu, p: if one comes from EqL{2) and the other from Hd. (3) then thppetts are disjoint. So
we assume both come from EQl (2) or both come from Eq. (3).

(a) Both come from Eq.[{2) anl= V': we have one intersectioft), b) (which contributest1 to
the inner product) and exactly one of the following two istsmtion points:(x = —2b/(a —
a),ar +b=dx—"b)or(x = 2b/(a —d),ax — b = da'z +b), which contributes-1 to the
inner product. We have exactly one because theiwalues are negations of each other, and
non-zero, so exactly one is @.

(b) Both come from EqL{2) anfd# ': we have exactly one of the following two intersection psint
(=0 —-b)/(a—d),ax+b=dz+V)or(z=(-b+b)/(a—d'),ax—b=dx—1V), which
contributes+1 to the inner product, and exactly one of the following twaensection points:
(=W +b)/(a—d)yax —b=dz+V)or(xz=(-b—-0b)/(a—d),ax+b=dz-V),
which contributes—1 to the inner product. For each pair, there is exactly one efpdir of
possible intersection points because the saalues are negations of each other, and non-zero,
S0 exactly one is ird).

(c) Both come from Eq[{3) antl= ¥': identical to casd_(1a) above, with in place of(Q.
(d) Both come from EqL{3) antl# b’ identical to casd (1b) above, withQ in place ofQ.

2. u. andu.: these have disjoint supports foe ¢'.

3. vap andu,: if ¢ € Q, then the support of.. intersects the support ef, , only if v,; comes from
Eqg. (2), and then we get one intersection at paint ¢, ax + b) which contributes a-1 to the inner
product, and one intersection at pofat= ¢, ax — b) which contributes a-1 to the inner product. If
c € @, then the support of. intersects the support of, ;, only if v, ; comes from Eq.[(3), and we
have an identical argument, withQ in place ofQ.

This is a complete enumeration of cases, and in no case didveerhore than 2 intersection points. [

We conclude this section with a question: are these matrétated in some way to the DFT matrix over
some family of non-abelian groups (e.g. the affine grbgip< ), or are they indeed completely different
from the unitaries seen before in quantum algorithms?

C Converting a distributional oracle problem into a standard oracle

We include this section for completeness, a similar propkayps in[[Aarl0a].

We have two ensembles of random variableés= {D; ,,}, D, = {D5,} over (N = 2")-bit strings
for which BQLOGTIME can distinguish the two distributionatkdCy cannot. Then whe®; and D, are
viewed as distributions on (truth-tables ofpcles there is a BQP oracle machine that distinguishes the two
distributions, but nd® H oracle machine can distinguish them. Specifically, we hiastethere exists a BQP
oracle machined for which

Pr[AP1(1") = 1] — Pr[AP2(1") = 1] > ¢
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while for everyP H oracle machiné/,
Pr[MPr(1") = 1] — Pr[MP2(1") = 1] < b < e,

(here we use standard techniques — see, e.g., [Has87] + simiov that on any fixed input, the output of a
PH machine as a function of the oracle can be seen a% circuit) and we have > § for sufficiently
largen > ng.

We now convert the distributions on oracles into a singleler@ for which BQP® ¢ PHC. LetL be
a uniformly random unary language {i}*. For eachn, if 1" € L, sample &"-bit stringx from D; and
define oracle) restricted to lengthe so thatx is its truth table; otherwise sample@-bit stringx from D,
and define oracl® restricted to lengte so thatz is its truth table.

First, note that

Pr{AO(1") = L(1™)] = (1/2)-Pr[AP(1") = 1] + (1/2) - Pr[AP2(1") = 0] > 1/2 + ¢/2.
Now fix any PH machiné/, and note that for sufficiently large,
PrMP(1") = L(A™)] = (1/2)-Pr[MP1(1") = 1] + (1/2) - Pr[MP2(1") = 0] < 1/2 + §/2.

Consequently, since > ¢ there is a fixed choice for the oracle at lengtbuch thatl.(17) = A (1") #
MO (1), for sufficiently largen.

Fix such a choice for the oracle at lengthand consider another PH machih&. By the same argu-
ment, we can find another sufficiently large input lengtiwhereL(1%') = A°(1"") # MO (17')B

Continuing in this way, we obtain a single oracle such thaafoy PH machiné/ there exists some
for which AC(17) # MO (17).

"Recall that we are usingdCy” to refer to sizeexp(poly log n)-size constant depth circuits in this paper.

8We have assumed that our machines, on an input of lemgdhly query the oracle at inputs of length This can be ensured
by working with input lengths that are sufficiently spread o that the machine cannot afford to formulate queriefeonext
largest length, and so that the oracle at shorter lengthbe&ardcoded.)
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