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Abstract

It is a longstanding open problem to devise an oracle relative to which BQP does not lie in the
Polynomial-Time Hierarchy (PH). We advance a natural conjecture about the capacity of the Nisan-
Wigderson pseudorandom generator [NW94] to foolAC0, with MAJORITY as its hard function. Our
conjecture is essentially that the loss due to the hybrid argument (which is a component of the standard
proof from [NW94]) can be avoided in this setting. This is a question that has been asked previously in
the pseudorandomness literature [BSW03]. We then make three main contributions:

1. We show that our conjecture implies the existence of an oracle relative to which BQP is not in the
PH. This entails giving an explicit construction of unitarymatrices, realizable by small quantum
circuits, whose row-supports are “nearly-disjoint.”

2. We give a simple framework (generalizing the setting of Aaronson [Aar10b]) in which any effi-
ciently quantumly computable unitary gives rise to a distribution that can be distinguished from
the uniform distribution by an efficient quantum algorithm.When applied to the unitaries we con-
struct, this framework yields a problem that can be solved quantumly, and which forms the basis
for the desired oracle.

3. We prove that Aaronson’s “GLN conjecture” [Aar10b] implies our conjecture; our conjecture is
thus formally easier to prove. The GLN conjecture was recently proved false for depth greater than
2 [Aar10a], but it remains open for depth2. If true, the depth-2 version of either conjecture would
imply an oracle relative to which BQP is not in AM, which is itself an outstanding open problem.

Taken together, our results have the following interestinginterpretation: they give an instantiation of the
Nisan-Wigderson generator that can be broken by quantum computers, but not by the relevant modes of
classical computation, if our conjecture is true.
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1 Introduction

Let Ut denote a random variable uniformly distributed ont-bit strings. Apseudorandom generator(PRG)
is a function

f : {0, 1}t → {0, 1}m

that stretches a short “seed” into a longer output string, with the property thatf(Ut) is computationally
indistinguishablefrom the uniform distribution.

There is a vast literature constructing PRGs that achieve computational indistinguishability against a
wide variety of computational models (e.g. small circuits,small nondeterministic circuits, small branching
programs, small constant-depth circuits). These constructions are typically “hardness vs. randomness”
tradeoffs in the sense that they make use of a hard function (either unconditionally hard, or hard conditioned
on a complexity assumption), and their proof of correctnesstakes the form of a reduction that transforms
a computationally efficientdistinguisherinto an efficient algorithm for the hard function (thereby deriving
a contradiction). This transformation entails the use of the hybrid argument[GM84, Yao82] which incurs
a loss of a factor1/m in going from a distinguisher (with gapε) to apredictor (with advantageε/m) and
from there to an efficient algorithm (with advantageε/m).

A question that has been raised in the pseudorandomness literature is whether this loss of a factor of1/m
can be avoided (for an explicit framing of this question, anda discussion of its motivation, see [BSW03]).
In certain settings, the answer is known to be “yes” – when thenotion of “efficient” is small PH circuits,
or bounded-width branching programs [BSW03]. In the present paper, we identify a setting in which this
question has surprising connections to a central unresolved question in quantum complexity: whether there
exists an oracle relative to which BQP is not in the PH.

Our setting is a familiar one: we will work with the ubiquitous Nisan-Wigderson PRG [NW94], against
AC0 circuits, with MAJORITY as its hard function. We need a precise statement for the discussion below,
which can be given via two standard definitions:

Definition 1.1 ([NW94]). A set familyD = {S1, S2, . . . , Sm} is an (ℓ, p) design if every set in the family
has cardinalityℓ, and for all i 6= j, |Si ∩ Sj| 6 p.

Definition 1.2 ([NW94]). Given a functionf : {0, 1}ℓ → {0, 1} and an(ℓ, p) designD = {S1, S2, . . . , Sm}
in a universe of sizet, the functionNW f

D : {0, 1}t → {0, 1}m is given by

NW f
D(x) =

(
f1(x|S1

), f2(x|S2
), f3(x|S3

), . . . , fm(x|Sm
)
)
,

where eachfi is the functionf with a fixed set of its inputs negated1, andx|S denotes the projection ofx to
the coordinates in the setS.

Generally speaking, the functionNW f
D is a PRG against a class of distinguishers as long asf is hard

on average for that class of distinguishers. Recall that themajority function onℓ bits is known to be hard
for AC0: no polynomial-size (or even quasi-polynomial-size), constant-depth circuit can compute majority
correctly on more than a1/2+ Õ(1/

√
ℓ) fraction of the inputs [Smo93, Hås87], and this is essentially tight,

since the function that simply outputs the first bit of the input is correct on a random input with probability
1/2 + Θ(1/

√
ℓ). We make the following quantitative conjecture:

1The standard setup has eachfi = f ; we need the additional freedom in this paper for technical reasons. We know of no settings
in which this alteration affects the analysis of the NW generator.
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Conjecture 1. LetD = {S1, S2, . . . , Sm} be an(ℓ,O(1))-design in a universe of sizet 6 poly(ℓ), with
m 6 poly(ℓ). Then for every constant-depth circuit of size at mostexp(poly logm),

|Pr[C(Ut+m) = 1]− Pr[C(Ut, NWMAJORITY
D (Ut)) = 1]| 6 o(1).

In this work we abuse notation and refer to constant depth circuits of size at mostexp(poly logm) as
“AC0.”

By the standard argument from [NW94, Nis92], a distinguishing circuitC with gapε can be converted
to apredictorwith advantageε/m and then a slightly larger circuit that computesMAJORITY with success
rate1/2 + ε/m. Thus the above statement is true form ≪

√
ℓ; if the 1/m loss from the hybrid argument

can be avoided (or reduced), it would be true form as large aspoly(ℓ) (and even larger) as we conjecture is
true. In Section 6 we discuss intuition supporting this conjecture that relates specifically to the hardness of
MAJORITY for AC0.

This paper contains three main results, which together makeConjecture 1 interesting and worthy of
further study:

• We show that our conjecture implies the existence of an oracle relative to which BQP is not in the PH,
and would thus resolve a major question in quantum complexity. We are encouraged by the fact that
our conjecture is recognizable as a natural question in pseudorandomness that has been previously
and independently studied (e.g., in [BSW03]).

The crucial component in showing that our conjecture is sufficient for the existence of an oracle
relative to which BQP is not in the PH, is an explicit construction of unitary matrices whose row-
supports form an(ℓ, p)-design. We give such a construction and show how to realize these matrices
with small quantum circuits in Section 4. This is the technical core of the paper.

• We generalize the setting of [Aar10b] (which proposed a so-called forrelateddistribution as one that
is easy to distinguish from uniform by a quantum computer, but possibly hard forAC0) to a simple
framework in which any efficiently quantumly computable unitaryU gives rise to a distribution that
can be distinguished from uniform by a quantum computer (andAaronson’s setup is recovered by
choosingU to be a DFT matrix).

Together with our construction of explicit unitaries whoserow-supports form an(ℓ, p)-design, this
framework has the following interesting interpretation: it gives an instantiation of the Nisan-Wigderson
generator that can be broken by quantum computers, but not bythe relevant modes of classical com-
putation, if Conjecture 1 is true.

Also of independent interest is the fact the unitaries that form the basis of our quantum algorithms
don’t seem to resemble the DFT matrices for problems in the Hidden Subgroup framework, or even
the few other unitaries used in known quantum algorithms. But they possess natural extremal com-
binatorial (as opposed to algebraic) properties, and we wonder if they can be useful elsewhere in the
quantum realm.

• We show that the “Nisan-Wigderson” distribution(Ut, NWMAJORITY
D (Ut)) is ε-almostk-wise inde-

pendent, in the sense of Aaronson [Aar10b], whose “GLN conjecture” asserted that all such distribu-
tions foolAC0; a depth-3 counterexample was later found [Aar10a]. Whether all such distributions
fool depth-2AC0 remains open. A distribution in our general framework (thusefficiently quantumly
distinguishable from uniform) that fools depth-2AC0 would imply an oracle relative to which BQP
is not in AM, a weaker (and still unresolved) version of the BQP vs. PH problem. Thus there are
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two potential routes to resolving this weaker version of themain problem (the depth-2 version of our
conjecture, and the depth-2 version of the GLN conjecture);ours is formally easier, and arguably
conceptually easier because its connection to the pseudorandomness literature suggests initial lines of
attack.

Finally, since [Aar10b] has shown that the classesSZK andBPPpath require exponentially many
queries to distinguishε-almostk-wise independent distributions from uniform, our constructionsuncondi-
tionally yield oracles relative to which BQP does not lie in either of these classes (andMA as well, since
MA ⊆ BPPpath), just as Aaronson’s construction does.

1.1 The BQP vs. PH question

The quest for an oracle relative to which BQP is not in the PH dates to the foundational papers of the field;
the question was first asked by Bernstein and Vazirani [BV93]in the early 1990’s. They also gave an oracle
problem,RECURSIVE FOURIER SAMPLING, that is regarded as a promising candidate (but there have been
as yet no real inroads on a potential proof). Currently, oracles are known relative to which BQP is not in
MA [Wat00], but no relativized worlds are known in which BQP is not in AM. Obtaining an oracle relative
to which BQP is not in the PH thus represents a stubborn, longstanding and fundamental problem whose
resolution would help clarify the relationship between BQPand classical complexity classes. In recent
progress, Aaronson [Aar10b] devised arelation oracle problem that lies in the function version of BQP
but not in the function version of the PH, but this still leaves the original problem open. Aaronson’s work
[Aar10b] also has a detailed account of the many motivationsfor revisiting (and hopefully resolving!) this
problem, and we refer the interested reader to the introduction of [Aar10b] for many more details.

In this paper we will find it convenient to speak almost exclusively about the “scaled down” version of the
problem, which is equivalent via the well-known connectionbetween PH andAC0. In it, the goal is to design
a promise problem (rather than an oracle) that lies in (promise)-BQLOGTIME but not (promise)-AC0 We
will drop the cumbersome “promise” modifiers when they are clear from context. The class BQLOGTIME
is the class of languages decidable by quantum computers that have random access to anN -bit input, and
use onlyO(logN) steps.

Definition 1.3 (BQLOGTIME). A languageL is in BQLOGTIME if it can be decided by a LOGTIME-
uniform family of circuits{Cn}, where eachCn is a quantum circuit onn qubits. On an(N = 2n)-bit
inputx, circuit Cn appliesO(logN) gates, with each gate being either aquerygate which applies the map
|i〉|z〉 7→ |i〉|z⊕xi〉, or a standard quantum gate (from a fixed, finite basis). It is equivalent (by polynomially
padding the number of qubits) to allowpoly log(N) gates.

Following Aaronson, our goal will be to design, for each input lengthN , adistributiononN -bit strings
that can be distinguished from the uniform distribution by aBQLOGTIME predicate, but not by anAC0

circuit. As described in Appendix C, such a distribution canbe easily converted to a proper oracleO for
whichBQPO 6⊂ PHO.

1.2 Techniques

In this section we briefly discuss the techniques we use for each of the main results listed above.
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Showing that our NW distribution is ε-almost k-wise independent. We prove that wheneverD is an
(ℓ, p) design in a universe of sizet, the random variable(Ut, NWMAJORITY

D (Ut)) is O(pk2/
√
ℓ)-almostk-

wise independent, fork < o(ℓ1/4p−1/2). The relevant definition of almost-k-wise independence (which we
inherit from [Aar10b]) appears in Definition 2.1. Recall that this property of our distribution is the technical
basis of theSZK andBPPpath results, as well as the connections to the depth-2 GLN conjecture.

This statement amounts to the assertion that after conditioning on the value of up tok − 1 coordinates,
the bias (away from1/2) of any specifiedk-th coordinate is at mostO(pk/

√
ℓ). This is an easy calculation

when the conditioned coordinates all lie among the firstt coordinates (since thek-th coordinate is either
completely independent, if it lies among the firstt coordinates, or else it isMAJORITY applied to a subset of
ℓ of the firstt coordinates, of which up tok − 1 may be fixed). In the actual proof, when some conditioned
coordinates lieoutsidethe firstt coordinates (which would otherwise be difficult to analyze), we use the
following simple trick to reduce to the easy case: we replaceconditioning on coordinatet + i with condi-
tioning onall of the coordinates in setSi of the(ℓ, p)-design (which determine it). Since at mostp of these
can affect the bias of thek-th coordinate, we are back in the easy case with up top(k− 1) bits fixed instead
of (k − 1).

Showing that our conjecture is sufficient to resolve the BQP vs. PH question. In order to show that
our conjecture is sufficient to imply an oracle relative to which BQP is not in the PH, we need to discuss the
quantum part of the argument. Conjecture 1 implies that the NW generator with certain parameters fools
AC0, which is one part of the overall argument. The other part is to exhibit a BQLOGTIME algorithm
that “breaks” this instantiation of the NW generator. Generalizing [Aar10b], our quantum algorithm2 will
receive a random stringx ∈ {+1,−1}t (which should be thought of as the input to the NW generator) as
the first half of its input, and as the second half of its input,either

1. a second random string in{+1,−1}t, or

2. a string containing thesignsof a unitaryU (with entries in{0, 1,−1}) applied tox.

The algorithm distinguishes the two cases (roughly) by querying x into the phases, applyingU , multiplying
the second string into the phases, and measuring in the Hadamard basis.

Note that in case (2), each coordinate of the second string isthe sign of a+1/ − 1 weighted sum of
certain coordinates ofx; i.e., it computesMAJORITY (with a fixed pattern of inputs negated) on this subset
of the coordinate ofx. Thus, if we can construct a unitaryU whose row-supports form an(ℓ, p) designD in
a universe of sizet, then case (2) will be the distribution(Ut, NWMAJORITY

D (Ut)), and case (1) will be the
uniform distribution. The parameters of this instantiation of the NW generator will be such that Conjecture
1 implies that it foolsAC0. Our task becomes to construct such a unitaryU .

Note that it isnotpossible to simply take an existing(ℓ, p) design (random, or other explicit constructions
that appear in the literature [NW94, HR03]) and attach+/− signs to the elements of the sets so as to make
their characteristic vectors pairwise orthogonal, which is what is needed for them to come from the rows of
a unitaryU . On the other hand we have a different setting of the parameters in mind than usual: we wantp
to be unusually small (a constant), but the number of sets in the design is also unusually small (onlypoly(ℓ)
instead ofexp(ℓ)). For these parameters we manage to obtain the required(ℓ, p) design using a geometric
construction, in which the sets are the characteristic vectors of pairs of lines in an affine plane. The strong
symmetries in this construction allow us to assign+/− signs to the elements of each set to achieve pairwise
orthogonality of their characteristic vectors. In fact these set systems have onlyt/2 (rather thant) sets in

2We ignore normalization factors in this discussion.
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them, so the resulting unitaries will have the required properties only among half of their rows, but a small
modification of the distribution given to the quantum algorithm in case (2) above can handle this without
difficulty.

In Section 4.2 we give alocal decomposition(see Section 3.1 for the formal definition) of these unitaries,
which is necessary to have anefficientquantum algorithm. This is the most technically involved part of the
paper. We also describe a modification of our construction that is extremalin the sense that it optimizes
all relevant parameters simultaneously:all rows of the unitary participate, we havep 6 2, andt 6 ℓ2.
This is not required for our results, but it is aestheticallypleasing. We have been unable to find a local
decomposition that would enable us to actually use this construction as the basis of an efficient quantum
algorithm, and we leave finding such a decomposition as an intriguing open problem.

2 NW distributions are ε-almostk-wise independent

Aaronson [Aar10b] used the following definition ofε-almostk-wise independence in order to formulate his
“Generalized Linial-Nisan” (GLN) conjecture.

Definition 2.1. A random variableD distributed on{0, 1}r is ε-almostk-wise independentif for everyk
distinct indicesi1, i2, . . . , ik ∈ [r], and everyα1, α2, . . . , αk ∈ {0, 1} we have:

1− ε 6
Pr[Di1 = α1 ∧Di2 = α2 ∧ · · · ∧Dik = αk]

2−k
6 1 + ε.

The following is the GLN conjecture, which is now known to be false for depth 3 and higher [Aar10a],
but remains open for depth 2:

Conjecture 2 ([Aar10b]). Let D be any random variable distributed on{0, 1}r that is 1/rΩ(1)-almost
rΩ(1)-wise independent3. Then for every constant-depth circuitC of size at mostm = 2r

o(1)
,

|Pr[C(D) = 1]− Pr[C(Ur) = 1]| 6 o(1).

We now show that certain instantiations of the NW generator,including the ones in our Conjecture 1,
areε-almostk-wise independent, with parameters such that the GLN conjecture implies ours.

Theorem 2.2. Let D = {S1, S2, . . . , Sm} be an (ℓ, p) design in a universe of sizet. Then for every
k < o(ℓ1/4p−1/2), the jointly distributed random variable

(C,D) = (Ut, NWMAJORITY
D (Ut))

isO(pk2/
√
ℓ)-almostk-wise independent.

Proof. Fix k1 distinct indicesi1, i2, . . . , ik1 ∈ [t] andk2 distinct indicesj1, j2, . . . , jk2 ∈ [m] with k1+k2 6
k, and fixα1, α2, . . . , αk1 , β1, β2, . . . , βk2 ∈ {0, 1}.

We compute the probability

ρ = Pr[Ci1 = α1 ∧Ci2 = α2 ∧ · · · ∧ Cik1
= αk1 ∧Dj1 = β1 ∧Dj2 = β2 ∧ · · · ∧Djk2

= βk2 ],

3One might expect to seek = poly log(r) independence rather thank = rΩ(1), in analogy with the Linial-Nisan conjecture.
Aaronson uses the stronger parameter setting (making the GLN conjecture easier) because it is sufficient for his construction; it is
for ours too.
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which we write as

ρ =

(
k1∏

w=1

Pr[Ciw = αw|Ci1 = α1 ∧C2 = α2 ∧ · · · ∧ Ciw−1 = αiw−1 ]

)

×
(

k2∏

w=1

Pr[Djw = βj |Ci1 = α1 ∧C2 = α2 ∧ · · · ∧ Cik1
= αik1

∧Dj1 = βj1 ∧Dj2 = βj2 ∧ · · · ∧Djw−1 = βw−1]
)
.

Clearly the firstk1 terms of the product are exactly1/2, sinceC is uniform ont-bit strings. Now, consider the
w-th factor, denotedρw, in the second part of the product. The key maneuver is to replace the conditioning
onDjv (for v < w) with conditioning onDs for s ∈ Sw ∩ Sv. This is permissible becauseDjv can affect
Djw only through the common elements of their associated setsSv andSw. Note that because|Sw∩Sv| 6 p,
the total number of coordinates that are being conditioned upon is6 pk.

Recall that|Sw| = ℓ, and that the bitDw is the majority (with certain inputs negated) of the specified ℓ
coordinates ofC. Without conditioning, we could computePr[Dw = 1] by

1

2ℓ
·

ℓ∑

r=⌈ℓ/2⌉

(
ℓ

r

)
.

We want to compute insteadρw, which is the same probability conditioned on up topk of the coordinates
of C. The maximum value ofρw is thus

ρw 6
1

2ℓ
·

ℓ∑

r=⌈ℓ/2⌉−pk

(
ℓ

r

)
.

A simple calculation using Stirling’s Approximation showsthat
(ℓ
r

)
6 O( 2ℓ√

ℓ
) for all r, so we obtain the

upper bound of

ρw 6
1

2
+O(pk/

√
ℓ).

A symmetric argument shows that

ρw >
1

2
−O(pk/

√
ℓ).

Thus we conclude (using thatk < o(
√
ℓ/(pk))):

ρ 6

(
1/2 +O(pk/

√
ℓ)
)k

6

[
(1/2)

(
1 +O(pk/

√
ℓ)
)]k

6 2−k
(
1 +O(pk2/

√
ℓ)
)
,

and

ρ >

(
1/2−O(pk/

√
ℓ)
)k

>

[
(1/2)

(
1−O(pk/

√
ℓ)
)]k

> 2−k
(
1−O(pk2/

√
ℓ)
)
,

as required.

3 A general framework

In this section we describe how to turn any efficiently quantumly computable unitary into a distribution that
can be distinguished from uniform by a BQLOGTIME machine. Our framework generalizes the setup in
[Aar10b]. The “quantum part” of the paper is almost entirelycontained within this section, so we review
some relevant preliminaries below before describing the main result.
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3.1 Quantum preliminaries

A unitary matrix is a square matrixU with complex entries such thatUU∗ = I, whereU∗ is the conjugate
transpose. Equivalently, its rows (and columns) form an orthonormal basis. We name the standard basis
vectors of theN = 2n-dimensional vectorspace underlying ann-qubit system by|v〉 for v ∈ {0, 1}n. A
local unitary is a unitary that operates only onb = O(1) qubits; i.e. after a suitable renaming of the standard
basis by reordering qubits, it is the matrixU ⊗ I2n−b , whereU is a2b × 2b unitaryU . A local unitary can
be applied in a single step of a quantum computer. Alocal decompositionof a unitary is a factorization into
local unitaries. We say anN × N unitary isefficiently quantumly computableif this factorization has at
mostpoly(n) factors.

A quantum circuitapplies a sequence of local unitaries (“gates”) where each gate is drawn from a fixed,
finite set of gates. There are universal finite gate sets for which any efficiently quantumly computable unitary
can be realized (up to exponentially small error) by apoly(n)-size quantum circuit [KSV02].

In this paper, the only manner in which our BQLOGTIME algorithm will access the input stringx is
the following operation, which “multipliesx into the phases”. There are three steps: (1) query with the
query register clean, which applies the map|i〉|0〉 7→ |i〉|0 ⊕ xi〉 (note eachxi is in {0, 1}); (2) apply to the
last qubit the map|0〉 7→ −|0〉, |1〉 7→ |1〉; (3) query again to uncompute the last qubit. When we speak of
“multiplying x into the phase” it will be linguistically convenient to speak aboutx as a vector with entries
from {+1,−1}, even though one can see from this procedure that the actual input is a0/1 vector.

The following lemma will be useful repeatedly. It states (essentially) that a block diagonal matrix, all
of whose blocks are efficiently quantumly computable, is itself efficiently quantumly computable. This is
trivial when all of the blocks are identical, but not entirely obvious in general. The proof is in Appendix A

Lemma 3.1. Fix N = 2n andM = 2m. Let U be anN × N block diagonal matrix composed of the
blocksU1, U2, . . . , UM , where eachUi is aN/M ×N/M matrix that has apoly(n)-size quantum circuit,
a description of which is generated by a uniformpoly(n) time procedure, given inputi. Then given three
registers ofm qubits,n − m qubits, andpoly(n) qubits, respectively, with the third register initializedto
|000 · · · 0〉, there is apoly(n) size uniform quantum circuit that appliesU to the first two registers and
leaves the third unchanged.

3.2 The quantum algorithm

Let A be anyN × N matrix with entries4 in {0, 1,−1} and pairwise orthogonal rows, and defineS(A, i)
to be the support of thei-th row of matrixA. DefineA to be the matrixA with entries in rowi scaled by
1/
√

|S(A, i)|, and observe thatA is a unitary matrix.
Define the random variableDA,M = (x, z) distributed on{+1,−1}2N by picking x ∈ {+1,−1}N

uniformly, and setting the nextN bits to bez ∈ {+1,−1}N defined byzi = sgn((Ax)i) = sgn((Ax)i) for
i 6 M andzi independently and uniformly random in{+1,−1} for i > M .

It will be convenient to think ofM = N initially; we analyze the general case because we will eventually
need to handleM = N/2. Below, we useU2N to denote the random variable uniformly distributed on
{+1,−1}2N .

Theorem 3.2. LetN = 2n for an integern > 0, and letM = Ω(N). For every matrixA ∈ {0, 1,−1}N×N

with pairwise orthogonal rows, there is a BQLOGTIME algorithmQA that distinguishesDA,M fromU2N ;

4We could extend this framework to matrices with general entries, but we choose to present this restriction since it is allwe
need.
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i.e., there is some constantε > 0 for which:

|Pr[QA(DA,M ) = 1]− Pr[QA(U2N ) = 1]| > ε.

The algorithm is uniform ifA comes from a uniform family of matrices.

Proof. The input to the algorithm is a pair of stringsx, z ∈ {+1,−1}N .
The algorithm performs the following steps:

1. Enter a uniform superposition1√
N

∑
i∈{0,1}n |i〉 and multiplyx into the phase to obtain1√

N

∑
i∈{0,1}n xi|i〉.

2. ApplyA to obtain 1√
N

∑
i∈{0,1}n(Ax)i|i〉.

3. Multiply z into the phase to obtain1√
N

∑
i∈{0,1}n zi(Ax)i|i〉.

4. Define vectorw bywi =
1√
N
zi(Ax)i. Apply theN×N Hadamard5 H to obtain

∑
i∈{0,1}n(Hw)i|i〉,

and measure in the computational basis. Accept iff the outcome is0n.

We first argue that the acceptance probability is small in case (x, z) is distributed asU2N . This follows
from a symmetry argument: for fixedx, andw as defined in Step 4 above, the vectorHw above has every
entry identically distributed, becausez is independently chosen uniformly from{−1,+1}N and every row
of H is a vector in{−1,+1}N . In particular this implies that the random variable(Hw)2i is identically
distributed for alli. Together with the fact that

∑
i(Hw)2i = 1, we conclude thatE[(Hw)2i ] = 1/N . Then

by Markov, with probability at least1 − 1/
√
N we accept with probability at most

√
N/N , for an overall

acceptance probability of at most2/
√
N .

Next, we argue that the acceptance probability is large in case(x, z) is distributed asDA,M . Here we
observe that fori 6 M , wi = 1√

N
|(Ax)i| and henceE[wi] =

1√
N ·|S(A,i)|

Ω(
√

|S(A, i)|) = Ω(1/
√
N)

(since before scaling,wi is just the distance from the origin of a random walk on the line, with |S(A, i)|
steps). Fori > M , we simply haveE[wi] = 0. ThenE[

∑
iwi] = M · Ω(1/

√
N) = Ω(

√
N), so

E[(Hw)0n ] = Ω(1). Since the random variable(Hw)0n is always bounded above by1, we can apply
Markov to its negation to conclude that with constant probability, it is at leasta constantε (and in such cases
the acceptance probability is at leastε2). Overall, the acceptance probability isΩ(1).

The BQLOGTIME algorithm for what Aaronson callsFOURIER CHECKING in [Aar10b] is recovered
from the above framework by takingA to be a DFT matrix (andM = N ).

4 Unitary matrices with large, nearly-disjoint row support s

In this section we construct unitary matricesA with the additional property that all or “almost all” of the row
supportsS(A, i) are large and have bounded intersections. We also show that these unitaries are efficiently
quantumly computable. This is the final part of our main result: the distributionDA,M (it will turn out that
M will be half the underlying dimension) is distinguishable from uniform by a BQLOGTIME algorithm by
Theorem 3.2, and at the same timeDA,M can be seen as an NW distribution that by Conjecture 1 foolsAC0

(see Section 5 for the precise statement).

5This is the matrixH whose rows and columns are indexed by{0, 1}n, with entry(i, j) equal to−1〈i,j〉/
√
N .
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4.1 The paired-lines construction

We describe a collection ofq2/2 pairwise-orthogonal rows, each of which is a vector in{0,+1,−1}q2 . We
identify q2 with the affine planeFq ×Fq, whereq = 2n for an integern > 0. LetB1, B2 be an equipartition
of Fq, and letφ : B1 → B2 be an arbitrary bijection. Our vectors are indexed by a pair(a, b) ∈ Fq × B1,
and their coordinates are naturally identified withFq × Fq:

va,b[x, y] =

{
−1 y = ax+ b
+1 y = ax+ φ(b)

(1)

Notice thatv(a, b) is −1 on exactly the points ofFq × Fq corresponding to the line with slopea andy-
interceptb, and+1 on exactly the points ofFq × Fq corresponding to the line with slopea andy-intercept
φ(b). So eachv(a, b) is supported on exactly a pair of parallel lines. Orthogonality will follow from the
fact that every two non-parallel line-pairs intersect in exactly one point, as argued in the proof of the next
lemma.

Lemma 4.1. The vectors defined in Eq. (1) are pairwise orthogonal, and their supports form a(2q, 4)
design.

Proof. Consider(a, b) 6= (a′, b′). If a = a′ then the supports ofv(a, b) andv(a, b′) are disjoint. Otherwise
a 6= a′ and there are exactly four intersection points (obtained bysolving linear equations overFq):

• (x = (b′ − b)/(a − a′), y = ax + b) = (x = (b′ − b)/(a − a′), y = a′x + b′), which contributes
(−1) · (−1) = 1 to the inner product, and

• (x = (b′ − φ(b))/(a − a′), y = ax + φ(b)) = (x = (b′ − φ(b))/(a − a′), y = a′x + b′), which
contributes(+1) · (−1) = −1 to the inner product, and

• (x = (φ(b′) − b)/(a − a′), y = ax + b) = (x = (φ(b′) − b)/(a − a′), y = a′x + φ(b′)), which
contributes(−1) · (+1) = −1 to the inner product, and

• (x = (φ(b′) − φ(b))/(a − a′), y = ax + φ(b)) = (x = (φ(b′) − φ(b))/(a − a′), y = a′x + φ(b′)),
which contributes(+1) · (+1) = 1 to the inner product.

The sum of the contributions to the inner product from these four points is zero. The computation of the
support size is straightforward.

In Appendix B, we give another construction (which is not needed for our main result) in which the
number of vectors is exactly equal to the dimension of the underlying space (giving rise to a unitary in
which “all rows participate” instead of only half of the rows).

4.2 A local decomposition

We new describe anq2×q2 unitary matrix that is efficiently quantumly computable andhas the (normalized)
vectorsv(a, b) from Eq. (1) asq2/2 of its q2 rows. We recall thatq = 2n for an integern > 0.

Proposition 4.2. The followingq × q unitary matrices are efficiently quantumly computable:

• The DFT matrixF with respect to the additive group ofFq.

• The inverse DFT matrixF−1 with respect to the additive group ofFq.
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• Theq × q unitary matrixB with 1√
2
(Iq/2| − Iq/2) as its firstq/2 rows, 1√

4
(Iq/4| − Iq/4|Iq/4| − Iq/4)

as its nextq/4 rows, 1√
8
(Iq/8| − Iq/8|Iq/8| − Iq/8|Iq/8| − Iq/8|Iq/8| − Iq/8) as its nextq/8 rows, etc...

and whose last row is1√
N
(1, 1, 1, . . . , 1).

Proof. The first two matrices are well-known to be efficiently quantumly computable. For the last one we
make use of the Hadamard matrix

H =
1√
2

(
1 −1
1 1

)
.

Let Bi be theq × q identity matrix with its lower right2i × 2i submatrix replaced by the matrixH ⊗
I2i−1 . EachBi is efficiently quantumly computable by Lemma 3.1. It is then easy to verify thatB =
B1B2B3 · · ·Bn.

Lemma 4.3. Letα be a generator of the multiplicative group ofFq. For c ∈ Fq, let Dc denote theq × q
diagonal matrix

1√
q
· diag

(√
q, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . . , (−1)Tr (αq−1·c)

)
,

and letD′
c denote theq × q diagonal matrix

1√
q
· diag

(
0, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . . , (−1)Tr (αq−1·c)

)
.

Then theq2 × q2 matrix D whose(i, j) block (withi, j ∈ Fq) equalsDij if i = j andD′
ij otherwise, is

efficiently quantumly computable.

Proof. Consider theq2 × q2 block-diagonal matrix that has as its(k, k) block the matrix whose(i, j) entry
is (−1)Tr (ijαk) for k ∈ {1, 2, . . . , q − 1} and whose(0, 0) block is Iq. Each such block except the(0, 0)
block is the DFT matrixF with its rows (or equivalently, columns) renamed accordingto the mapj 7→ jαk.
TheF matrix is efficiently quantumly computable and the mapj 7→ jαk is classically and reversibly (and
thus quantumly) efficiently computable. Thus eachq × q block on the diagonal is efficiently quantumly
computable. By Lemma 3.1 the entire matrix is efficiently quantumly computable.

If we index columns by(i, i′) ∈ (Fq)
2 and rows by(j, j′) ∈ (Fq)

2, then the desired matrixD is the
above block-diagonal matrix with the order of the two indexing coordinates for the rows transposed, and the
order of the two indexing coordinates for the columns transposed.

Theorem 4.4. Theq2 × q2 matrix (Iq ⊗ B) · (Iq ⊗ F ) · D · (Iq ⊗ F−1), which is efficiently quantumly
computable, has the vectorsv(a, b) from Eq. (1) asq2/2 of its rows6.

Proof. LetSc be theq×q permutation matrixSc that (when multiplied on the right) shifts columns, identified
with Fq, by the mapx 7→ x+ c. LetJ be the all-ones matrix. The main observation is that

FDcF
−1 =

1√
q
Sc −

√
q − 1

q
J,

and that

FD′
cF

−1 =
1√
q
Sc −

1√
q
J.

6To be precise, these are thev(a, b) with respect tosomeequipartitionB1, B2 andsomebijectionφ.
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Thus the final matrix has in its(i, j) block (with i, j ∈ Fq) the matrix

B ·
(

1√
q
Sij −

√
q − 1

q
J

)

if i = j, and

B ·
(

1√
q
Sij −

1√
q
J

)

otherwise. Observe thatBJ has all zero entries except for the last row, so in particular, the firstq/2 rows
of the (i, j) block are(1/

√
2q)(Iq/2| − Iq/2)Sij . Therefore theq/2 rows of the entireq2 × q2 matrix

corresponding to the top halves of blocks(i, j) asj varies, give the vectorsv(i, b) for b ∈ B1, if we identify
columns withFq×Fq as follows: columns of thej-th block are identified with{j}×Fq, and within thej-th
block, B1 is the firstq/2 columns andB2 is the nextq/2 columns (and the bijectionφ maps the element
associated with theb-th column to the element associated with the(b+ q/2)-th column).

Then, asi varies overFq, we find all of the vectors from Eq. (1) as the “top-halves” of each successive
set ofq rows of the large matrix.

5 Putting it all together

Let A be the matrix of Theorem 4.4, and setN = q2 andM = N/2. By Theorem 3.2, there is a BQLOG-
TIME algorithm that distinguishesDA,M from the the uniform distributionU2N .

By Lemma 4.1, the firstM rows ofA have supports forming a(2
√
N, 4)-designD. It is also clear that

for i 6 M , the(N+i)-th bit ofDA,M computesMAJORITY (with a fixed pattern of inputs negated) on those
among the firstN bits that lie inS(A, i). ThusDA,M is exactly the distribution(UN , NWMAJORITY

D (UN ))
followed byN/2 additional independent random bits (which can have no impact on the distinguishability
of the distribution from uniform). Thus by Conjecture 1, no constant-depth, polynomial-size circuit can
distinguishDA,M from U2N , which completes the argument.

We briefly describe why the standard NW argument fails (and why we must rely on Conjecture 1). The
standard argument proceeds as follows: define2N + 1 hybrid distributionsDA,M = H0,H1, . . . ,H2N =
U2N , that interpolate betweenDA,M andU2N . Given a distinguishing circuitC : {0, 1}2N → {0, 1} for
which

|Pr[C(DA,M) = 1]− Pr[C(U2N ) = 1]| > ε,

we argue that for somei
|Pr[C(Hi) = 1]− Pr[C(Hi+1) = 1]| > ε/M

by the triangle inequality (and here we are making the additional observation thatH0 = H1 = · · · = HN

andHN+M+1 = HN+M+2 = · · · = H2N so the gap ofε must be spread over onlyM differences).
From here, we obtain a next-bit-predictor with advantageε/M and hardwire at mostM lookup tables of
size2p, to obtain a circuit of size|C| + O(2N) + O(2pM) that computesMAJORITY (on 2

√
N bits) with

success probability1/2+ε/M . The problem is that this advantage over random guessing is not sufficient to
obtain a contradiction for the functionMAJORITY, which can be computed easily with success probability
1/2 + Ω(N1/4), for the parameters coming from the unitaryA from Theorem 4.4.

Even if we had a unitary whose rows formed an(ℓ, p)-design with better parameters, the standard argu-
ment fails. This is because it must be thatℓ 6 N , and yet we must also haveM ≫

√
N for DA,M to be

evenstatisticallynoticably different from uniform. But the trivial circuit that outputs an arbitrary bit of the
input succeeds with probability1/2 + Ω(1/

√
ℓ) which is larger than the1/2 + ε/M that comes out of the

standard NW argument above.
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6 Our conjecture: discussion

We believe that Conjecture 1 is quite approachable, given the large literature and variety of proof techniques
concerning pseudorandom generators and related objects. As examples, we mention two ideas from the
literature that seem relevant (although obviously they haven’t yet led to a solution).

The first is the analysis by Sudan, Trevisan, and Vadhan [STV01] of the NW PRG when applied to a
“mildly hard” predicate (i.e., one for which small circuitsfail on only aδ fraction of the inputs). They prove
that the output distribution is computationally indistinguishable from a distribution having high entropy by
invoking Impagliazzo’s hard-core lemma [Imp95], and arguing that output bits of the NW PRG “often” fall
in a hard core that is considerably harder on average than theoriginal mildly hard predicate.

We also have a hard predicate whose average-case hardness falls short of what we would need for
Conjecture 1 to be true via the standard argument; i.e., ifMAJORITY onℓ bits were1/2+1/poly(ℓ) hard, we
would be done. The high-level message of Sudan, Trevisan andVadhan is that this hardness can be achieved
(essentially) at the price of comparing to a high-entropy distribution rather than the uniform distribution.
Our BQP algorithm is fairly robust and would likely still work on a sufficiently high entropy distribution
(it is only necessary to “kill” correlations with a particular element of the Hadamard basis). However, the
central technical component of the proof in [STV01] is the Impagliazzo hard-core lemma [Imp95], and a
sufficiently strong hardcore lemma is not known forAC0. In fact, the functionMAJORITY has no hard core:

Proposition 6.1. No subset ofMAJORITY is ε-hardcore forAC0, for anyε < 1/n.

Proof. Given ax ∈ {0, 1}n, the randomized procedure that picks a random one of then input bits and
outputs it succeeds in computingMAJORITY(x) with probability at least1/2 + 1/n. This procedure has the
same success probability over any subsetS ⊆ {0, 1}n. For any fixedS, there is a fixing of the random bits
that preserves this success probability, and which resultsin a circuit of size1 (it just outputsxi for some
fixed i).

Nevertheless, it may be that replacing the uniform distribution with a high minentropy one can be useful in
circumventing the loss from the hybrid argument.

The second approach is to directly circumvent the loss due tothe hybrid argument. This is explicitly
addressed in [BSW03], where they show that the loss can indeed be avoided in certain computational models.
One of these models is “PH circuits,” which sounds superficially like it might be relevant to our setting. What
is actually needed to use their ideas is the ability to approximately count an efficiently recognizable set, in
the same class that recognizes the set. Such a statement is not known (or expected) forAC0, but it is still
possible that other ideas could circumvent the hybrid argument forAC0.

However, any route to proving Conjecture 1 faces the same challenge discussed in [Aar10b]: the proof
must be “non-black-box” in the sense that it can’t apply to arbitrary low-degree polynomial functions in
addition to its native Boolean setting. This is because the quantum algorithm of Theorem 3.2 implies (via
[BHC+01]) the existence of a constant-degree, multivariate realpolynomial computing the acceptance prob-
ability (and hence distinguishing the NW distribution fromuniform). A black-box reduction would trans-
form a distinguisher of this form to a similarly low-degree polynomial approximatingMAJORITY, but we
know that no such polynomial for approximatingMAJORITY can exist [Smo93]. So any proof of Conjecture
1 must prove that the distribution in question foolsAC0 in some way that doesnot replaceAC0 circuits by
low degree approximating polynomials and then argue about those.

Here are some ideas that could plausibly form the basis of a proof of Conjecture 1. We consider the
simpler situation in which the distributions being compared areN2 independent copies of the random vari-
ableD – whereD = (UN , MAJORITY(UN )) – andN2 independent copies of the random variableUN+1
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distributed uniformly onN + 1 bits. This corresponds to the NW construction we have been working with,
if the underlying nearly-disjoint sets are taken to becompletely disjoint. AC0 should be incapable of dis-
tinguishing these distributions; here is the intuition. First, observe that there are no correlations between
blocks, so the hypothetical distinguisher must examine each block separately. SinceAC0 cannot approxi-
mate majority well, we know that the only “accessible” information about each block is a “noisy bit” saying
whether it is distributed according toD orUN+1 – in the case of uniform, this bit is1 with probability1/2,
and in the case of distributionD, this bit is1 with probability 1/2 + Θ(1/

√
N). How can a hypothetical

distinguisher aggregate these noisy bits across theN2 independent copies? In one case, the expected sum of
these noisy bits(1/2)N2 and in the other case it is(1/2+Θ(1/

√
N))N2, and by concentration of measure,

the sum is highly likely to be close to these expectations. Sothe hypothetical distinguisher only needs to tell
the difference betweenN2 fair coin flips versusN2 slightly biased coin flips. But exactly this task is hard
for AC0 (which can be seen by reduction fromMAJORITY, as written down in Corollary 12 of [Aar10b]).
So, it seems that either the distinguisher must approximateMAJORITY better than allowed (to get less noisy
bits), or it must be detecting very small bias in a sequence ofcoin flips. In upcoming work [FSUV10], we
are able to show that indeedAC0 cannot distinguish these two distributions. This is encouraging because it
shows that the aforementioned “non-black-box” requirement is not insurmountable. Extending this result to
the not-completely-disjoint case still seems challenging, however.

Acknowledgements. We thank Scott Aaronson, Yi-Kai Liu, and Emanuele Viola for helpful discussions.
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A Omitted proofs

Proof. (Of Lemma 3.1) Fix a finite universal set of quantum gates, of cardinalityd, each of which operates
on at mostb qubits. A convenient notion will be that of anobliviouscircuit, in which we fix an ordering (say,
lexicographic) on[n]b, and the steps of the circuit are identified withpoly(n) cycles through this list: when
we are on step(a1, a2, . . . , ab) ∈ [n]b in one of these cycles, we operate on qubitsa1, a2, . . . , ab. Clearly,
any (uniform) quantum circuit can be converted to a (uniform) “oblivious” circuit with at most annb blowup
by inserting dummy identity gates.

Let nk be an upper bound on the size of the oblivious circuits obtained in this way for the variousUi.
The circuit for eachUi is now a sequence

j(i) =
(
j
(i)
1 , j

(i)
2 , j

(i)
3 , . . . , j

(i)

nk

)
,

with eachj(i)ℓ ∈ [d] specifying which gate to apply at stepℓ in the oblivious circuit forUi (and because
the circuit is oblivious, the qubits to which this gate should be applied are easily determined fromℓ). Let
f : [M ] → [d]n

k
be the function that mapsi to the vectorj(i).

Now we describe the promised efficient quantum procedure:

1. Apply the map derived fromf that takes|i〉|z〉 to |i〉|z⊕ f(i)〉, to the first and third register. We view
the contents of the third register as a vector in[d]n

k

.

2. Repeat forℓ = 1, 2, 3, . . . , nk: apply the “controlled unitary” that consults theℓ-th component of the
third register, and applies the specified gate to qubits(a1, a2, . . . , ab) of the second register (again,
(a1, a2, . . . , ab) are easily determined fromℓ because the circuit is oblivious). The important obser-
vation is that this “controlled unitary” operates on only constantly many qubits.
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3. Repeat step 1 to uncompute the auxiliary information in the third register.

B A unitary in which all rows participate

There is a tension between the triple goals of (1) having manypairwise orthogonal vectors, (2) maintaining
bounded pairwise intersections of the supports, and (3) having the supports large. It is natural to wonder
whether the above construction (in which we found a number ofvectors equal to1/2 the dimension of the
underlying space) is in some sense optimal. For example, is there some barrier to simultaneously optimizing
all three goals?

Here we show that one can indeed optimize all three goals at the same time, by specifying a construction
that builds on the “paired-lines” construction. Our construction will have as many pairwise orthogonal
vectors as the dimension of the underlying space (which is obviously as many as is possible); it will have
intersections sizes bounded above by2 (the upper bound cannot be 0 without constraining the product of the
number of rows and the support sizes to be at most the dimension of the underlying space, and no pairwise
intersections can have cardinality one without violating orthogonality); the support sizes will be at least
the square root of the dimension of the underlying space (andone can’t exceed that without having larger
intersection sizes).

This construction is not needed for our main results, but we find it aesthetically pleasing that one can
optimize all three parameters in this way. Wedon’t know of a local decomposition for this matrix, and we
leave finding one as an intriguing open problem.

While the construction of Section 4.1 needed characteristic two, the present construction needs odd
characteristic. We fixFq with q an odd prime power, and we choose a subsetQ ⊆ F

∗
q of size(q − 1)/2 for

whichQ ∩−Q = ∅, where−Q = {−x : x ∈ Q}. Our vectors will haveq2 − 1 coordinates, identified with
thepunctured planeP = Fq × Fq \ {(0, 0)}.

We have three types of vectors in{0,−1,+1}P : first, for all a ∈ Fq andb ∈ Q

va,b[x, y] =





+1 x = 0, y = b
+1 x ∈ Q, y = ax+ b
−1 x ∈ Q, y = ax− b
0 otherwise

, (2)

second, for alla ∈ Fq andb ∈ −Q

va,b[x, y] =





+1 x = 0, y = b
+1 x ∈ −Q, y = ax+ b
−1 x ∈ −Q, y = ax− b
0 otherwise

, (3)

and finally, for eachc ∈ F
∗
q

uc[x, y] =

{
+1 x = c, y ∈ Fq

0 otherwise
. (4)

Lemma B.1. The vectors defined in Eqs. (2), (3) and (4) are pairwise orthogonal and their supports form a
(q, 2)-design.
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Proof. It is an easy computation to see that the support of each of thevectors has cardinalityq. We now argue
that they are pairwise orthogonal. There are several cases depending on the two rows under consideration:

1. va,b andva′,b′ : if one comes from Eq. (2) and the other from Eq. (3) then the supports are disjoint. So
we assume both come from Eq. (2) or both come from Eq. (3).

(a) Both come from Eq. (2) andb = b′: we have one intersection(0, b) (which contributes+1 to
the inner product) and exactly one of the following two intersection points:(x = −2b/(a −
a′), ax + b = a′x − b) or (x = 2b/(a − a′), ax − b = a′x + b), which contributes−1 to the
inner product. We have exactly one because the twox-values are negations of each other, and
non-zero, so exactly one is inQ.

(b) Both come from Eq. (2) andb 6= b′: we have exactly one of the following two intersection points:
(x = (b′−b)/(a−a′), ax+b = a′x+b′) or (x = (−b′+b)/(a−a′), ax−b = a′x−b′), which
contributes+1 to the inner product, and exactly one of the following two intersection points:
(x = (b′ + b)/(a − a′), ax − b = a′x + b′) or (x = (−b′ − b)/(a − a′), ax + b = a′x − b′),
which contributes−1 to the inner product. For each pair, there is exactly one of the pair of
possible intersection points because the twox-values are negations of each other, and non-zero,
so exactly one is inQ.

(c) Both come from Eq. (3) andb = b′: identical to case (1a) above, with−Q in place ofQ.

(d) Both come from Eq. (3) andb 6= b′: identical to case (1b) above, with−Q in place ofQ.

2. uc andu′c: these have disjoint supports forc 6= c′.

3. va,b anduc: if c ∈ Q, then the support ofuc intersects the support ofva,b only if va,b comes from
Eq. (2), and then we get one intersection at point(x = c, ax+ b) which contributes a+1 to the inner
product, and one intersection at point(x = c, ax− b) which contributes a−1 to the inner product. If
c ∈ Q, then the support ofuc intersects the support ofva,b only if va,b comes from Eq. (3), and we
have an identical argument, with−Q in place ofQ.

This is a complete enumeration of cases, and in no case did we have more than 2 intersection points.

We conclude this section with a question: are these matricesrelated in some way to the DFT matrix over
some family of non-abelian groups (e.g. the affine groupF

∗
q ⋉ Fq), or are they indeed completely different

from the unitaries seen before in quantum algorithms?

C Converting a distributional oracle problem into a standard oracle

We include this section for completeness, a similar proof appears in [Aar10a].
We have two ensembles of random variablesD1 = {D1,n},D2 = {D2,n} over (N = 2n)-bit strings

for which BQLOGTIME can distinguish the two distributions but AC0 cannot. Then whenD1 andD2 are
viewed as distributions on (truth-tables of)oracles, there is a BQP oracle machine that distinguishes the two
distributions, but noPH oracle machine can distinguish them. Specifically, we have that there exists a BQP
oracle machineA for which

Pr[AD1(1n) = 1]− Pr[AD2(1n) = 1] > ε
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while for everyPH oracle machineM ,

Pr[MD1(1n) = 1]− Pr[MD2(1n) = 1] 6 δ < ε,

(here we use standard techniques – see, e.g., [Hås87] – which show that on any fixed input, the output of a
PH machine as a function of the oracle can be seen as anAC0

7 circuit) and we haveε > δ for sufficiently
largen > n0.

We now convert the distributions on oracles into a single oracleO for whichBQPO 6⊆ PHO. LetL be
a uniformly random unary language in{1}∗. For eachn, if 1n ∈ L, sample a2n-bit stringx from D1 and
define oracleO restricted to lengthn so thatx is its truth table; otherwise sample a2n-bit stringx from D2

and define oracleO restricted to lengthn so thatx is its truth table.
First, note that

Pr[AO(1n) = L(1n)] = (1/2) · Pr[AD1(1n) = 1] + (1/2) · Pr[AD2(1n) = 0] > 1/2 + ε/2.

Now fix any PH machineM , and note that for sufficiently largen,

Pr[MO(1n) = L(1n)] = (1/2) · Pr[MD1(1n) = 1] + (1/2) · Pr[MD2(1n) = 0] 6 1/2 + δ/2.

Consequently, sinceε > δ there is a fixed choice for the oracle at lengthn such thatL(1n) = AO(1n) 6=
MO(1n), for sufficiently largen.

Fix such a choice for the oracle at lengthn, and consider another PH machineM ′. By the same argu-
ment, we can find another sufficiently large input lengthn′ whereL(1n

′
) = AO(1n

′
) 6= MO(1n

′
).8

Continuing in this way, we obtain a single oracle such that for any PH machineM there exists somen
for whichAO(1n) 6= MO(1n).

7Recall that we are using “AC0” to refer to sizeexp(poly log n)-size constant depth circuits in this paper.
8We have assumed that our machines, on an input of lengthn, only query the oracle at inputs of lengthn. This can be ensured

by working with input lengths that are sufficiently spread out (so that the machine cannot afford to formulate queries to the next
largest length, and so that the oracle at shorter lengths canbe hardcoded.)
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