
Supplemental Material: Detection of cross-correlation between gravitational lensing
and gamma rays

GRAVITATIONAL LENSING DATA1

The Dark Energy Survey (DES [13]) is a photometric survey performed with the Dark Energy Camera (DECam2

[14]) on the Blanco 4 m telescope at Cerro Tololo Inter-American Observatory (CTIO) in Chile. DES has observed3

approximately 5000 deg2 of the Southern sky in five broadband filters, g, r, i, z, and Y, ranging from 400 to 1060 nm.4

The primary goal of DES is to study the origin of cosmic acceleration and the nature of dark energy through four key5

probes: weak lensing, clustering of the large-scale structure, galaxy clusters, and type Ia supernovae.6

The first season of DES observations, from 31st August 2013 to 9th February 2014, resulted in the Y1 data stet7

analysed here [15, 16]. During Y1, DES observed ∼ 1500 deg2 of the wide-area survey footprint with three to four8

dithered tilings per filter. The Y1 footprint consisted of two areas: one near the celestial equator including Stripe 829

(S82[17]), and a much larger area that was also observed by the South Pole Telescope (SPT[18]). In Fig. 1 of the10

main text we show with a solid white line the DES Y1 sky coverage in celestial coordinates; the complete sky coverage11

for the final survey is shown with a dashed line. Fig. 5 shows the DES Y1 footprint in Galactic coordinates.12

In our analysis we make use of the metacalibration shear catalogue [9]. The metacalibration catalogue13

yields a total of 35 million objects and the final number density of the selection is 5.5 galaxies per square arcminute.14

metacalibration [8, 19] is a method to estimate weak lensing shear, calibrating associated biases directly from the15

imaging data, rather than from prior information about galaxy properties or simulations. metacalibration has16

been shown to be accurate at the part-per-thousand level in the absence of blending with other galaxies [8], and at17

the part-per-hundred level for the blending present in DES Y1 data [9].18

The implementation of metacalibration consists of measuring the two-component ellipticity, e, of a galaxy in
the DES Y1 run by fitting a single Gaussian model to its single-epoch images in the riz bands. The galaxy images
are then artificially distorted with a known shear, γ, and the ellipticity is measured again to construct the response
matrix, Rγ , as the derivative of measured ellipticity w.r.t. shear. Thus, the ellipticity estimator can be written as the
following Taylor expansion [8, 9, 19]:

e = e|γ=0 +
∂e

∂γ
Rγ=0γ + . . . = e|γ=0 +Rγγ + . . . . (1)

The elements of the response matrix are measured in metacalibration by the numerical derivative:

Rγi,j =
e+
i − e−i
∆γj

, (2)

where e±i is the measurement of the ith ellipticity component made on an image sheared by ±γj , and ∆γj = 2γj .19

It is also necessary to correct for selection effects, i.e. shear biases that may occur when placing a cut on any
quantities that change under shear, such as signal-to-noise ratio. This is accomplished by measuring the mean
response of the estimator to the selection, repeating the selections on quantities measured on sheared images. The
mean selection response matrix is given by:

〈RSi,j
〉 =
〈eS+
i 〉 − 〈eS−i 〉

∆γj
, (3)

where 〈eS±i 〉 represent the mean of the ellipticities measured on images without artificial shearing, but selected by
properties measured on sheared images. The full response for the mean shear is given by the sum of the shear response
and selection response:

〈R〉 = 〈Rγ〉+ 〈RS〉. (4)

When measuring a shear statistics, such as mean shear or a shear two-point function, the measurement can be20

appropriately corrected for the mean response R = (〈R〉11 + 〈R〉22) /2 to produce a calibrated result.21

DES galaxies were assigned to redshift bins using a re-implementation of the bpz algorithm [20], which provides22

an estimate of the redshift probability density pBPZ(zj) of each galaxy j. The assignment is done based on fluxes23

measured by metacalibration on the original and sheared images to correct for selection response of redshift24
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binning. The fluxes in the bands griz of the metacalibration galaxies are used for estimating an expectation25

value of 〈z〉 =
∫ z

0
zjdzj pBPZ(zj). Thus, four redshift bins are defined by 0.20 < 〈z〉 < 0.43, 0.43 < 〈z〉 < 0.63,26

0.63 < 〈z〉 < 0.90, and 0.90 < 〈z〉 < 1.30. The corresponding four redshift distributions, ni(z), are taken as the27

stacked pBPZ(z) of the galaxies, estimated from their improved joint-fit photometry [16, 21]. The mean values of each28

redshift bin stacked pBPZ(z) are calibrated independently, and they are found to be consistent with the bpz estimate,29

with a joint uncertainty of σ〈z〉 ≈ 0.015 [21].30

Since the purpose of this work is detection of the cross-correlation between the UGRB and shear, rather than31

accurate constraints on cosmological parameters, we do not explicitly account for the systematic uncertainties in32

shear and redshift calibration in our analysis. The moderate significance of our measurements and the accuracy of33

the DES Y1 calibrations justify this choice.34

GAMMA-RAY DATA35

Fermi-LAT is a γ-ray pair-conversion telescope that has been operating for the last 10 years in space. Due to its36

wide energy range (20 MeV to 1 TeV) and its capability of rejecting the background of charged cosmic rays, it is an37

excellent instrument to investigate the UGRB. It scans the whole sky every three hours with a remarkable angular38

resolution for γ rays (∼ 0.1 deg above 10 GeV).39

In this work we used 108 months of data, from mission week 9 to week 476. The photon and exposure maps are40

produced with the LAT Science Tools version v10r0p5 [52]. We selected the Pass8 ultracleanveto class [53], which41

has the lowest cosmic-ray contamination and is the most appropriate class for diffuse emission analysis. The Fermi42

Tools provide the possibility of choosing different angular resolutions, which are organised in four quartiles, from PSF043

to PSF3, corresponding to a transition from the worst to the best PSF. In order to have a balance between the photon44

count statistics and a good direction reconstruction, we selected the best quartile PSF3 for energies below 1.2 GeV45

(where we have the highest photon counts) and PSF1+2+3 for higher energies. The PSF is modelled according the46

Fermi-LAT specifications [54] and for each energy bin in our analysis an effective PSF is determined by weighting the47

energy-dependent PSF by the intensity energy spectrum of the UGRB.48

We produced 100 intensity maps in HEALPix projection with Nside = 1024, evenly spaced in logarithmic scale49

between 100 MeV and 1 TeV, by dividing the count maps by the exposure and the pixel area. The size of such energy50

bins is small enough that the exposure can be approximated by its mean value within the energy bin when deriving51

the flux. The resulting flux maps are then re-binned into 9 larger energy bins between 631 MeV to 1 TeV by simply52

adding up fluxes from the smaller bins. We discard very low energies because the angular resolution is too poor for53

our purposes.54

Since we are interested only in the UGRB, we benefit from excluding Galactic emission and resolved point sources.55

This is achieved by a process of masking and subtracting described below.56

Masking γ-ray data57

We build a set of masks according to the following two criteria:58

1. Low latitudes, where the Galactic foreground is stronger, are removed by a flat cut excluding the region between59

±30 deg of latitude.60

2. Sources identified in the list FL8Y are masked. FLY8 [55] has been recently released by the Fermi-LAT Col-
laboration as a preliminary version of the upcoming 4FGL catalogue. It contains 5523 sources. Above 10 GeV,
we mask also the sources which are present in the 3FHL catalogue [22], that is more accurate for high energy
sources. Each source is masked taking into account both its source brightness and the detector PSF resolution
in the specific energy bin. The masking radius R has been defined by:

F g∆E exp

(
− R2

2θ2
∆E

)
>
F g∆E,faintest

5
(5)

where F g∆E is the integral flux of the source in a given energy bin ∆E, F g∆E,faintest is the flux of the faintest61

source in the same energy bin (and once divided by 5 provides an approximate estimate of the noise, i.e., the62

faintest source emission is approximately a measure of the 5σ level), and θ∆E is the 68% containment angle in63

that energy bin, as provided by the Fermi-LAT PSF. We verified that the non-Gaussian tail of the PSF (not64

included in the Gaussian approximation in Eq. (5)) does not appreciably contaminate our maps.65
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FIG. 5: Masked γ-ray map in the (1.2 − 2.3) GeV energy bin before (left) and after (right) the foreground subtraction. The
maps have been downsized to Nside = 128 and smoothed with a Gaussian beam of size σ = 0.4◦ for illustration purposes. The
DES Y1 sky footprint is shown with red solid line.

This strategy aims at masking the Galactic plane and resolved sources over a sufficiently large area, in order to reduce66

the chance to have artefacts in the APS produced by source leakage and foreground emission. For further details and67

impact of the mask, see also ref. [10].68

Foreground removal69

Despite the majority of the Galactic foreground has been removed by cutting out the Galactic plane, still high-70

latitudes might contain some contamination that causes noise in our analysis. While galactic emission does not71

contribute to the cross-correlation signal with gravitational shear, nevertheless a foreground contamination adds to72

the error budget. We therefore performed a galactic foreground subtraction by adopting the template maps provided73

by the Fermi-LAT Collaboration with the Galactic emission model gll iem v06.fits [56]. The foreground template74

is projected in HEALPix maps with the same Nside as the intensity maps and in the same 100 energy bins. Each75

template map is convolved with the Fermi-LAT PSF and assigned a free normalization. This component is added to76

a free constant (representing the UGRB and cosmic-ray contamination) and a Poissonian likelihood fit is performed77

globally on all the masked intensity maps. All obtained best-fit normalization parameters are of the order of unity,78

supporting a successful description of the foreground emission. The normalised foreground templates are then re-79

binned into the 9 larger energy bins and subtracted from the corresponding intensity maps.80

In Fig. 5, we show an example of the Fermi-LAT γ-ray intensity map in the (1.2-2.3) GeV energy bin with the81

application of the mask described above and illustrating the effect of the Galactic foreground subtraction.82

The impact of foreground removal in cross-correlation studies involving γ-rays has been discussed in Refs. [3, 4,83

6, 32, 50], where it was shown that the effect is marginal. As mentioned, the main effect of foreground residuals on84

our study would be a mild reduction of detection significance. This can be appreciated in Fig. 6, where we show85

the analogous of Fig. 2 of the main text, but without foreground removal. Since the amplitude Ξ is dimensionless,86

in Fig. 6 it has been normalized as in Fig. 2 of the main text (i.e. relative to the mean intensity 〈Iγ〉 of the87

foreground-subracted maps), to allow a direct comparison of the two plots. Put in different words, this implies that88

the dimensional correlation function is the same when determined on subtracted or unsubtracted maps (with larger89

errors in the latter case).90

ESTIMATION OF THE COVARIANCE MATRIX91

The covariance matrix is estimated by combining the theoretical Gaussian large-scale structure covariance with92

realizations of the shape-noise term generated from the data. The latter term is expected to be dominating in the93

covariance, while the former should be small. To avoid notation conflict between the symbol γ usually employed for94

both the weak lensing effect of gravitational shear, and for γ-rays, we shall here simply refer to shear through indexes95

r, s, labelling redshift bins, and to the UGRB anisotropies via indexes a, b, labelling energy bins.96
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FIG. 6: Same as Fig. 2 of the main text but without foreground removal (and normalized as in Fig. 2 of the main text, being
Ξ dimensionless).

In the Gaussian approximation, the generic element of the theoretical harmonic-space covariance matrix Γ̂ reads:

Γ̂ar`,bs`′ =
δK
``′

(2`+ 1)∆`fsky

[
Car` Cbs`′ +

(
Crs`′ +N rs

)(
Cab` +N ab

)]
. (6)

It represents the covariance between the measurements of two cross-correlation harmonic-space power spectra: one97

cross-correlating γ-ray map in energy bin a with shear map in redshift bin r; and another considering γ-ray map98

in energy bin b with shear map in redshift bin s. In the Gaussian approximation, these two cross-correlation power99

spectra, Car` and Cbs`′ , have a covariance which is diagonal in ``′, and which depends on both the cross-correlation100

signals, as well as the γ-ray–γ-ray and shear-shear auto-correlations, i.e. Cab` and Crs`′ . Both auto and cross-correlation101

theoretical signals involving γ-rays have been corrected for the effect of the Fermi-LAT PSF beam function. In Eq. (6),102

N denotes the noise terms. Note that the noise does not depend on the angular scale. In Eq. (6) fsky accounts for103

the incomplete sky coverage, with fDES
sky = 0.042 denoting the DES footprint (independent of the redshift bin) and104

fasky = (0.315, 0.289, 0.404, 0.449, 0.468, 0.475, 0.476, 0.477, 0.477) being the fraction of unmasked pixels of the γ-ray105

map in the a-th energy bin. For the cross-correlation estimator with complex masks as we have here, an unambiguous106

definition of fsky is not possible. We tested two options: a geometric mean fsky = (faskyf
DES
sky )1/2 and the fsky relative107

to the overlap of the DES footprint with the Fermi-LAT unmasked sky. We comment more in the two alternatives108

below, but we anticipate that results on the SNR arising from the two choices exhibit only a minor change.109

For details on the Gaussian covariance matrix, see Section 5.1 in ref. [2]. Since our measurements are performed in110

real space, we compute the Legendre transform of Eq. (6) to return the real-space covariance matrix, Γ, with entries111

Γarϑ,bsϑ′ .112

As mentioned above, the dominant contribution to the covariance is represented by the shape noise term. In the113

Gaussian approximation, it takes the form of N rs(Cab` +N ab). In order to estimate this contribution more accurately,114

without resorting to theoretical approximations, we produce 2000 realisations of the noise directly from the data115

in real space. To this end, we rotate each galaxy in our catalogue by an independent random angle. The shear116

signal as measured from these rotated source catalogues represents a random realisation of shape noise (see e.g. refs.117

[7, 23, 24]).118

We complete the construction of the total covariance by adding a theoretical estimate of the large-scale structure119

term, Car` Cbs` +Crs` (Cab` +N ab). We assume it subdominant in the covariance budget, and this is verified a posteriori.120

The γ-ray auto-correlation Cab` entering in the theoretical estimate can be well-fitted by a simple model, given by a121

power-law plus a constant, i.e. Cab`,mod = Aab`
−αab+CabP (see e.g. ref. [10]). We fit the three parameters {Aab, αab, CabP }122

for each energy bin pair against the measurement of the auto-correlation power spectrum obtained by running the123
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FIG. 7: Comparison between the shape-noise standard deviation computed with the theoretical Gaussian approximation (yellow
error bars) and via the simulations (blue error bars) for two energy bins in the first DES redshift bin. We focus only on angular
scales above the Fermi-LAT PSF in the specific energy bin. Left panel: energy bin between 1.2 and 2.3 GeV. Right panel:
energy bin between 131 and 1000 GeV.

tool PolSpice (as in ref. [10]). Finally, the γ-ray noise term, N ab, is computed with the analytic estimator of eq. 5124

in ref. [25].125

The shear auto-correlation is derived using the galaxy redshift distributions described above, and adopting ΛCDM126

cosmology with parameter fiducial values from Planck [26]. The model is compatible with previous measurements127

[27].128

The large-scale structure part of the covariance is added to the shape noise term by using the following procedure.129

We create a set of 2000 simulated datasets from a multivariate Gaussian distribution with zero mean and covariance130

equal to the large-scale structure part of the theoretical covariance. Then, we add this simulated data to the shape131

noise realisations discussed above, thus obtaining 2000 samples containing both terms. These 2000 samples are then132

used to obtain the covariance matrix. The inverse of the covariance estimated such is a biased estimator of the inverse133

covariance, with the bias depending on the number of realisations, number of bins, and parameters of the model134

chosen to fit the data [28, 29]. We apply the Anderson-Hartlap correction in order to de-bias the inverse covariance135

(as done e.g. in Section 3 of ref. [30]).136

In order to validate our procedure, we compare the shape noise term obtained via the simulations with the analogous137

term from the theoretical estimate, N rs(Cab` +N ab). In Fig. 7, we show a comparison between the theoretical shape138

noise standard deviation and the results from the simulations, in the case of a low-energy bin (left panel) and a139

high-energy bin (right panel) combined with the lowest DES redshift bin. We see that the variance obtained with the140

two techniques approximately agrees, yet can differ due to complex masking effects present in the data [31]. When141

deviations are present, the variance obtained with simulations is typically larger, as expected. By adopting the shape142

noise term directly derived from the data, we ensure that the quoted errors and values for the goodness of fit are143

correct.144

We compare also the large-scale structure term with the covariance matrix obtained from simulations after rescaling145

the latter by Crs` /N rs. Results are in very good agreement with the choice of the effective parameter fsky entering146

Eq. (6) as the geometric mean of DES and Fermi-LAT sky coverage. Another value for the fsky parameter that is147

frequently used in the literature is the overlap between the two masks. We verified that, in this case, results would148

be just slightly modified, with the SNR becoming 4.8 instead of 5.3, as obtained in the main analysis.149
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THEORETICAL MODELS150

The harmonic-space (often referred to as ‘angular’) power spectrum of the cross-correlation between a map of γ-rays
in the ath energy bin and a map of gravitational shear in the rth redshift bin can be computed as:

Car` =

∫
dE dz

1

H(z)

W a
gamma(E, z)W r

shear(z)

χ(z)2
Pγδ

[
k =

`

χ(z)
, z

]
, (7)

where E is the γ-ray energy, and χ(z) is the comoving distance to redshift z, obeying dz/dχ = H(z) with H(z) the151

Hubble rate. Formally, the integrals extend over the whole γ-ray energy spectrum and from z = 0 to the horizon,152

but the window functions W a
gamma(E, z) and W r

shear(z) implement energy and redshift binning effectively reducing153

the integration range (for details, see next Subsections). Finally, Pγδ is the three-dimensional cross-power spectrum154

between a given γ-ray population sourcing the UGRB emission and the matter density contrast δ. It represents the155

three-dimensional correlation (in Fourier space) between what seeds the unresolved γ-ray emission and what sources156

the gravitational lensing effect, namely matter inhomogeneities. It is a function of both redshift and physical scale k,157

the modulus of the physical wavenumber. In the Limber approximation, k and the angular multipole ` are linked by158

k = `/χ(z). This approximation is valid for `� 1, which is the case of the present work.159

As mentioned before, the quantity measured from the data is the real-space cross-correlation of UGRB anisotropies
with tangential shear, which is related to the harmonic-space cross-power spectrum of Eq. (7) by a Legendre transform:

Ξ̂ar(θ) =
∑
`

2`+ 1

4π`(`+ 1)
Car` W a

` P
(2)
` (cos θ), (8)

with θ being the angular separation on the sky, P
(2)
` the Legendre polynomial of order two, and W a

` the Fermi-LAT160

PSF beam function in energy bin a, accounting for the finite resolution of the detector.161

Gravitational lensing window function162

The window function describes the mean distribution of the signal along the line of sight, in the given energy or
redshift bin. For the gravitational lensing effect, the window function is given by (see e.g. ref. [33]):

W r
shear(z) =

3

2
H2

0 Ωm(1 + z)χ(z)

∫ ∞
z

dz′
χ(z′)− χ(z)

χ(z′)
nr(z′), (9)

where H0 ≡ H(z = 0) is the Hubble constant, Ωm is the matter abundance in the Universe (sum of the dark matter163

and the baryon abundances, ΩDM and Ωb), and nr(z) is the redshift distribution of background galaxies in the lensing164

data set in bin r. The galaxy distribution depends on the data set and redshift cut, as described above.165

WIMP-sourced γ-rays window function166

The window function for UGRB anisotropies sourced by annihilations of dark matter particles reads [1, 34]:

W a
gamma,DM(E, z) =

(ΩDMρc)2

4π

〈σannv〉
2m2

DM

(1 + z)
3

∆2(z)
dNann

dE
[E(1 + z)] e−τ [E(1+z),z] , (10)

where ρc is the critical density of the Universe, mDM is the mass of the dark matter particle, and 〈σannv〉 denotes the167

velocity-averaged annihilation cross-section, assumed here to be the same in all dark matter haloes.168

Among the other ingredients, we have dNann/dE, indicating the number of photons produced per annihilation as169

a function of energy, and setting the γ-ray energy spectrum. We will consider it to be given by the sum of two170

contributions: prompt γ-ray production from dark matter annihilations (or decays); and inverse Compton scattering171

of dark matter produced electrons and positrons on CMB photons (we compute inverse Compton assuming negligible172

magnetic field and no diffusion for the produced electrons and positrons). Results of our analysis will be shown for two173

annihilation final states: bb̄ pairs, which yield a relatively soft spectrum of photons and electrons, mostly associated174

to hadronisation into pions and their subsequent decay; τ+τ−, which provides a harder spectrum, mostly associated175

to final state radiation of photons and decay of the muons produced by τ decay into electrons (with subsequent γ-ray176

emission through inverse Compton on CMB), with an additional semi-hadronic decay into pions [35–37].177
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Then, the optical depth τ in Eq. (10) accounts for attenuation of γ-rays by the extra-galactic background light, and
is taken from the literature[38]. Finally, the clumping factor ∆2 is related to the fact that the signal of annihilating
dark matter depends on the average of the square of the dark matter density; it is defined as (see e.g. ref. [1]):

∆2(z) ≡ 〈ρ
2
DM〉
ρ̄2

DM

=

∫ Mmax

Mmin

dM
dnh

dM
(M, z) [1 + bsub(M, z)]×

∫
d3x

ρ2
h(x|M, z)

ρ̄2
DM

, (11)

where: dnh/dM is the halo mass function [39]; Mmin is the minimal halo mass, which we fix to 10−6M�; Mmax is178

the maximal mass of haloes, for which we use 1018M�, although results are insensitive to the precise value assumed;179

ρh(x|M, z) is the dark matter density profile of a halo with mass M at redshift z, taken to follow a Navarro-Frenk-180

White profile [40]; and bsub encodes the ‘boost’ to the halo emission provided by subhaloes. To characterise the halo181

profile and the subhalo contribution, we need to specify their mass concentration. For the main haloes we follow ref.182

[41]. On the other hand, the description of the concentration parameter c(M, z) at small masses and for subhaloes183

is still an open issue and provides a source of uncertainty. We considered the two most updated analyses, from Ref.184

[11], where we assume dnsub/dMsub ∝M−2
sub (see also Ref. [42]), and from Ref. [12]. We show only the former, since185

the two descriptions just differ by roughly a constant factor (around 10) in the derived final value of the annihilation186

cross section.187

Astrophysical γ-ray sources window function188

Besides the possible particle dark matter emission, γ-rays in the UGRB are certainly produced by a number of
astrophysical sources. The most relevant γ-ray emitters include: blazars, misaligned active galactic nuclei, and star
forming galaxies. Their window function is given by:

W a
gamma,S(E, z) = χ(z)2

∫ Lmax(Fsens,z)

Lmin

dLΦS(L, z, E)
dNS

dE
(L, z)× e−τ [E(1+z),z] , (12)

where L is the γ-ray rest-frame luminosity in the energy interval 0.1 to 100 GeV, ΦS is the γ-ray luminosity function189

(GLF) of the source class S of astrophysical emitters included in our analysis, and dNS/dE is its observed (unabsorbed)190

energy spectrum. The upper bound, Lmax(Fsens, z), is the luminosity above which an object is resolved in the FL8Y191

and 3FHL catalogues, and consequently masked in our analysis. As we are interested in the contribution from192

unresolved astrophysical sources, only sources with luminosity smaller than Lmax are included. Conversely, the193

minimum luminosity, Lmin, depends on the properties of the source class under consideration.194

We consider a unified blazar model combining BL Lacertae and flat-spectrum radio quasars as a single source class.195

The GLF and energy spectrum are taken from ref. [43] where they are derived from a fit to the properties of resolved196

blazars in the third Fermi-LAT catalogue [44]. In the case of misaligned AGNs, we follow ref. [45], who built the GLF197

from the radio luminosity function of misaligned AGNs. We consider their best-fitting relation between the γ-ray198

and radio luminosities L -Lr,core and assume a power-law spectrum with index αmAGN = 2.37. To derive the GLF of199

star-forming galaxies, we start from the infrared luminosity function [46] (adding up spiral, starburst, and SF-AGN200

populations of their Table 8). Then we relate γ-ray and infrared luminosities using the best-fitting L-LIR relation201

from ref. [47]. The energy spectrum is taken to be a power-law with spectral index αSFG = 2.7.202

Three-dimensional seed power spectra203

To compute the three-dimensional cross-power spectrum Pγδ between the clustering of a given population of γ-ray204

emitters and the matter density field, we follow the halo model formalism (e.g. ref. [48]), and write Pγδ = P 1h
γδ +P 2h

γδ .205

Below we derive the 1- and 2-halo terms for the various cases (see also ref. [1]).206



8

Dark matter γ-ray sources207

The 3D cross power spectrum between γ-ray emission from particle dark matter and matter density is given by:

P 1h
γDMδ(k, z) =

∫ Mmax

Mmin

dM
dnh

dM
(M, z) v̂γDM(k|M, z) ûδ(k|M, z) (13)

P 2h
γDMδ(k, z) =

[∫ Mmax

Mmin

dM
dnh

dM
(M, z) bh(M, z) v̂γDM

(k|M, z)

][∫ Mmax

Mmin

dM
dnh

dM
(M, z) bh(M, z)ûδ(k|M, z)

]
P lin(k, z),

(14)

where P lin is the linear matter power spectrum, bh is the linear bias (taken from the model of ref. [39]), and ûδ(k|M, z)208

is the Fourier transform of the matter halo density profile, i.e. ρh(x|M, z)/ρ̄DM. The Fourier transform of the γ-ray209

emission profile from annihilating dark matter is described by v̂γDM
(k|M, z), and it is related to the square of the dark210

matter density profile. For its precise form, see the appendix of ref. [49].211

Astrophysical γ-ray sources212

The cross-correlation of the matter density with astrophysical γ-ray sources is given by the 3D power spectrum:

P 1h
γSδ(k, z) =

∫ Lmax

Lmin

dL ΦS(L, z)
〈fS〉

dF

dE
(L, z) ûδ [k|M(L, z), z] (15)

P 2h
γSδ(k, z) =

[∫ Lmax

Lmin

dL bS(L, z) ΦS(L, z)
〈fS〉

dF

dE
(L, z)

][∫ Mmax

Mmin

dM
dn

dM
bh(M, z)ûδ(k|M, z)

]
P lin(k, z), (16)

where bS is the bias of γ-ray astrophysical sources with respect to the matter density, for which we adopt bS(L, z) =213

bh[M(L, z)]. That is, a source with luminosity L has the same bias bh as a halo with mass M , with the relation214

M(L, z) between the mass of the host halo M and the luminosity of the hosted object L taken from ref. [2]. The215

mean flux 〈fS〉 is defined as 〈fS〉 =
∫

dLdF/dEΦS.216

BLINDING AND UNBLIDING PROCEDURE217

The analysis has been performed by adopting a blinding technique, which relied on the execution of the cross-218

correlation analysis on nine combinations of data – one true and the other artificial. For both γ-rays and gravitational219

lensing we adopted 3 data variants, one of which was the true one. After the data were created, they were randomly220

assigned symbolic names. The analysis was then performed on all 9 combinations of data, without knowing which221

was the true version.222

The aim of the blinding was to ensure that our analysis would not falsely detect a signal. Criteria to test the blind223

analysis were defined beforehand. After recording the results of the blind analysis and agreeing on its interpretation,224

the symbolic name assignments were revealed.225

The construction of the versions of the data and the unblinding procedure is discussed below.226

Blinded γ-ray maps227

The γ-ray maps adopted in the blind analysis are:228

• G0: The true Fermi-LAT γ-ray maps.229

• G1: Poissonian random map with a constant expected photon count over all the unmasked pixels, i.e. in each230

pixel of the map we extract a random number from a Poissonian distribution with fixed mean. The mean was231

computed by taking the average counts of the real maps in the unmasked pixels in each energy bin, and then232

multiplying it by a factor of 10 in order to simulate improved statistics. The produced counts maps are then233

transformed into flux maps by the usual procedure of dividing them by the mean detector exposure in each234

energy bin and by the pixel area.235
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• G2: Random reshuffle of all unmasked pixels of the real map in each energy bin.236

Once produced, the three sets of maps have been blindly and randomly assigned names A, B and C and the237

association stored.238

Blinded shear maps239

The shear signals adopted in the blind analysis are:240

• K0: The true DES tangential component of galaxy shapes (this is the shear component for which we are looking241

for the cross-correlation signal when combined with the Fermi maps).242

• K1: The cross-component (also known as B-modes or γ×) of galaxy shapes (which instead should yield pure243

shape noise and a null detection when correlated with the Fermi maps).244

• K2: A linear combination of the null signal given by K1 and the cross-correlation signal of redMaGiC galaxies245

at redshift z = 0.2 − 0.45 [51], with the linear combination coefficients chosen such that the signal should246

be neither plainly visible nor certainly undetectable. Since the correlation between redMaGiC galaxies and247

gravitational shear is significant, this mock data set is meant to inject in our analysis a situation potentially248

(but not necessarily) leading to what could be seen as a detection.249

Once produced, the three versions of the data have been blindly and randomly assigned names X, Y and Z and the250

association stored. We note here that the case K1 provides the cross-shear null test investigated in previous attempts251

of measurement of the signal [3–6].252

Blind analysis and unblinding procedure253

The nine versions of cross-correlations results were all processed and vetted, with no team member aware of which254

combination represented the true data vector. We proceeded to the unblinding only once a number of (previously255

defined) criteria where satisfied: essentially, we needed to have at least one set for each γ-ray map compatible with256

noise (because of K1) and one with some (possibly weak) signal (because of K2). This has been done by evaluating257

the χ2 differences defined in the main text as the statistical estimator. In order to evaluate the statistical significance258

of the obtained ∆χ2, we derived the distribution of various cases from multivariate Gaussian realizations. In the259

following, we summarise the main and most relevant results.260

We note one substantial change to the analysis after unblinding. Tests with versions of the Fermi-LAT data that261

differ in the subtraction of a Galactic foreground model revealed a bug in our treatment of weak lensing shear around262

pixels with negative foreground-subtracted flux. All results in the main text of this paper have been updated, leading263

to an increase in signal-to-noise ratio from 4.5 to 5.3. The error did not affect our unblinding choices, particularly264

because it did not affect shear measurements around the G1 and G2 maps, which have no pixels with negative flux.265

The ∆χ2 between null signal and models for all the combinations analyzed are reported in Table I, for both the266

phenomenological and physical models. By looking at the phenomenological model analysis, the table shows that the267

majority of cases have a very low ∆χ2, as expected from the combination of the data sets discussed in the previous268

Sections. Specifically, for each of the versions of the blinded γ-ray maps, at least one of the three shear data vectors is269

consistent with pure shape noise. Two cases exhibit a somewhat large ∆χ2: AZ and CX. There are two possibilities270

in the subsets data combination that could provide such a situation: the combination of any version of the γ-ray271

map with the redMaGiC galaxy signal or the combination of the true Fermi and the true DES data, if a signal272

is in fact present (combination G0-K0). These results, as well as those discussed below, remain valid also after the273

post-unblinding correction mentioned above.274

By looking at the physical case results, we notice that the largest ∆χ2’s occur for CX, while AZ is consistent with275

no signal. The fact that AZ cannot be fitted by the physical model implies this case does not provide a real signal.276

Let’s comment that in this part of the analysis, for the physical case we used a reference model (further discussed in277

the next Section) which assumes for simplicity the normalisation of the 1-halo and 2-halo terms for blazars to be equal278

(A1h
BLZ = A2h

BLZ) and which refers to a DM particle annihilating into hadronic states, specifically into a b̄b pair. The279

null χ2 distribution and the distribution of expected ∆χ2 for the reference physical model are reported in Fig. 8. They280

are obtained by drawing from a multivariate Gaussian with mean given by the reference model and covariance given281
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Map combination

AX AY AZ BX BY BZ CX CY CZ

∆χ2
phe 1.17 0.27 29.3 4.09 0.26 0.60 27.5 (21.1) 1.56 (1.27) 1.50 (1.90)

∆χ2
phys −0.06 0.04 2.58 3.09 −0.02 3.33 18.2 (9.91) 0.65 (0.15) 2.06 (1.72)

TABLE I: ∆χ2
mod computed for the physical and phenomenological models with respect to the null hypothesis for the various

combinations of the blind analysis. Only the combination of true γ-ray and shear data (CX) and the low-noise mock γ-ray
map with an injected artificial shear signal (AZ) show a large preference for the model vs the null hypothesis (no signal). The
physical model adopted in the blind analysis is the reference model discussed in the text. For CX, CY and CZ, we show in
parenthesis also the values considered in the blinding phase, before the post-unblinding correction mentioned in the text.

by the same covariance used in the data analysis. The null χ2 distribution peaks around 433. The ∆χ2 distribution282

is rather broad and implies that ∆χ2 of all variants reported in Table I are potentially compatible with the true case,283

since their ∆χ2 is well inside the distribution in Fig. 8. The peak of the distribution indicates that the expected ∆χ2
284

for the reference model is around 28. Fig. 8 shows as shaded areas the χ2 and ∆χ2 distributions obtained before the285

post-unblinding correction was applied. No difference is obtained for the χ2, while for the ∆χ2 a distribution peaked286

at larger values of ∆χ2 is obtained after applying the correction, as a consequence of the increased sensitivity to the287

presence of a signal. The results are consistent with their mutual data sets and show that the bug did not lead to288

erronoeus conclusions.289

The unblinding revealed the following identifications: A −→ G1, B −→ G2, C −→ G0, X −→ K0, Y −→ K1, Z −→ K2. The290

coefficients of the linear combination in K2 were such that the injected signal was rather small, and therefore not easily291

identifiable. Moreover, being a signal due to the cross-correlation between the galaxy distribution and gravitational292

shear, it does not have to be compatible with our physical models (constructed specifically for the cross-correlation293

with γ-rays), while instead it could be well described by the phenomenological model (since it contains a generic 1-halo294

and 2-halo terms).295

From all these considerations, we see first of all that the results shown in Table I are fully compatible with expec-296

tations: there is no “spurious” detection, while the presence of a signal occurs only for those cases for which this is297

potentially possible. In fact, the CX case (the one corresponding to the combination of the true Fermi and DES data)298

is the only one that presents a high ∆χ2 for both the phenomenological and physical model. The ∆χ2 is larger in the299

case of the phenomenological model since the latter has more freedom to adapt to data. CY and CZ are compatible300

with null signal. The smallness of the injected signal in Z makes this case essentially indistinguishable from pure301

noise. Finally, the null χ2 for CX is 468, compatible with the expectations of the distribution of Fig. 8.302

None of the combinations involving A and B maps present a statistically significant ∆χ2 either with respect to the303

physical or the phenomenological model, except for the phenomenological fit for the AZ case. We remind that map304

A is built from Poissonian γ-ray noise with enhanced photon count statistics. The latter means that the size of the305

errors is significantly reduced, and now the “small” injected signal is enough to provide a significant detection. On306

the other hand, the “artificial” nature of the signal is revealed by the fact that the physical model is not able to fit307

it. The freedom we left to the phenomenological model is instead large enough to make it able to include the signal308

of cross-correlation with galaxies.309

In the next Section we outline the specifications of the reference model used for the blind analysis.310

REFERENCE MODEL311

In the pipeline of the analysis before unblinding, we adopted a physical model with blazars, mAGN, SFG and DM312

annihilating into a b̄b pair, with a common normalization for the 1-halo and 2-halo terms for blazars, i.e., A1h
BLZ = A2h

BLZ.313

This was the first obvious options, since it adopts a nominal model for the blazar terms and minimises the number of314

free parameters. As seen from the triangle plot in Fig. 9, the parameter scan for the CX case provides upper bounds315

for the three astrophysical components and a hint for the presence of a DM signal is found at the 3.1σ C.L., with316

best-fit parameters mDM = 302 GeV and normalization of the annihilation cross section relative to the natural scale317

ADM = 105. Overall, the statistical significance of this reference physical model is SNR = 4.2, with ∆χ2= 18.2 (for318

brevity, in this Section, we only quote the significance obtained after the post-unbliding correction mentioned above).319

320

In the right panel of Fig. 9, we show the cross-correlation signal for the best fit of this reference physical model,321

compared to the data points. While large scales are well fitted by the model, a clear lack of power is present at small322
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FIG. 8: Distribution of the expected χ2 (left) and ∆χ2 (right) for the reference physical model used in the Monte Carlo Markov
Chain analysis during the blind phase (shades areas) and the same distributions obtained after the post-unbliding correction
mentioned above (blue areas). The normalization of the components in the model were chosen in order to reproduce the total
UGRB emission. The meaning of the plot is to show the expectations for the null χ2 with the way of estimating the covariance
used in this work, and for the ∆χ2 of the true case for the purpose of blinded tests. The ∆χ2 should be compared to the values
reported in the second line of Table I.

angular scales. From Fig. 2 of the main text we instead know that in the phenomenological model, the PSF-like323

1-halo term can account for the measured CCF at small scales properly. This implies that the reference model, in its324

simplest formulation, is excessively limiting the ability to adapt to the data: a larger 1-halo term is needed.325

Considering that the data require a hard-spectrum, not compatible with astrophysical components other than326

blazars, we improve the modelling by allowing the 1-halo and 2-halo terms for blazars to be independently normalised.327

In this case, the small scale correlation is well fitted, and a peak in the posterior distribution for the 1-halo blazar328

component arises (see Fig. 3 of the main text). This improves the SNR from 4.2 to 5.2, while the dark matter329

component loses some of its significance with respect to the original reference case.330

We have also investigated variations of the dark matter model in terms of considering different annihilation channels,331

as it is usually done in dark matter analyses. We found a preference for leptonic annihilation, with the preferred option332

being annihilation into τ -lepton pairs: this increases the global SNR to 5.2, with a preference for the presence of a333

dark matter signal at the 2.8σ confidence level. This is the model that we report in the main text. In the case the334

DM component is not included, we obtain ∆χ2 = 16.5, as compared to ∆χ2 = 27 for the case with DM.335

Concerning the blazar 1-halo component, this depends on the relation between the blazar luminosity and the host-336

halo mass, as can be seen in Eq. 15. In the reference model used for the blind analysis this relation has been taken337

from ref. [2], where it was derived by linking the γ-ray luminosity of a blazar to the mass of the supermassive black338

hole powering the AGN and then relating the mass of the black hole to the mass of the DM halo. Combining these339

pieces together, this peocedure gives M(L) = 2 × 1013M� (L/1047erg s−1)0.23(1 + z)−0.9, where L is the rest-frame340

luminosity of blazars in the energy range 0.1 to 100 GeV. Assuming this relation to be a power-law and fixing the341

redshift dependence as in the reference model (since, as we already mentioned, it is weakly constrained by data, and342

we therefore do not gain meaningful insight from the fit), we explore in the left panel of Fig. 10 which M(L) relation343

would be needed in order to reproduce the 1-halo term of our refined model. The plot shows the best-fit relation and344

its 68% C.L. contours in the plane (α,M0) for a relation M(L) = M0 (L/1047erg s−1)α(1+z)−0.9. Our results suggest345

the average mass of a halo hosting a blazar is larger than the one adopted in [2], and most likely above 1014M�. The346

cross-correlation signal with weak lensing seems therefore to be dominated by blazars residing in cluster-size halos.347

In the right panel of Fig. 10, we show with a few examples that modifying the M(L) relation has a dramatic impact348

on the the 1-halo power spectrum, while it only mildly affects the 2-halo term.349
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