The Enantioselective Organocatalytic 1,4-Addition of Electron-Rich Benzenes to α, β-Unsaturated Aldehydes.

Nick A. Paras and David W. C. MacMillan*
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

Supporting Information

General Information. Commercial reagents were purified prior to use following the guidelines of Armarego and Perrin. ${ }^{1}$ Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Methylene chloride was distilled from calcium hydride prior to use. CHCl_{3} was distilled from calcium sulfate and potassium carbonate and passed through an alumina plug prior to use. Chromatographic purification of products was accomplished using forced-flow chromatography on ICN 60 32-64 mesh silica gel 63 according to the method of Still. ${ }^{2}$ Thin-layer chromatography (TLC) was performed on EM Reagents 0.25 mm silica gel $60-\mathrm{F}$ plates. Visualization of the developed chromatogram was performed by fluorescence quenching, anisaldehyde stain, potassium permanganate stain or dinitrophenylhydrazine stain.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Varian Mercury 300 spectrometers (300 MHz and 75 MHz respectively) as noted, and are internally referenced to residual protio solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$, coupling constant (Hz), integration and assignment. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift ($\delta \mathrm{ppm}$). IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Mass spectra were obtained from the UC Irvine Mass Spectral facility. High performance liquid chromatography (HPLC) was performed on Hewlett-Packard

[^0]1100 Series chromatographs using Chiralpak AD column ($0.46 \times 25 \mathrm{~cm}$) and AD guard (0.46×5 cm). Optical rotations were taken using a Jasco P-1010 polarimeter (WI lamp, $589 \mathrm{~nm}, 25^{\circ} \mathrm{C}$).

Catalyst Preparation: (2S,5S)-5-Benzyl-2-tert-butyl-3-methylimidazolidin-4-one (2).
To a solution of ethanolic $\mathrm{MeNH}_{2}(8.0 \mathrm{M}, 50 \mathrm{ml})$ was added (S) -phenylalanine methyl ester $(23.0 \mathrm{~g}, 130 \mathrm{mmol})$. The resulting solution was stirred at room temperature until the amino ester was judged to be consumed by TLC analysis. The resulting solution was then concentrated to provide (S)-phenylalanine N-methyl amide ($18 \mathrm{~g}, 82 \%$ yield) as a white solid. To a flask containing (S)-phenylalanine N-methyl amide ($8.9 \mathrm{~g}, 50 \mathrm{mmol}$) was added THF (100 ml), trimethylacetaldehyde ($5.4 \mathrm{~g}, 50 \mathrm{mmol}$), $\mathrm{FeCl}_{3}(1.7 \mathrm{~g}, 10 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(5.0 \mathrm{~g})$. The resulting mixture was stirred at room temperature for 36 h , then washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organics were concentrated and the resulting residue was treated with HCl (27 $\mathrm{mL}, 1 N$ in ether). The resulting hetereogenous mixture was filtered to removed the undesired trans isomer $\bullet \mathrm{HCl}$ salt and the resulting solution was concentrated. The residue was recrystallized (9:1 pentane / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the product as a crystalline solid ($2.88 \mathrm{~g}, 23 \%$ yield, $>99 \%$ ee). IR (film) $3343,2958,1605,1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-$ 7.17 (m, 5H, ArH), $4.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 3.72-3.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.13(\mathrm{dd}, J=4.1,13.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.92\left(\mathrm{dd}, J=7.7,13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 0.82\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.3,138.0,129.8,128.7,126.8,82.7,77.8,77.4,76.9,59.7,38.6$, 35.4, 31.0, 25.7; $[\alpha]_{\mathrm{D}}=-39.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio was determined by HPLC using a Chiralpak OD-H and OD guard column ($3.0 \% i-\mathrm{PrOH} /$ hexanes, $1 \mathrm{~mL} / \mathrm{min}$); ($5 S$) isomer $\mathrm{t}_{r}=16.7 \mathrm{~min},(5 R)$ isomer $\mathrm{t}_{r}=20.1 \mathrm{~min}$.

The trans $(2 R, 5 S)$ isomer of catalyst 2 can be converted to the desired cis $(2 S, 5 S)$ isomer as follows: A solution of trans-($2 R, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one $\cdot \mathrm{HCl}$ salt ($6.0 \mathrm{~g}, 27.9 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was washed with saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ before the organics were separated and concentrated. To a flask containing the resulting residue was added THF (50 ml) and $\mathrm{FeCl}_{3}(0.95 \mathrm{~g}, 5.6 \mathrm{mmol})$. The resulting solution was maintained at room temperature for 14 h , then washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organics were concentrated and the resulting residue was treated with $\mathrm{HCl}(13 \mathrm{~mL}, 1 N$ in ether $)$. The resulting hetereogenous mixture was filtered to removed the undesired trans isomer $\cdot \mathrm{HCl}$ salt and the
resulting solution was concentrated. The residue was recrystallized (9:1 pentane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the product as a crystalline solid $(1.65 \mathrm{~g}, 22 \%$ yield, $>99 \% \mathrm{ee})$.
(R)-3-(4-Dimethylamino-2-methoxy-phenyl)-butyraldehyde (Table 1, entry 1). To a 2-dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($12.3 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.100$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4-dioxane, $12.5 \mu \mathrm{~L}, 0.050 \mathrm{mmol}, 0.100$ equiv), and N, N-dimethyl- m-anisidine (73.3 $\mu \mathrm{L}, 0.500 \mathrm{mmol}, 1.00$ equiv). The solution was cooled to $-40^{\circ} \mathrm{C}$ before crotonaldehyde (124 $\mu \mathrm{L}, 1.50 \mathrm{mmol}, 3.00$ equiv) was added. After 36 h , the reaction mixture was subjected directly to silica gel chromatography. Elution with 20% EtOAc in hexanes followed by concentration and removal of residual crotonaldehyde under vacuum afforded the product as a colorless oil in 86% yield ($94.9 \mathrm{mg}, 0.429 \mathrm{mmol}$); 89% ee. IR (film) 2958, 2874, 2834, 2719, 1721, 1615, 1568, 1516, 1462, 1441, 1352, 1238, 1133, 1034, $979.6,814.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.67(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.31(\mathrm{dd}, J=2.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}), 6.27(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63(\mathrm{dq}, J=7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH})$, $2.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.68\left(\mathrm{ddd}, J=2.5,6.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.55(\mathrm{ddd}, J=2.8,7.7,15.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $1.27\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.7,157.8,150.9$, $127.5,121.7,15.1,96.6,55.4,51.2,41.0,27.6,20.9$. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 222.1494$ for $[\mathrm{M}+\mathrm{H}]^{+}$, found $\mathrm{m} / \mathrm{z} 222.1497 .[\alpha]_{\mathrm{D}}=-9.5(\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (3.0% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=21.6 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=23.1 \mathrm{~min}$.

Determination of the absolute configuration (R)-3-(4-Dimethylamino-2-methoxy-phenyl)-butyraldehyde by correlation to (S)-2-phenyl-butanol. A solution of (R)-3-(4-dimethylamino-2-methoxy-phenyl)-butyraldehyde (520 mg , $2.35 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was added to a stirring solution of sodium borohydride $(86.9 \mathrm{mg}, 2.35 \mathrm{mmol}, 1.00$
equiv) in ethanol (5.0 mL). After 5 min , the reaction was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was separated and washed with saturated solutions of NaHCO_{3} and NaCl . The resulting solution was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual oil ($525 \mathrm{mg}, 2.35 \mathrm{mmol}, 1.00$ equiv) was exposed to tert-butyldimethylsilyl chloride ($700 \mathrm{mg}, 4.70 \mathrm{mmol}, 2.00$ equiv), triethylamine ($0.70 \mathrm{~mL}, 5.0$ mmol, 2.1 equiv), and DMAP (10 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. After 1 h , the reaction mixture was subjected directly to silica gel chromatography. Gradient elution with 2-20\% EtOAc in hexanes followed by concentration in vacuo afforded $\mathbf{S} 1$ as a colorless oil in 72% yield ($568 \mathrm{mg}, 1.68$ $\mathrm{mmol}),[\alpha]_{\mathrm{D}}=-13.3\left(\mathrm{c}=1.12, \mathrm{CHCl}_{3}\right)$. This oil was dissolved in $\mathrm{CH}_{3} \mathrm{I}(0.52 \mathrm{~mL}, 8.4 \mathrm{mmol}, 5$ equiv) and stirred for 10 h . The resulting mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, filtered and dried in vacuo to provide a white microcrystaline solid in 88% yield ($706 \mathrm{mg}, 1.47 \mathrm{mmol}$). The resulting ammonium salt ($479 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) was dissolved in freshly condensed liquid ammonia (20 ml) at $-78^{\circ} \mathrm{C}$ and treated with sodium ($72 \mathrm{mg}, 3.0 \mathrm{mmol}, 3.0$ equiv). After 3 min , the reaction mixture was quenched with excess methanol, diluted with ether $(20 \mathrm{~mL})$ and allowed to warm to ambient temperature. The ethereal solution was washed with aqueous $\mathrm{HCl}(1 \mathrm{~N})$ and saturated NaCl and subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed in vacuo and this oil was exposed to refluxing $48 \% \mathrm{HBr}$. After 8 h the reaction was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and water. The aqueous layer was extracted three times with EtOAc and the combined organics were washed with saturated NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual oil was purified by silica gel chromatography (50\% EtOAc in hexanes) to afford $6.40 \mathrm{mg}(38 \mu \mathrm{~mol}, 3.8 \%$ yield from ammonium salt) of a colorless oil that was spectroscopically identical in all respects to the compound (S)-2-phenyl-butanol ${ }^{3}$. $[\alpha]_{\mathrm{D}}$ $($ literature $)=+16(\mathrm{c}=25$, acetone $) ;[\alpha]_{\mathrm{D}}($ observed $)=-6.1(\mathrm{c}=0.128$, acetone $)$, the opposite sign of the rotation indicating that we had produced the enantiomer of the known compound.
(R)-3-(4-Pyrolidin-1-yl-phenyl)-butyraldehyde (Table 1, entry 2). To a 2-dram vial equipped with a magnetic stir bar was added (2S,5S)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($49.3 \mathrm{mg}, 0.200 \mathrm{mmol}, 0.200$ equiv) $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.33 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4-dioxane, $50 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 0.200$ equiv), and 1-phenylpyrrolidine ($144 \mu \mathrm{~L}$, $1.00 \mathrm{mmol}, 1.00$ equiv). The solution was cooled to $-20^{\circ} \mathrm{C}$ before crotonaldehyde ($166 \mu \mathrm{~L}, 2.00$

[^1]mmol, 2.00 equiv) was added. After 48 h , the reaction mixture was subjected directly to silica gel chromatography. Elution with 20% EtOAc in hexanes followed by concentration in vacuo and removal of residual crotonaldehyde under high vacuum afforded the product as a pale yellow oil in 70% yield ($147 \mathrm{mg}, 0.676 \mathrm{mmol}$); 87% ee. IR (film) 2962, 2927, 2829, 2717, 1721, 1616, $1522,1372,814.0 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.71$ (t, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), $7.10(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.32-3.21\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArCH}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.71$ (ddd, $J=2.2,7.1,16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 2.61 (ddd, $J=2.2,7.7,16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 2.03$1.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathbf{C H}_{2}\right)_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.7,146.7,132.0,127.5,111.8$, $52.3,47.8,33.8,25.7,22.8$. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}\right)$ requires m / z 217.1467, found m / z 217.1467. $[\alpha]_{D}=-33.9\left(c=0.539, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (6.0% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); R isomer $\mathrm{t}_{\mathrm{r}}=$ $20.9 \mathrm{~min}, S$ isomer $\mathrm{t}_{\mathrm{r}}=24.4 \mathrm{~min}$.

Determination of the absolute configuration (R)-3-(4-Pyrolidin-1-yl-phenyl)butyraldehyde by correlation to (R)-3-(4-Pyrolidin-1-yl-phenyl)-butanol-tertbutyldimethylsilyl ether. A solution (R)-3-(4-pyrolidin-1-yl-phenyl)-butyraldehyde (201 mg , $0.923 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to a stirring solution of sodium borohydride ($37.1 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.08$ equiv) in ethanol (3.0 mL). After 5 min , the reaction was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was separated and washed with saturated solutions of NaHCO_{3} and NaCl . The resulting solution was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual oil ($201 \mathrm{mg}, 0.915 \mathrm{mmol}$, 1.00 equiv) was exposed to tert-butyldimethylsilyl chloride ($276 \mathrm{mg}, 1.83 \mathrm{mmol}, 2.00$ equiv), triethylamine ($0.28 \mathrm{~mL}, 2.0 \mathrm{mmol}, 2.2$ equiv), and DMAP (10 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. After one hour, the reaction mixture was subjected directly to silica gel chromatography. Elution with $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes followed by concentration of two fractions in vacuo afforded 35 mg of $\mathbf{S 3}$ as a colorless oil ($0.10 \mathrm{mmol}, 11 \%$ yield) that was spectroscopically identical in all respects to $\mathbf{S 3}$
generated below from (S)-4-benzoyloxy-3-(4-pyrolidin-1-yl-phenyl)-butyraldehyde. $[\alpha]_{\mathrm{D}}$ $($ reference $)=-28.7\left(\mathrm{c}=1.20, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}($ observed $)=-34.8\left(\mathrm{c}=0.994, \mathrm{CHCl}_{3}\right)$.
(R)-3-(4-Dimethylamino-2-methoxy-phenyl)-pentanal (Table 1, entry 3). To a 2dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($24.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.200$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{ml}$), HCl (as a 4 N solution in 1,4-dioxane, $25.0 \mu \mathrm{~L}, 0.100 \mathrm{mmol}, 0.200$ equiv), and N, N-dimethyl- m-anisidine (73.3 $\mu \mathrm{L}, 0.500 \mathrm{mmol}, 1.00$ equiv). The solution was cooled to $-50^{\circ} \mathrm{C}$ before pentenal $(98.0 \mu \mathrm{~L}, 1.00$ mmol, 2.00 equiv) was added. After 62 h , the reaction mixture was subjected directly to silica gel chromatography. Elution with 20% EtOAc in hexanes followed by concentration and removal of residual pentenal under vacuum afforded the product as a colorless oil in 68% yield ($79.5 \mathrm{mg}, 0.338 \mathrm{mmol}$); 88% ee. IR (film) 2959, 2926, 2871, 2839, 2800, 2721, 1718, 1616, $1569,1517,1351,1237,1136,1034,979.5,812.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.63(\mathrm{t}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.30(\mathrm{dd}, J=2.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.26(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.40(\mathrm{dt}, J=7.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 2.94(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.66\left(\mathrm{dd}, J=2.7,7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.72-1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.83(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 203.8, 158.2, 150.6, 128.4, 119.8, 105.0, 96.5, 55.5, 49.7, 1.1, 34.9, 28.4, 12.4. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}\right)$ requires m / z 236.1650 for $[\mathrm{M}+\mathrm{H}]^{+}$, found $m / z 236.1649 .[\alpha]_{\mathrm{D}}=-18.9\left(\mathrm{c}=0.970, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (3.0\% ethanol/hexanes, 1 $\mathrm{mL} / \mathrm{min}) ; S$ isomer $\mathrm{t}_{\mathrm{r}}=11.5 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=12.4 \mathrm{~min}$.

Determination of the absolute configuration of (R)-3-(4-dimethylamino-2-methoxy-

 phenyl)-pentanal by correlation to (\boldsymbol{R})-3-ethyl-o-methoxy-dihydrocinnamic acid. A solution of (R)-3-(4-dimethylamino-2-methoxy-phenyl)-pentanal ($318 \mathrm{mg}, 1.35 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added to a stirring solution of sodium borohydride $(50.1 \mathrm{mg}, 1.35 \mathrm{mmol}$, 1.00 equiv) in ethanol (5.0 mL). After 5 min , the reaction was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was then separated and washed with saturated solutions of NaHCO_{3} and NaCl . The resulting solution was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual oil was exposed to acetic anhydride ($0.254 \mathrm{~mL}, 2.70$ mmol, 2.00 equiv), triethylamine ($0.42 \mathrm{~mL}, 3.0 \mathrm{mmol}$, 2.2 equiv), and DMAP (10 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5.0 \mathrm{~mL})$. After one hour, the reaction mixture was subjected directly to silica gel chromatography. Elution with 25% EtOAc in hexanes followed by concentration in vacuo afforded 370 mg ($1.32 \mathrm{mmol}, ~ 98 \%$ yield) of a colorless oil which was treated with iodosylbenzene ($1.16 \mathrm{~g}, 5.28 \mathrm{mmol}, 4.00$ equiv) and trimethylsilylazide ($0.74 \mathrm{ml}, 5.6 \mathrm{mmol}, 4.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$ according to the procedure of Jørgensen ${ }^{4}$. After 2 h , the reaction was warmed to room temperature and treated with THF and saturated aqueous NaHCO_{3}. The resulting mixture was stirred for 12 h then it was diluted with EtOAc, the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. This residue was dissolved in a mixture of ethanol/AcOH ($50 \mathrm{~mL}: 7.5 \mathrm{~mL}$) and treated with excess $\mathrm{NaNO}_{3}(0.93 \mathrm{~g}$ in 15 mL H O) and $\mathrm{NaHSO}_{3}\left(1.40 \mathrm{~g}\right.$ in $\left.15 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$. This mixture was extracted with CHCl_{3} and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting residue was dissolved in methanol (2.0 mL) and treated with an excess of $\mathrm{NaOH}(108 \mathrm{mg})$. After 15 min , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ then the organic layer was washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Silica gel chromatography of the residue ($5-50 \%$ EtOAc in hexanes) afforded 41 mg of a colorless oil (0.21 mmol, 16% yield from dialkyl aniline). Finally, this material was taken up in EtOAc (3.4 mL) and added to a suspension of activated $\mathrm{PtO}_{2}(150 \mathrm{mg}, 0.060 \mathrm{mmol}, 0.30$ equiv) in $\mathrm{H}_{2} \mathrm{O}$ /isopropanol ($0.7 \mathrm{ml}: 0.4 \mathrm{~mL}$). This suspension was stirred under an O_{2} atmosphere at 40 ${ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was then filtered through Celite with additional EtOAc. The resulting solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford 19.2 mg of a clear oil that was spectroscopically identical in all respects to the known compound (R)-3-ethyl-o-[^2]methoxy-dihydrocinnamic acid. ${ }^{5}[\alpha]($ literature $)=-21.3\left(\mathrm{c}=11.2, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}($ observed $)=$ -3.1 ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$).
(S)-4-Benzoyloxy-3-(4-dimethylamino-2-methoxy-phenyl)-butyraldehyde (Table 1, entry 4). To a 2 -dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($24.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.100$ equiv), N, N-dimethyl- m anisidine hydrochloride ($18.8 \mathrm{mg}, 0.100 \mathrm{mmol}$., 0.100 equiv), CHCl_{3} (1.00 ml), and $N, N-$ dimethyl- m-anisidine ($132 \mu \mathrm{~L}, 0.900 \mathrm{mmol}, 0.900$ equiv). The solution was cooled to $-20^{\circ} \mathrm{C}$ before 4-benzoyloxy-crotonaldehyde ($0.380,2.00 \mathrm{mmol}, 2.00$ equiv) was added as a solid. After 24 h , the reaction mixture was subjected directly to silica gel chromatography. Gradient elution with $10-25 \%$ EtOAc in hexanes followed by concentration and removal of residual pentenal under vacuum afforded the product as a colorless oil in 89% yield ($304 \mathrm{mg}, 0.889 \mathrm{mmol}$); 92% ee. IR (film) 2940, 2892, 2836, 2724, 1719, 1615, 1518, 1273, 1240, 1117, $712.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.74$ (t, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 8.01 (ddd, $J=0.6,1.1,6.3 \mathrm{~Hz} ., 2 \mathrm{H}, \mathrm{ArH}$), 7.58-7.40 (m, 3H, ArH), 7.08 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.30(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.25$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 4.51 (dd, $\left.J=5.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.42(\mathrm{dd}, J=8.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 4.08-3.98 (m, 1H, ArCH), $3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 2.98-2.80 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $2.95(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{N}\left(\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.2,166.6,158.2,151.3,133.1,130.3,129.8,129.0$, $128.6,115.6,104.9,96.3,67.9,55.4,46.3,50.0,33.5$. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}\right)$ requires $m / z 342.1705$ for $[\mathrm{M}+\mathrm{H}]^{+}$, found $m / z 342.1705 .[\alpha]_{\mathrm{D}}=-16.9(\mathrm{c}=0.751$, CHCl_{3}). The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); R isomer $\mathrm{t}_{\mathrm{r}}=15.2 \mathrm{~min}, S$ isomer $\mathrm{t}_{\mathrm{r}}=24.0 \mathrm{~min}$.

Determination of the absolute configuration (S)-4-Benzoyloxy-3-(4-dimethylamino-2-methoxy-phenyl)-butyraldehyde by correlation to (R)-3-tert-butyldimethylsiloxy-2-

[^3](dimethylamino-2-methoxy-phenyl)-butanol. A solution (S)-4-benzoyloxy-3-(4-dimethylamino-2-methoxy-phenyl)-butyraldehyde ($311 \mathrm{mg}, 0.911 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{~mL})$ was added to a stirring solution of sodium borohydride $(37.1 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.10$ equiv) in ethanol (3.0 mL). After 5 min , the reaction was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was then separated and washed with saturated solutions of NaHCO_{3} and NaCl . The resulting solution was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual oil ($303 \mathrm{mg}, 0.883 \mathrm{mmol}, 1.00$ equiv) was exposed to tert-butyldimethylsilyl chloride ($266 \mathrm{mg}, 1.77 \mathrm{mmol}, 2.00$ equiv), triethylamine ($0.27 \mathrm{~mL}, 1.9$ mmol, 2.2 equiv), and DMAP (10 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. After one hour, the reaction mixture was subjected directly to silica gel chromatography. Gradient elution with $10-25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes followed by concentration in vacuo afforded 400 mg of $\mathbf{S 4}$ as a colorless oil (0.874 $\mathrm{mmol}, 99 \%$ yield). To a solution of $\mathbf{S 4}\left(50 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(0.55 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{MeLi}(1.6 \mathrm{M}$ in hexanes, $0.21 \mathrm{~mL}, 0.33 \mathrm{mmol}, 3.0$ equiv). After 5 min , the reaction was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic phase was washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Silica gel chromatography of the resulting residue ($50-100 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) afforded 25.4 mg (72.0 $\mu \mathrm{mol}, 65 \%$ yield) of $\mathbf{S 5}$ that was spectroscopically identical in all respects to $\mathbf{S 5}$ generated below from (R)-4-oxo-2-(4-dimethylamino-2-methoxyphenyl)-butyric acid methyl ester. $[\alpha]_{\mathrm{D}}$ $($ reference $)=-20.1\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}($ observed $)=-21.6\left(\mathrm{c}=1.12, \mathrm{CHCl}_{3}\right)$.
(S)-4-Benzoyloxy-3-(4-pyrolidin-1-yl-phenyl)-butyraldehyde (Table 1, entry 5). To a 2-dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($6.13 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.100$ equiv) $\mathrm{CHCl}_{3}(0.25 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4-dioxane, $6.25 \mu \mathrm{~L}, 0.025 \mathrm{mmol}, 0.100$ equiv), 1-phenylpyrrolidine ($36.1 \mu \mathrm{~L}, 0.025$ mmol, 1.00 equiv). To the stirring solution at room temperature was added 4-benzoyloxycrotonaldehyde ($95.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.00$ equiv). After 24 h , the reaction mixture was subjected directly to silica gel chromatography. Elution with $20-40 \%$ EtOAc in hexanes followed by concentration in vacuo afforded the product as a pale yellow oil in 73% yield $(61.3 \mathrm{mg}, 0.182$ mmol); 90% ee. IR (film) 2961, 2888, 2825, 1717, 1715, 1616, 1522, 1487, 1450, 1374, 1271, $1176,1115,1069,1026,964.1,812.7,711.8 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.74(\mathrm{t}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHO}), 7.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}$,
$2 \mathrm{H}, \mathrm{ArH}$), 7.17 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.49(\mathrm{dd}, J=6.1,11.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}$), $4.34\left(\mathrm{dd}, J=8.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2}\right.$), 3.72-3.60 (m, 1H, ArCH), 3.30-3.21 (m, $\left.4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.94\left(\mathrm{ddd}, J=1.7,6.6,16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.84(\mathrm{ddd}, J=2.2,8.3,17.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 2.03-1.95 (m, 4H, $\left.\mathrm{CH}_{2}\left(\mathbf{C H}_{2}\right)_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.5,166.5$, $147.3,133.2,130.2,129.8,128.6,128.6,126.1,112.1,69.0,47.9,47.2,38.8,25.8$. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires $m / z 338.1756$, found $m / z 338.1747$. $[\alpha]_{\mathrm{D}}=-5.1(\mathrm{c}=$ $0.50, \mathrm{CHCl}_{3}$). The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); R isomer $\mathrm{t}_{\mathrm{r}}=31.4 \mathrm{~min}, S$ isomer $\mathrm{t}_{\mathrm{r}}=37.8 \mathrm{~min}$.

Determination of the absolute configuration of (S)-4-Benzoyloxy-3-(4-pyrolidin-1-yl-phenyl)-butyraldehyde by correlation to (\boldsymbol{S})-2-(4-pyrolidin-1-yl-phenyl)-butan-1,4-diol. A solution of (S)-4-benzoyloxy-3-(4-pyrolidin-1-yl-phenyl)-butyraldehyde ($508 \mathrm{mg}, 1.51 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added to a stirring solution of sodium borohydride (55.9 mg , $1.51 \mathrm{mmol}, 1.00$ equiv) in ethanol (5.0 mL). After 5 min , the reaction was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic layer was separated and washed with saturated solutions of NaHCO_{3} and NaCl . The resulting solution was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford $464 \mathrm{mg}(1.37 \mathrm{mmol}, 91 \%$ yield) of a colorless oil. A portion of this substance ($46.4 \mathrm{mg}, 0.138 \mathrm{mmol}, 1.00$ equiv) was dissolved in methanol (2.0 mL) and treated with an excess of $\mathrm{NaOH}(100 \mathrm{mg}, 2.50 \mathrm{mmol}, 18.1$ equiv). After one hour, the reaction mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was subjected to silica gel chromatography ($100 \% \mathrm{EtOAc}$) followed by concentration in vacuo to afford 24.6 mg of $\mathbf{S} 7$ as a white glassy solid ($0.105 \mathrm{mmol}, 76 \%$ yield) that was spectroscopically identical in all respects to $\mathbf{S 7}$ generated below from (R)-4-oxo-2-(4-pyrrolidin-1-yl-phenyl)-butyric acid methyl ester. $[\alpha]_{\mathrm{D}}($ reference $)=$ $-19.1\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}($ observed $)=-15.9\left(\mathrm{c}=1.32, \mathrm{CHCl}_{3}\right)$.

Conversion of (S)-4-benzoyloxy-3-(4-pyrolidin-1-yl-phenyl)-butyraldehyde to (R)-3-(4-Pyrolidin-1-yl-phenyl)-butanol-tert-butyldimethylsilyl ether. A solution of (S)-4-benzoyloxy-3-(4-pyrolidin-1-yl-phenyl)-butanol ($464 \mathrm{mg}, 1.37 \mathrm{mmol}, 1.00$ equiv) was exposed to tert-butyldimethylsilyl chloride ($412 \mathrm{mg}, 2.73 \mathrm{mmol}, 2.00$ equiv), triethylamine ($0.42 \mathrm{~mL}, 3.0$ mmol, 2.2 equiv), and DMAP (10 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. After one hour, the reaction mixture was subjected directly to silica gel chromatography. Elution with $10-25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes followed by concentration of two fractions in vacuo afforded 544 mg of a colorless oil (1.20 $\mathrm{mmol}, 87 \%$ yield). This compound was dissolved in $\mathrm{Et}_{2} \mathrm{O}(6.0 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$ and treated with MeLi (1.6 M in hexanes, $3.75 \mathrm{~mL}, 6.0 \mathrm{mmol}, 5.0$ equiv). After 5 min , the reaction was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The organic phase was then washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Silica gel chromatography of the resulting residue ($10-50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) afforded 326 mg (0.932 $\mathrm{mmol}, 78 \%$ yield) of $\mathbf{S 8}$ as a colorless oil. A portion of this substance $(0.193 \mathrm{mg}, 0.551 \mathrm{mmol}$, 1.00 equiv) was treated with methanesulfonyl chloride ($0.055 \mathrm{~mL}, 0.716 \mathrm{mmol}, 1.30$ equiv), triethylamine ($0.12 \mathrm{~mL}, 0.83 \mathrm{mmol}, 1.5$ equiv), and DMAP (10 mg) in THF (10 mL). After 12 h , the resulting suspension was carefully added to a stirring suspension of lithium aluminumhydride ($105 \mathrm{mg}, 2.76 \mathrm{mmol}, 5.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. After 6 h , this mixture was diluted with saturated aqueous sodium potassium tartrate $(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and allowed to stir for an additional 8 h . The organic layer was separated, washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was purified via silica gel chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford 12.0 mg of $\mathbf{S 3} ;[\alpha]_{\mathrm{D}}=-28.7\left(\mathrm{c}=1.20, \mathrm{CHCl}_{3}\right)$.

(R)-4-Oxo-2-(4-dimethylamino-2-methoxyphenyl)-butyric acid methyl ester (Table

 1, entry 6). To an amber 2 -dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one $\left(6.13 \mathrm{mg}, 0.0250 \mathrm{mmol}, 0.100\right.$ equiv), CHCl_{3} $(0.25 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4-dioxane, $6.25 \mu \mathrm{~L}, 0.0250 \mathrm{mmol}, 0.100$ equiv), and 3-dimethylamino-anisole ($44 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.2$ equiv). The solution was cooled to $-20{ }^{\circ} \mathrm{C}$ before oxobuteneoic acid methyl ester ($28.5 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.00$ equiv) was added. The resulting solution was maintained at $-20^{\circ} \mathrm{C}$ for 8 h and then subjected directly silica gel chromatography. Gradient elution with $20-40 \%$ EtOAc in hexanes afforded the product as a colorless oil in 73% yield ($48.2 \mathrm{mg}, 0.182 \mathrm{mmol}$); 91% ee. IR (film) 2950, 2903, 2838, 2727, $1730,1616,1569,1519,1462,1440,1356,1242,1171,1114,1033,979.4,814.6,642.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.27$ (dd, J = 2.5, 8.5 Hz, 1H, ArH), $6.22(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.38(\mathrm{dd}, J=5.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArCH}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.52(\mathrm{ddd}, J=1.4,9.1,18.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CO}$), $2.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.67$ (ddd, $J=0.8,4.9,17.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.0,174.4,157.5,151.5,129.3,114.6,104.9,96.2,55.6,52.5,46.7,40.9$, 39.2. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 266.1392$ for $[\mathrm{M}+\mathrm{H}]^{+}$, found m / z 266.1387. $[\alpha]_{\mathrm{D}}=-149.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction in ethanol at $0^{\circ} \mathrm{C}$) using a Chiracel AD and AD guard column (6.0% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=26.0 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=27.8 \mathrm{~min}$.

Determination of the absolute configuration (R)-4-Oxo-2-(4-dimethylamino-2-methoxyphenyl)-butyric acid methyl ester by correlation to (R)-3-(4-dimethylamino-2-methoxyphenyl)-butanol tert-butyldimethylsilyl ether. A solution of (R)-4-oxo-2-(4-dimethylamino-2-methoxyphenyl)-butyric acid methyl ester ($288 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to a stirring solution of sodium borohydride $(48.3 \mathrm{mg}, 1.30 \mathrm{mmol}$, 1.00 equiv) in ethanol $(3.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min , the reaction was diluted with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The organic layer was separated and washed with saturated solutions of NaHCO_{3} and NaCl . The resulting solution was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residual oil was exposed to tert-butyldimethylsilyl chloride ($392 \mathrm{mg}, 2.60 \mathrm{mmol}, 2.00$ equiv), triethylamine ($0.40 \mathrm{~mL}, 2.9 \mathrm{mmol}, 2.2$ equiv), and

DMAP (10 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$. After one hour, the reaction mixture was subjected directly to silica gel chromatography. Elution with $10-50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes followed by concentration in vacuo afforded 453 mg of a colorless oil ($1.19 \mathrm{mmol}, 91 \%$ yield from aldehyde). This compound was dissolved in $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and added to a suspension of lithium aluminumhydride ($100 \mathrm{mg}, 2.63 \mathrm{mmol}, 2.21$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min , this mixture was diluted with saturated aqueous sodium potassium tartrate $(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and allowed to stir for an additional 8 h . The organic layer was separated, washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was purified via silica gel chromatography ($20-100 \%$ EtOAc in hexanes) and concentrated in vacuo to afford $201 \mathrm{mg}(0.568 \mathrm{mmol}, 48 \%$ yield $)$ of a pale yellow oil assigned as $\mathbf{S 5} ;[\alpha]_{\mathrm{D}}=-20.1$ (c = 1.00, $\left.\mathrm{CHCl}_{3}\right)$. This substance was treated with methanesulfonyl chloride $(0.057 \mathrm{~mL}, 0.74 \mathrm{mmol}, 1.30$ equiv), triethylamine ($0.12 \mathrm{~mL}, 0.85 \mathrm{mmol}, 1.5$ equiv), and DMAP (10 mg) in THF (8 mL). After 2 h , the resulting suspension was carefully added to a stirring suspension of lithium aluminumhydride ($108 \mathrm{mg}, 2.84 \mathrm{mmol}, 5.0$ equiv) in THF (10 mL). After 6 h , this mixture was diluted with saturated aqueous sodium potassium tartrate $(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and allowed to stir for an additional 3 h . The organic layer was separated, washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was purified via silica gel chromatography (25% EtOAc in hexanes) to afford 99.9 mg of $\mathbf{S} \mathbf{1}$ that was spectroscopically identical in all respects to $\mathbf{S 1}$ generated above from (R)-3-(4-dimethylamino-2-methoxy-phenyl)-butyraldehyde. $[\alpha]_{\mathrm{D}}($ reference $)=-13.3\left(\mathrm{c}=1.12, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}($ observed $)=$ $-11.6\left(\mathrm{c}=0.999, \mathrm{CHCl}_{3}\right)$.
(S)-3-(4-pyrolidin-1-yl-2-methoxy-phenyl)-3-phenyl-propanol (Table 1, entry 7). To an amber 2-dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one hydrochloride ($28.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.200$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.50 ml), and 1-(3-methoxy-phenyl)-pyrrolidine ($83.6 \mu \mathrm{l}, 0.500 \mathrm{mmol}, 1.00$ equiv). The solution was cooled to $-50^{\circ} \mathrm{C}$ before addition of cinnamaldehyde ($167 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.00$ equiv). After 36 h, the reaction mixture was added drop-wise to a stirring suspension of $\mathrm{NaBH}_{4}(41 \mathrm{mg})$ in ethanol (0.75 mL). After five min, the reduction was quenched with saturated aqueous NaHCO_{3} solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the organic was washed with saturated aqueous NaHCO_{3} and brine solutions. The resulting solution was dried over sodium
sulfate and concentrated in vacuo and the residue was purified by silica gel chromatography. Gradient elution with $25-75 \%$ diethyl ether in hexanes afforded the product as a colorless oil in 82% yield ($127.4 \mathrm{mg}, 0.409 \mathrm{mmol}$); 84% ee. IR (film) 3356, 2941,2875, 2832, 1615, 1566 , $1515,1488,1452,1374,1224,1036,699.6 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.23(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{ArH}$), 7.18-7.11 (m, 1H, ArH), $6.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.14(\mathrm{dd}, J=2.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $6.09(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.51(\mathrm{dd}, J=6.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.70-3.48 (m, 2H, CH2OH), 3.32-3.23 (m, 4H, N($\left.\mathrm{CH}_{2}\right)_{2}$), 2.37-2.23 (m, 1H, CHCH2), 2.22-2.10 (m, 1H, CHCH $)$, 2.01-1.94 (m, 4H, $\left.\mathrm{CH}_{2}\left(\mathbf{C H}_{2}\right)_{2} \mathrm{CH}_{2}\right), 1.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.9,147.8,145.8,129.0,128.3,128.2,125.8,119.9,104.5,95.3,61.7,55.9,48.0$, 36.6, 38.2, 25.8. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 311.1885$, found m / z 311.1880. $[\alpha]_{\mathrm{D}}=-60.5\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=15.1 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=28.6 \mathrm{~min}$.
(S)-3-(4-Chloro-phenyl)-3-(4-pyrolidin-1-yl-2-methoxy-phenyl)-propanol (Table 1, entry 8). To an amber 2 -dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($24.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.200$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.50 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4-dioxane, $25.0 \mu \mathrm{~L}, 0.100 \mathrm{mmol}, 0.200$ equiv) and 1-(3-methoxy-phenyl)-pyrrolidine ($167 \mu \mathrm{l}, 1.00 \mathrm{mmol}, 2.00$ equiv). The solution was cooled to -50 ${ }^{\circ} \mathrm{C}$ before addition of p-chloro-cinnamaldehyde as a solid ($83.0 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv). After 80 h , the reaction mixture was added drop-wise to a stirring suspension of $\mathrm{NaBH}_{4}(41 \mathrm{mg})$ in ethanol $(0.75 \mathrm{~mL})$. After five min, the reduction was quenched with saturated aqueous NaHCO_{3} solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the organic was washed with saturated aqueous NaHCO_{3} and brine solutions. The resulting solution was dried over sodium sulfate and concentrated in vacuo and the residue was purified by silica gel chromatography. Gradient elution with $25-75 \%$ diethyl ether in hexanes afforded the product as a colorless oil in 80% yield ($137.8 \mathrm{mg}, 0.399 \mathrm{mmol}$); 92% ee. IR (film) 3320, 2941, 2879, 2833, $1615,1566,1515,1488,1454,1374,1224,1036,1014,808.8 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.13(\mathrm{dd}, J=2.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.07(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.45(\mathrm{dd}, J=6.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70-3.43(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.32-3.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.32-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.02-1.92(\mathrm{~m}, 4 \mathrm{H}$,
$\left.\mathrm{CH}_{2}\left(\mathbf{C H}_{2}\right)_{2} \mathrm{CH}_{2}\right), 1.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.9,147.9,144.4,131.4$, $129.5,128.9,128.7,128.4,127.8,119.2,104.4,95.3,61.4,55.8,48.0,38.2,38.0,25.8$. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClNO}_{2}\right)$ requires $m / z 345.1496$, found $m / z 345.1490$. $\quad[\alpha]_{\mathrm{D}}=-$ $57.7\left(\mathrm{c}=1.90, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=12.4$ \min , R isomer $\mathrm{t}_{\mathrm{r}}=15.3 \mathrm{~min}$.

(R)-3-(4-nitro-phenyl)-3-(4-Dimethylamino-2-methoxy-phenyl)-propionaldehyde

(Table 1, entry 9). To a 2-dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($24.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.100$ equiv), N, N -dimethyl- m-anisidine hydrochloride ($18.8 \mathrm{mg}, 0.100 \mathrm{mmol}$, 0.100 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.00 \mathrm{ml})$, and N, N-dimethyl-m-anisidine ($425 \mu \mathrm{~L}, 2.90 \mathrm{mmol}, 2.90$ equiv). The solution was cooled to $-10^{\circ} \mathrm{C}$ before p-nitro-cinnamaldehyde ($177 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) was aded as a solid. After 48 h , the reaction mixture was subjected directly to silica gel chromatography. Gradient elution with $10-50 \% \mathrm{EtOAc}$ in hexanes followed by concentration in vacuo afforded the product as a bright orange oil in 87% yield ($285 \mathrm{mg}, 0.867 \mathrm{mmol}$); 92% ee. IR (film) 2938, 2894, 2837, 2726, 1722, $1614,1516,1345,1241,1120,1033,980.1,858.6,814.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.74(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 8.12(\mathrm{td}, J=2.2,9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{td}, J=1.5,9.3 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 6.97 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.30(\mathrm{dd}, J=2.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.24(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 4.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.21-3.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.96$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.2,157.8,152.3,151.4,146.5,128.9,128.6$, $123.8,118.0,104.8,96.4,55.4,48.4,40.8,38.2$. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires $m / z 328.1423$, found $m / z 328.1422 .[\alpha]_{\mathrm{D}}=-58.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction of the aldehyde) using a Chiracel AD and AD guard column (10\% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); R isomer $\mathrm{t}_{\mathrm{r}}=25.6 \mathrm{~min}, S$ isomer $\mathrm{t}_{\mathrm{r}}=29.5 \mathrm{~min}$.

(S)-3-(4-Nitrophenyl)-3-(4-pyrolidin-1-yl-phenyl)-propionaldehyde (Table 1, entry

10). To an amber 2 -dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($24.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.200$ equiv) $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{ml}$), HCl (as a 4 N solution in 1,4-dioxane, $25 \mu \mathrm{~L}, 0.200 \mathrm{mmol}, 0.200$ equiv), and p -
nitrocinnamaldehyde ($88.6 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv). The solution was cooled to $-10{ }^{\circ} \mathrm{C}$ before addition of 1-phenylpyrrolidine ($216 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 3.00$ equiv). After 48 h , the reaction mixture was subjected directly to silica gel chromatography. Gradient elution with 25-50\% EtOAc in hexanes followed by concentration in vacuo afforded the product as a bright orange oil in 82% yield ($133 \mathrm{mg}, 0.411 \mathrm{mmol}$); 90% ee. IR (film) 2968, 2894, 2835, 2728, 1723, 1614, $1520,1375,1345,1182,1110,859.2,804.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.71(\mathrm{t}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHO}), 8.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 6.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.29-3.09(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CO}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.03-1.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathbf{C H}_{2}\right)_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4$, $152.2,147.1,128.6,127.9,124.1,112.1,49 ., 47.9,44.2,25.8$. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires $m / z 324.1474$, found $m / z 324.1474 .[\alpha]_{\mathrm{D}}=-3.75\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding acetate (obtained by NaBH_{4} reduction of aldehyde and subsequent acylation with $\mathrm{Ac}_{2} \mathrm{O}$) using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=35.4 \mathrm{~min}, R$ isomer t_{r} $=47.0 \mathrm{~min}$.
(R)-4-Oxo-2-(4-dimethylamino-phenyl)-butyric acid methyl ester (Table 2, entries 1
\& 2). To an amber 2-dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($12.3 \mathrm{mg}, 0.0500 \mathrm{mmol}, 0.100$ equiv), 4-oxobuteneoic acid methyl ester ($57.1 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv), $\mathrm{CHCl}_{3}(0.5 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4-dioxane, $12.5 \mu \mathrm{~L}, 0.0500 \mathrm{mmol}, 0.100$ equiv), and N, N-dimethylaniline ($76 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$, 1.2 equiv). The solution was stirred for 5.5 h at ambient temperature and then subjected directly to silica gel chromatography. Gradient elution with $20-40 \%$ EtOAc in hexanes afforded the product as a colorless oil in 77% yield $(90.0 \mathrm{mg}, 0.383 \mathrm{mmol}) ; 94 \%$ ee. The same reaction conducted at $-10^{\circ} \mathrm{C}$ was complete after 48 h and purified in identical fashion to give the product in 86% yield ($101 \mathrm{mg}, 0.429 \mathrm{mmol}$) and 96% ee. IR (film) 2950, 2902, 2844, 2809, 2728, 1732, $1614,1523,1437,1353,1230,1166,947.3,818.8,777.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 9.77 (s, 1H, CHO), 7.14 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.68 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 4.03 (dd, $J=$ $4.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35\left(\mathrm{dd}, J=9.9,18.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.93(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77\left(\mathrm{dd}, J=4.8,18.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.2$, 174.0, 150.1, 128.5, 125.2, 112.9, 52.7, 47.8, 44.2, 40.8. HRMS (CI) exact mass calcd for
$\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}\right)$ requires $m / z 236.1286$, found $m / z 236.1285 .[\alpha]_{\mathrm{D}}=-152.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (6.0% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=27.3 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=29.4 \mathrm{~min}$.

Determination of the absolute configuration (\boldsymbol{R})-4-0xo-2-(4-dimethylamino-phenyl)butyric acid methyl ester by correlation to (\boldsymbol{S})-2-phenyl-butan-1,4,-diol. A solution of (R)-4-oxo-2-(4-dimethylamino-phenyl)-butyric acid methyl ester ($1.78 \mathrm{~g}, 7.55 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to a stirring suspension of lithium aluminum hydride $(1.13 \mathrm{~g}, 29.8 \mathrm{mmol}, 4.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$. After 5 min , this mixture was diluted with saturated aqueous sodium potassium tartrate $(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and allowed to stir for an additional 8 h . The organic layer was separated, washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was recrystallized from a hexanes, $\mathrm{Et}_{2} \mathrm{O}$ and DCM to give $0.630 \mathrm{~g}(3.01 \mathrm{mmol}, 40 \%$ yield $)$ of a white solid assigned as $\mathbf{S 9} ;[\alpha]_{\mathrm{D}}=-23.1(\mathrm{c}=0.975$, CHCl_{3}). This compound was then exposed to tert-butyldimethylsilyl chloride ($907 \mathrm{mg}, 6.02$ mmol , 2.00 equiv), triethylamine ($0.93 \mathrm{~mL}, 6.62 \mathrm{mmol}$, 2.2 equiv), and in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL}$). After 5.5 h , the reaction mixture was subjected directly to silica gel chromatography. Gradient elution with $1-10 \%$ EtOAc in hexanes followed by concentration in vacuo afforded $\mathbf{S 1 0}$ as a faint-yellow oil in 49% yield ($643 \mathrm{mg}, 1.47 \mathrm{mmol}$); $[\alpha]_{\mathrm{D}}=-23.1\left(\mathrm{c}=0.975, \mathrm{CHCl}_{3}\right)$. This oil was dissolved in $\mathrm{CH}_{3} \mathrm{I}$ ($0.52 \mathrm{~mL}, 8.4 \mathrm{mmol}, 5$ equiv) and stirred for 10 h and subsequently concentrated in vacuo to provide a yellow microcrystaline solid in 97% yield ($825 \mathrm{mg}, 1.42$ mmol). A portion of the ammonium salt ($100 \mathrm{mg}, 0.170 \mathrm{mmol}, 1.00$ equiv) was suspended in THF (20 mL) and added to a stirring solution of dissolved sodium $(15.9 \mathrm{mg}, 0.690 \mathrm{mmol}, 4.00$
equiv) in freshly condensed liquid ammonia (25 ml) at $-78{ }^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was quenched with excess methanol, diluted with ether $(20 \mathrm{~mL})$ and allowed to warm to ambient temperature. The ethereal solution was washed with aqueous $\mathrm{HCl}(1 \mathrm{~N})$ and saturated NaCl and subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. This residue was purified by silica gel chromatography to afford 61.1 mg of $\mathbf{S 1 1}$ ($0.155 \mathrm{mmol}, 91 \%$ yield); $[\alpha]_{\mathrm{D}}=-28.7$ (c = 1.01, $\left.\mathrm{CHCl}_{3}\right)$. This compound was treated with aqueous $\mathrm{HCl}(4 \mathrm{~N}, 1.0 \mathrm{~mL})$ and $\mathrm{THF}(1.0 \mathrm{~mL})$ and stirred at ambient temperature for 16 h . Dilution of the reaction mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and saturated aqueous NaHCO_{3} and subseqent separation, drying and concentration of the organic phase yielded a pale yellow oil. This compound was subjected to silica gel chromatography to afford 5.0 mg ($30 \mu \mathrm{~mol}, 19 \%$ yield) of a substance that was spectroscopically identical in all respects to the known compound (S)-2-phenyl-butan-1,4,-diol. ${ }^{6} \quad[\alpha]_{\mathrm{D}}$ (literature $)=-13(\mathrm{c}=3.0$, $\left.\mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}($ observed $)=-29.8\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.

(R)-4-Oxo-2-(4-dibenzylamino-phenyl)-butyric acid methyl ester (Table 2, entry 3).

To an amber 2-dram vial under an argon atmosphere and equipped with a magnetic stir bar was added (2S,5S)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($12.3 \mathrm{mg}, 0.0500 \mathrm{mmol}, 0.100$ equiv), 4-oxobuteneoic acid methyl ester ($57.1 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv), CHCl_{3} (0.5 ml), HCl (as a 4 N solution in 1,4-dioxane, $12.5 \mu \mathrm{~L}, 0.0500 \mathrm{mmol}, 0.100$ equiv), and N, N dibenzylaniline ($273 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv). The solution was stirred for 24 h at ambient temperature and subjected directly to silica gel chromatography. Gradient elution with 20-40\% EtOAc in hexanes afforded the product as a colorless oil in 65% yield ($126 \mathrm{mg}, 0.325 \mathrm{mmol}$); 96% ee. IR (film) $3028,2949,2904,2844,2725,1729,1717,1613,1520,1434,1451,1360$, 1231, 1166, 956.2, 816.0, 733.7, $696.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$), 7.22-7.36 (m, 10H, ArH), $7.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.64(\mathrm{~s}$, $4 \mathrm{H}, \mathrm{ArCH}_{2}$), 4.01 (dd, $J=4.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}$), 3.66 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.33 (ddd, $J=0.9,9.9$, $18.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 2.76 (ddd, $J=0.8,4.7,18.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 200.2,173.9,148.8,135.5,128.9,128.7,127.2,126.8,125.4,112.8,54.6,52.7,47.8$, 44.1. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{3}\right)$ requires $m / z 387.1834$, found m / z 387.1834. $[\alpha]_{\mathrm{D}}=-91.2\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and

[^4]AD guard column (6.0% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=25.5 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=28.4$ min.

Determination of the absolute configuration of (R)-4-oxo-2-(4-dibenzylamino-phenyl)-butyric acid methyl ester by correlation to (\boldsymbol{S})-2-phenyl-butan-1,4,-diol. A solution of (R)-4-oxo-2-(4-dibenzylamino-phenyl)-butyric acid methyl ester ($848 \mathrm{mg}, 2.19 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.5 mL) was added to a stirring suspension of lithium aluminumhydride (332 $\mathrm{mg}, 8.76 \mathrm{mmol}, 4.00$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. After 5 min , this mixture was diluted with saturated aqueous sodium potassium tartrate $(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and allowed to stir for an additional 8 h . The organic layer was separated, washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. This residue was purified via silica gel chromatography ($25-100 \%$ EtOAc in hexanes) to afford 418 mg of a white solid (1.16 mmol , 53% yield). This substance was exposed to benzoyl chloride ($0.777 \mathrm{~mL}, 6.73 \mathrm{mmol}, 2.2$ equiv), triethylamine ($0.944 \mathrm{~mL}, 6.73 \mathrm{mmol}$, 2.2 equiv), DMAP (50 mg) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL}$) fo 24 h at which point the reaction mixture was subjected directly to silica gel chromatography (10-50\% EtOAc in hexanes) to afford $556 \mathrm{mg}(0.976,84 \%$ yield) of a pale yellow solid assigned as $\mathbf{S 1 2}$. A portion of this material ($512 \mathrm{mg}, 0.900 \mathrm{mmol}, 1.00$ equiv) was dissolved in EtOAc (8.0 mL) exposed to a suspension of $10 \% \mathrm{Pd}$ on carbon (51.3 mg) in $\mathrm{MeOH}(20 \mathrm{~mL})$ under H_{2} atmosphere. After 22 h , the reaction mixture was filtered through Celite and concentrated in vасиo. The resulting residue was purified via silica gel chromatography to afford 323 mg (0.829 $\mathrm{mmol}, 94 \%$ yield) of a pale yellow solid; $[\alpha]_{\mathrm{D}}=-29.9\left(\mathrm{c}=1.92, \mathrm{CHCl}_{3}\right)$. A solution of compound ($30.8 \mathrm{mg}, 79.1 \mu \mathrm{~mol}, 1.00$ equiv) in ethanol (4.3 mL) and $\mathrm{AcOH}(0.64 \mathrm{~mL}$) was treated with $\mathrm{NaNO}_{2}\left(71.0 \mathrm{mg}, 1.02 \mathrm{mmol}\right.$, in $\left.0.64 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{NaHSO}_{3}(107 \mathrm{mg}, 1.02 \mathrm{mmol}$, in $0.64 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$). After 3 h , the solution was extracted with CHCl_{3} and the extracts were collectively washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated aqueous NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. This solution was concentrated in vacuo and the resulting residue was treated with $\mathrm{NaOH}(100 \mathrm{mg}, 2.50$ $\mathrm{mmol})$ and methanol $(1.0 \mathrm{~mL})$. After one hour, the reaction mixture was partitioned between
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was subjected to silica gel chromatography ($100 \% \mathrm{EtOAc}$) followed by concentration in vacuo to afford 4.1 mg ($25 \mu \mathrm{~mol}, 31 \%$ yield from aniline) of a substance that was spectroscopically identical in all respects to the known compound (S)-2-phenyl-butan-1,4,-diol. ${ }^{6}$ $[\alpha]_{D}($ literature $)=-13\left(\mathrm{c}=3.0, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}($ observed $)=-32.3\left(\mathrm{c}=0.82, \mathrm{CHCl}_{3}\right)$.

(R)-4-Oxo-2-(4-pyrrolidin-1-yl-phenyl)-butyric acid methyl ester (3) (Table 2,

entries $4 \& 5$). To an amber 2-dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($12.3 \mathrm{mg}, 0.0500 \mathrm{mmol}, 0.100$ equiv), 4oxobuteneoic acid methyl ester ($57.1 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv), $\mathrm{CHCl}_{3}(0.5 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4-dioxane, $12.5 \mu \mathrm{~L}, 0.0500 \mathrm{mmol}, 0.100$ equiv), and 1-phenylpyrrolidine (144 $\mu \mathrm{L}, 1.00 \mathrm{mmol}, 2.00$ equiv). The solution was stirred for 20 min at ambient temperature and subjected directly to silica gel chromatography. Gradient elution with 20-40\% EtOAc in hexanes afforded the product as a white powder in 96% yield ($126 \mathrm{mg}, 0.480 \mathrm{mmol}$); 95% ee. IR (film) 2974, 2959, 2899, 2827, 2726, 1730, 1718, 1614, 1522, 1488, 1435, 1374, 1229, 1164, 1091, $814,771,531 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 6.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.02(\mathrm{dd}, J=4.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.33 (dd, $J=9.9,18.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $3.28-3.23\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.76(\mathrm{dd}, J=5.0,18.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 2.01-1.96 (m, 4H, $\left.\mathrm{CH}_{2}\left(\mathbf{C H}_{2}\right)_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 200.5, 174.2, 147.6, 128.7, 124.1, 112.1, 52.5, 47.8, 47.7, 44.2, 25.7. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}\right)$ requires $m / z 261.1443$, found m / z 262.1439. $[\alpha]_{\mathrm{D}}=-147.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=20.9 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=24.4 \mathrm{~min}$. The same reaction conducted at $-20^{\circ} \mathrm{C}$ was complete after 8 h and purified in identical fashion to give the product as a white powder in 97% yield ($127 \mathrm{mg}, 0.487 \mathrm{mmol}$); 97% ee. On a $50-\mathrm{mmol}$ scale using 2 $\mathrm{mol} \%$ amine and $2 \mathrm{~mol} \% \mathrm{HCl}$ at ambient temperature, the reaction afforded the product in 93% yield ($12.21 \mathrm{~g}, 46.7 \mathrm{mmol}$); 91% ee. A recrystallization of this product from ethyl acetate provided 10.56 g (86% yield) of material in 96% ee.

Determination of the absolute configuration of (R)-4-oxo-2-(4-pyrrolidin-1-yl-phenyl)-butyric acid methyl ester by correlation to (S)-2-phenyl-butan-1,4,-diol bis-tertbutyldimethylsilyl ether. A solution of (R)-4-oxo-2-(4-pyrrolidin-1-yl-phenyl)-butyric acid methyl ester ($2.23 \mathrm{~g}, 8.53 \mathrm{mmol}, 1.00$ equiv) in THF (15 mL) was added carefully to a stirring suspension of lithium aluminum hydride ($1.27 \mathrm{~g}, 33.5 \mathrm{mmol}$, 4.0 equiv) in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$. After 5 min , this mixture was diluted with saturated aqueous sodium potassium tartrate $(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and allowed to stir for an additional 8 h . The organic layer was separated and the aqueous was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was purified by silica gel chromatography ($100 \% \mathrm{EtOAc}$) to afford $1.97 \mathrm{~g}(8.37 \mathrm{mmol}, 98 \%$ yield) of a white solid assigned as $\mathbf{S 1 7} ;[\alpha]_{D}=-19.1\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$. This compound was then exposed to tert-butyldimethylsilyl chloride ($2.83 \mathrm{~g}, 18.8 \mathrm{mmol}, 2.20$ equiv), triethylamine (2.63 $\mathrm{mL}, 18.8 \mathrm{mmol}$, 2.2 equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. After 7.5 h , the reaction mixture was subjected directly to silica gel chromatography. Gradient elution with 10-20\% EtOAc in hexanes followed by concentration in vacuo afforded $3.41 \mathrm{~g}(7.37 \mathrm{mmol}, 86 \%$ yield) of a faint-yellow oil. A portion of this substance $\left(1.17 \mathrm{~g}, 2.53 \mathrm{mmol}, 1.00\right.$ equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{I}(0.47 \mathrm{~mL}, 7.6$ mmol, 3.0 equiv) and stirred for 48 h and subsequently diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered to provide 1.484 g of a yellow solid. A portion of the ammonium salt ($128 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv) was suspended in THF (20 mL) and added to a stirring solution of dissolved sodium (18.4 mg , 0.800 mmol , 4.00 equiv) in freshly condensed liquid ammonia (25 ml) at $-78^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was quenched with excess methanol, diluted with ether (20 mL) and allowed to warm to ambient temperature. The ethereal solution was washed with aqueous HCl $(1 \mathrm{~N})$ and saturated NaCl and subsequently dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. This residue was purified by
silica gel chromatography to afford 52.0 mg of $\mathbf{S 1 1}$ ($0.132 \mathrm{mmol}, 61 \%$ yield) that was spectroscopically identical in all respects to the $\mathbf{S 1 1}$ generated above from (R)-4-oxo-2-(4-dimethylamino-phenyl)-butyric acid methyl ester. $[\alpha]_{\mathrm{D}}($ reference $)=-22.0\left(\mathrm{c}=1.08, \mathrm{CHCl}_{3}\right)$; $[\alpha]_{D}($ observered $)=-22.8\left(\mathrm{c}=0.92, \mathrm{CHCl}_{3}\right)$.
(R)-4-Oxo-2-(6-pyrrolidin-1-yl-biphenyl-3-yl)-butyric acid methyl ester (Table 2, entry 6). To an amber 2 -dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($12.3 \mathrm{mg}, 0.0500 \mathrm{mmol}, 0.100$ equiv), 4oxobuteneoic acid methyl ester ($57.1 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv), $\mathrm{CHCl}_{3}(0.500 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4 -dioxane, $12.5 \mu \mathrm{~L}, 0.0500 \mathrm{mmol}, 0.100$ equiv), and 2-(pyrrolidin-1-yl)biphenyl ($223 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv). The solution was stirred for 12 h at ambient temperature and subjected directly to silica gel chromatography. Gradient elution with 10-40\% EtOAc in hexanes afforded the product as a white powder in 94% yield ($158.4 \mathrm{mg}, 0.469 \mathrm{mmol}$); 99% ee. IR (film) 2949, 2871, 2820, 2721, 1734, 1719, 1606, 1505, 1482, 1354, 1329, 1229, 1164, 769.9, $701.1 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}$), $7.44-7.24(\mathrm{~m}, 5 \mathrm{H}$, ArH), 7.13 (dd, $J=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.05(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$), 4.07 (dd, $J=4.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}$), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.38(\mathrm{dd}, J=9.9,18.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.81\left(\mathrm{dd}, J=4.7,18.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 1.79-1.72(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\left(\mathbf{C H}_{2}\right)_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.1,173.9,147.5,142.9,131.8,130.3,129.3$, 128.1, 127.1, 126.7, 126.5, 114.9, 52.7, 51.3, 47.8, 44.3, 25.8. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires $m / z 337.1679$, found $m / z 337.1678 .[\alpha]_{\mathrm{D}}=-110.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (10\% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=13.9 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=16.5 \mathrm{~min}$.

(R)-2-(1-Methyl-2,3-dihydro-1H-indol-5-yl)-4-oxobutyric acid methyl ester (Table 2,

entries $7 \& 8$). To a 2 -dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($12.3 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.100$ equiv), 4-oxobuteneoic acid methyl ester ($57.1 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv), $\mathrm{CHCl}_{3}(0.500 \mathrm{ml}$), and HCl (as a 4 N solution in 1,4-dioxane, $12.5 \mu \mathrm{~L}, 0.050 \mathrm{mmol}, 0.100$ equiv). The reaction vessel was cooled to $-20^{\circ} \mathrm{C}$ before the addition of 1-methylindoline ($133 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.00$ equiv). The solution
was stirred for 8 h at $-20^{\circ} \mathrm{C}$ and then subjected directly to silica gel chromatography. Gradient elution with $20-40 \%$ EtOAc in hexanes afforded the product as a colorless oil in 94% yield ($116.6 \mathrm{mg}, 0.471 \mathrm{mmol}$); 98% ee. IR (film) 2952, 2923, 2847, 2812, 2728, 1732, 1616, 1499, 1436, 1381, 1276, 1232, 1170, 1086, 1045, 988.7, 815.8, 585.2. $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 6.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.39(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.00(\mathrm{dd}, J=4.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.32(\mathrm{ddd}, J=0.8,9.9$, $15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 3.29 (t, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), 2.91 ($\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2}$), 2.75 (ddd, $J=0.6,4.9,18.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $2.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $200.4,174.2,153.2,131.4,127.1,126.7,123.8,107.3,56.3,52.6,47.9,44.5,36.3,28.8$. . HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 248.1286$ for $[\mathrm{M}+\mathrm{H}]^{+}$, found m / z 248.1282. $[\alpha]_{\mathrm{D}}=-128.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction in ethanol at $0{ }^{\circ} \mathrm{C}$) using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=13.9 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=16.5 \mathrm{~min}$. The same reaction conducted on $0.25-\mathrm{mmol}$ scale at ambient temperature over 20 min and purified in identical fashion afforded the product in 93% yield ($57.5 \mathrm{mg}, 0.233 \mathrm{mmol}$) and 93% ee.
(R)-2-(4-Dimethylaminonaphthalen-1-yl)-4-oxobutyric acid methyl ester (Table 2, entry 9). To an amber 2-dram vial under an argon atmosphere and equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($6.1 \mathrm{mg}, 0.025 \mathrm{mmol}$, 0.10 equiv), 4-oxobuteneoic acid methyl ester ($28.5 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.00$ equiv), CHCl_{3} (0.25 ml), HCl (as a 4 N solution in 1,4-dioxane, $6.2 \mu \mathrm{~L}, 0.025 \mathrm{mmol}, 0.10$ equiv), and N, N-dimethyl-1-naphthylamine ($82.0 \mu \mathrm{~L}, 0.500 \mathrm{mmol}, 2.00$ equiv). The solution was stirred for 36 h at ambient temperature and subjected directly to silica gel chromatography. Gradient elution with $20-40 \%$ EtOAc in hexanes afforded the product as a colorless oil in 89% yield ($63.8 \mathrm{mg}, 0.224$ mmol); 93% ee. IR (film) 2940, 2832, 2783, 2724, 1731, 1582, 1455, 1436, 1391, 1214, 1185, 1087, 1043, $767.9 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}$), 8.29-8.34 (m, 1H, ArH), 7.99-8.04 (m, 1H, ArH), 748-7.58 (m, 2H, ArH), 7.28 (d, J = 8.0 Hz, 1H, ArH), 7.02 (d, J $=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $4.91(\mathrm{dd}, J=5.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.54(\mathrm{dd}, J=9.9$, $18.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $2.89\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.86\left(\mathrm{dd}, J=4.2,18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.0,174.1,151.0,132.3,129.5,128.5,126.7,125.5,125.4,125.3,1234$,
113.9, 52.8, 47.4, 45.5, 40.7. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}\right)$ requires m / z 285.1365, found m / z 285.1365. $[\alpha]_{\mathrm{D}}=-200.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=14.9 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=16.9 \mathrm{~min}$.

(R)- 2-(4-Dimethylamino-2-methylphenyl)-4-oxobutyric acid methyl ester (Table 2,

entry 10). To an amber 2 -dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($24.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.200$ equiv), 4oxobuteneoic acid methyl ester ($57.1 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.00$ equiv), $\mathrm{CHCl}_{3}(0.5 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4-dioxane, $25.0 \mu \mathrm{~L}, 0.100 \mathrm{mmol}, 0.200$ equiv), and N, N-dimethyl- m-toluidine ($145 \mu \mathrm{~L}, 1.00 \mathrm{mmol}, 2.00$ equiv). The solution was stirred for 10 h at $-10^{\circ} \mathrm{C}$ temperature and subjected directly to silica gel chromatography. Gradient elution with 20-40\% EtOAc in hexanes afforded the product as a colorless oil in 89% yield ($112 \mathrm{mg}, 0.447 \mathrm{mmol}$); 84% ee. IR (film) 2949, 2892, 2846, 2797, 2731, 1732, 1723, 1611, 1565, 1513, 1482, 1435, 1354, 1295, 1218, $1169,1109,1013,968.6,902.1,840.9,805.6 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}$, CHO), 7.04 (dd, $J=2.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.55(\mathrm{dd}, J=2.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.54(\mathrm{~s}, 1 \mathrm{H}$, ArH), 4.31 (dd, $J=5.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.35(\mathrm{ddd}, J=0.8,9.9,18.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $2.92\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.70\left(\mathrm{dd}, J=0.6,4.4,18.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.3,174.3,149.9,136.8,127.7,124.1,114.7,110.9,52.6,47.4,40.8,40.1$, 20.7. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 250.1443$ for $[\mathrm{M}+\mathrm{H}]^{+}$, found m / z 250.1446. $[\alpha]_{\mathrm{D}}=-129.8\left(\mathrm{c}=1.14, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction) using a Chiracel AD and AD guard column (6.0% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=13.8 \mathrm{~min}$, R isomer $\mathrm{t}_{\mathrm{r}}=15.4 \mathrm{~min}$.

Determination of the absolute configuration of (R)-4-oxo-2-(4-dimethylamino-2-methylphenyl)-butyric acid methyl ester by correlation to (R)-o-sec-butyl-toluene. A solution of (R)-4-oxo-2-(4-dimethylamino-2-methylphenyl)-butyric acid methyl ester (499 mg , $2.00 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added carefully to a stirring suspension of lithium aluminumhydride ($304 \mathrm{mg}, 8.00 \mathrm{mmol}, 4.00$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL}$). After 5 min , this mixture was diluted with saturated aqueous sodium potassium tartrate (100 mL) and $\mathrm{Et}_{2} \mathrm{O}(100$ mL) and allowed to stir for an additional 8 h . The organic layer was separated and the aqueous was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was purified by silica gel chromatography to afford $0.224 \mathrm{~g}(1.00 \mathrm{mmol}, 50 \%$ yield $)$ of a pale yellow oil. This substance was treated with methanesulfonyl chloride ($0.232 \mathrm{~mL}, 3.00 \mathrm{mmol}, 3.00$ equiv), triethylamine ($0.42 \mathrm{~mL}, 3.0 \mathrm{mmol}, 3.0$ equiv), and DMAP (24 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. After 2 h , the resulting solution was carefully added to a stirring suspension of lithium aluminumhydride ($108 \mathrm{mg}, 2.84 \mathrm{mmol}, 5.0$ equiv) in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to ambient temperature and after 6 h , this mixture was diluted with saturated aqueous sodium potassium tartrate $(50 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and allowed to stir for an additional 3 h . The organic layer was separated, washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was dissolved in an excess of $\mathrm{CH}_{3} \mathrm{I}(1.0 \mathrm{~mL})$ and stirred for 4 h. The resulting mixture was then concentrated in vacuo and then dissolved in freshly condensed liquid ammonia (50 ml) at $-78^{\circ} \mathrm{C}$ and treated with sodium ($72 \mathrm{mg}, 3.0 \mathrm{mmol}, 3.0$ equiv). Three min later, the reaction mixture was quenched with excess methanol, diluted with ether (50 mL) and allowed to warm to ambient temperature. The resulting residue was purified via silica gel chromatography ($1 \% \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 16.1 mg of a colorless oil that was spectroscopically identical in all respects to the known compound. ${ }^{7}[\alpha]_{\mathrm{D}}$ (literature) $=+28.6(\mathrm{c}=$ $\left.1.0, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}($ observerd $)=-12.3\left(\mathrm{c}=0.760, \mathrm{CHCl}_{3}\right)$, the opposite sign of the rotation indicating that we had produced the enantiomer of the known compound.

(R)-4-Oxo-2-(4-dimethylamino-2-methoxyphenyl)-butyric acid methyl ester (Table

2, entries $11 \& 12$). To an amber 2-dram vial equipped with a magnetic stir bar was added ($2 S$, 5S)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($6.13 \mathrm{mg}, 0.0250 \mathrm{mmol}, 0.100$ equiv), 4-

[^5]oxobuteneoic acid methyl ester ($28.5 \mathrm{mg}, 0.250 \mathrm{mmol}, 1.00$ equiv), $\mathrm{CHCl}_{3}(0.25 \mathrm{ml}), \mathrm{HCl}$ (as a 4 N solution in 1,4-dioxane, $6.25 \mu \mathrm{~L}, 0.0250 \mathrm{mmol}, 0.100$ equiv), and 3-dimethylamino-anisole ($44 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.2$ equiv). The solution was stirred for 5 min at ambient temperature and subjected directly to silica gel chromatography. Gradient elution with 20-40\% EtOAc in hexanes afforded the product as a colorless oil in 73% yield ($48.2 \mathrm{mg}, 0.182 \mathrm{mmol}$); 91% ee. IR (film) 2950, 2903, 2838, 2727, 1730, 1616, 1569, 1519, 1462, 1440, 1356, 1242, 1171, 1114, 1033, 979.4, 814.6, $642.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), $6.99(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.27(\mathrm{dd}, \mathrm{J}=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.22(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.38$ (dd, $J=5.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArOCH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.52(\mathrm{ddd}, J=1.4,9.1$, $\left.18.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.67\left(\mathrm{ddd}, J=0.8,4.9,17.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.0,174.4,157.5,151.5,129.3,114.6,104.9,96.2,55.6,52.5,46.7$, 40.9, 39.2. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3}\right)$ requires $m / z 266.1392$ for $[\mathrm{M}+\mathrm{H}]^{+}$, found $m / z 266.1387 .[\alpha]_{\mathrm{D}}=-149.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction in ethanol at $0^{\circ} \mathrm{C}$) using a Chiracel AD and AD guard column (6.0% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=26.0 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=27.8 \mathrm{~min}$. The same reaction conducted at $-20{ }^{\circ} \mathrm{C}$ on $0.5-\mathrm{mmol}$ scale was complete after 8 h and purified in identical fashion to give the product in 90% yield ($119 \mathrm{mg}, 0.448 \mathrm{mmol}$) and 92% ee.

(R)-4-Oxo-2-(4-dimethylamino-2-methylthio-phenyl)-butyric acid methyl ester

(Table 2, entry 13). To a 2-dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($24.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.100$ equiv), 4oxobuteneoic acid methyl ester ($114.1 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv), $\mathrm{CHCl}_{3}(1.00 \mathrm{ml})$, and HCl (as a 4 N solution in 1,4-dioxane, $25.0 \mu \mathrm{~L}, 0.100 \mathrm{mmol}, 0.100$ equiv). The reaction vessel was cooled to $-20^{\circ} \mathrm{C}$ before the addition of 3-dimethylamino-thioanisole ($334 \mathrm{mg}, 2.00 \mathrm{mmol}, 2.00$ equiv). The solution was stirred for 20 h at $-20^{\circ} \mathrm{C}$ and then subjected directly to silica gel chromatography. Gradient elution with $20-40 \%$ EtOAc in hexanes afforded the product as a colorless oil in 92% yield ($258.6 \mathrm{mg}, 0.920 \mathrm{mmol}$); 91% ee. IR (film) 2950, 2913, 2845, 2711, $1730,1600,1554,1502,1437,1353,1227,1170,958.2 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.75$ (s, 1H, CHO), $7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.66(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.53(\mathrm{dd}, \mathrm{J}=2.8,8.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.66(\mathrm{dd}, J=4.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.25(\mathrm{ddd}, J=1.1,9.6$,
$\left.18.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.94\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.70\left(\mathrm{ddd}, J=0.8,4.7,18.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.47$ (s, 3H, SCH_{3}) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,173.8,150.1,137.3,128.0,124.7,112.3$, $110.8,52.4,47.1,41.0,40.5,17.6$. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}\right)$ requires m / z 281.1086, found m / z 281.1086. $[\alpha]_{D}=-130.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction in ethanol at $0^{\circ} \mathrm{C}$) using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=15.7 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=17.4 \mathrm{~min}$.

(R)-4-Oxo-2-(4-dimethylamino-2-chlorophenyl)-butyric acid methyl ester (Table 2.

entries $14 \& 15$). To a 2-dram vial equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one ($24.6 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.200$ equiv), 4oxobuteneoic acid methyl ester ($57.1 \mathrm{mg}, 0.500 \mathrm{mmol}$, 1.00 equiv), $\mathrm{CHCl}_{3}(0.500 \mathrm{ml})$, and HCl (as a 4 N solution in 1,4-dioxane, $18.8 \mu \mathrm{~L}, 0.075 \mathrm{mmol}, 0.150$ equiv). The reaction vessel was cooled to $-20^{\circ} \mathrm{C}$ before the addition of 3-chloro-N,N-dimethylaniline ($156 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv). The solution was stirred for 80 h at $-20^{\circ} \mathrm{C}$ and then subjected directly to silica gel chromatography. Gradient elution with $20-40 \%$ EtOAc in hexanes afforded the product as a colorless oil in 73% yield ($98.7 \mathrm{mg}, 0.366 \mathrm{mmol}$); 93% ee. IR (film) 2950, 2900, 2817, 2726, $1734,1724,1610,1512,1437,1357,1285,1228,1173,129,962.4,818.5 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77$ (s, 1H, CHO), 7.06 (d, $\left.J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 6.69(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $6.56(\mathrm{dd}, \mathrm{J}=2.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.53(\mathrm{dd}, J=4.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.29 (ddd, $\left.J=1.1,9.6,18.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.93\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.74$ (ddd, $J=0.8,4.9,18.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.9, 173.6, 150.7, 134.4, 129.3, 122.6, 113.2, 111.5, 52.8, 46.7, 41.4, 40.6. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClNO}_{3}\right)$ requires m / z 269.0819, found m / z 269.0814. $[\alpha]_{\mathrm{D}}=-156.4\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric ratio of the product was determined by HPLC analysis of the corresponding alcohol (obtained by NaBH_{4} reduction in ethanol at $0^{\circ} \mathrm{C}$) using a Chiracel AD and AD guard column (6.0% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); S isomer $\mathrm{t}_{\mathrm{r}}=23.3 \mathrm{~min}, R$ isomer $\mathrm{t}_{\mathrm{r}}=25.2 \mathrm{~min}$. The same reaction conducted on $0.25-\mathrm{mmol}$ scale at ambient temperature over 12 h and purified in identical fashion afforded the product in 66% yield ($44.4 \mathrm{mg}, 0.165 \mathrm{mmol}$) and 86% ee.

Determination of the absolute configuration of (R)-4-oxo-2-(4-dimethylamino-2-chlorophenyl)-butyric acid methyl ester by correlation to (S)-2-(4'-dimethylamino-phenyl)-butan-1,4,-diol. A solution of (R)-4-oxo-2-(4-dimethylamino-2-chlorophenyl)-butyric acid methyl ester ($270 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.00 \mathrm{~mL}$) was carefully added to a stirring suspension of lithium aluminumhydride ($152 \mathrm{mg}, 4.00 \mathrm{mmol}, 4.00$ equiv) in Et 2 O (5 mL). After 5 min , this mixture was diluted with saturated aqueous sodium potassium tartrate $(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and allowed to stir for an additional 8 h . The organic layer was separated and the aqueous was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were washed with saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting residue was purified by silica gel chromatography to afford $0.149 \mathrm{~g}(0.611 \mathrm{mmol}, 61 \%$ yield) of a white crystalline solid. A portion of this material ($21.5 \mathrm{mg}, 88.2 \mu \mathrm{~mol}, 1.00$ equiv) was added to stirring solution of sodium ($23 \mathrm{mg}, 1.0 \mathrm{mmol}$, 11 equiv) in liquid ammonia (10 mL) at $-50^{\circ} \mathrm{C}$. After an hour, the reaction was quenched with methanol and diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The phases were separated and the organic was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting residue was purified via silica gel chromatography ($100 \% \mathrm{EtOAc}$) to afford $11.1 \mathrm{mg}(53.0 \mu \mathrm{~mol}, 60 \%$ yield) of a white solid that was spectroscopically identical in all respects to $\mathbf{S 9}$ generated above from (R)-4-oxo-2-(4-dimethylamino-phenyl)-butyric acid methyl ester. $[\alpha]_{D}($ reference $)=-23.1\left(c=0.975, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}($ observered $)=-20.5(\mathrm{c}=0.555$, CHCl_{3}).
(S)-3-(4-Dimethylamino-2-methoxy-phenyl)-3-phenyl-propanol. To a $50-\mathrm{mL}$ roundbottom flask equipped with a magnetic stir bar was added ($2 S, 5 S$)-5-benzyl-2-tert-butyl-3-methylimidazolidin-4-one $\left(0.394 \mathrm{~g}, 1.60 \mathrm{mmol}, 0.100\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.0 \mathrm{~mL}), \mathrm{HCl}$ (as a 4 N solution in 1,4 -dioxane, $0.400 \mathrm{~mL}, 1.60 \mathrm{mmol}, 0.100$ equiv), and N, N-dimethyl- m-anisidine ($4.69 \mathrm{~mL}, 32.0 \mathrm{mmol}, 2.00$ equiv). The reaction vessel was cooled to $0^{\circ} \mathrm{C}$ before the addition of cinnamaldehyde ($2.06 \mathrm{ml}, 16.0 \mathrm{mmol}, 1.00$ equiv). The solution was stirred for 12 h at $0{ }^{\circ} \mathrm{C}$ and then warmed to ambient temp and stirred for an additional 6 h . At that time the reaction mixture
was added drop-wise to a stirring suspension of $\mathrm{NaBH}_{4}(0.750 \mathrm{~g}, 0.198 \mathrm{mmol}, 1.24$ equiv) in ethanol. After 5 min , the reduction was quenched with saturated aqueous NaHCO_{3} solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated and the organic was washed with saturated aqueous NaHCO_{3} and brine solutions. The resulting solution was dried over sodium sulfate and concentrated in vacuo to give a pale yellow residue which was purified by silica gel chromatography. Gradient elution with $25-50 \% \mathrm{EtOAc}$ in hexanes afforded the product as a colorless oil in 81% yield ($3.70 \mathrm{~g}, 13.0 \mathrm{mmol}$); 74% ee. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.12$ $(\mathrm{m}, 5 \mathrm{H}, \mathrm{ArH}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.31(\mathrm{dd}, J=2.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.27(\mathrm{~d}, J=$ $2.2, \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.51(\mathrm{dd}, J=6.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65-3.48(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OH}$), $2.93\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.38-2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 1.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.8,150.5,145.5,128.8,128.4,128.2,125.9,121.3,105.5,96.6,61.6,55.9$, 41.1, 38.7, 38.2. The enantiomeric ratio of the product was determined by HPLC analysis using a Chiracel AD and AD guard column (10% ethanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$); R isomer $\mathrm{t}_{\mathrm{r}}=12.9 \mathrm{~min}$, S isomer $\mathrm{t}_{\mathrm{r}}=18.1 \mathrm{~min}$.

3-(4-Dimethylamino-2-methoxy-phenyl)-3-phenyl-propanol-tert-butyl-dimethylsilyl

ether (4). 3-(4-Dimethylamino-2-methoxy-phenyl)-3-phenyl-propanol ($0.250 \mathrm{~g}, 0.877 \mathrm{mmol}$, 1.0 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ and treated sequentially with triethylamine (0.148 $\mathrm{mL}, 1.05 \mathrm{mmol}, 1.20$ equiv) and tert-butyldimethylsilyl chloride ($0.159 \mathrm{~g}, 1.05 \mathrm{mmol}, 1.20$ equiv). The reaction was stirred overnight and then subjected directly to silica gel chromatography. Gradient elution with $10-20 \%$ EtOAc in hexanes afforded the product as a pale yellow oil in 75% yield ($244 \mathrm{mg}, 0.659 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.26(\mathrm{~m}, 4 \mathrm{H}$, ArH), 7.20-7.13 (m, 2H, ArH), $6.35(\mathrm{dd}, J=2.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.29(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{H}, \mathrm{ArH})$, $4.48(\mathrm{t}, J=8.2 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{ArCH}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.63\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.97(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.33-2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 0.95\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0,150.5,145.8,128.3,128.2,125.7,122.0,105.1,97.0,62.1,55.7,41.2$, $39.4,38.5,26.4,18.8,-4.8 .[\alpha]_{D}=-15.4\left(c=0.82, \mathrm{CHCl}_{3}\right)$.

1-Methoxy-2-(3-tert-butyldimethylsiloxy-1-phenyl-propyl)-benzene (5). In a $25-\mathrm{mL}$ pear-shaped flask equipped with a magnetic stir bar, $\mathbf{4 a}(244 \mathrm{mg}, 0.659 \mathrm{mmol}, 1.00$ equiv) was dissolved in iodomethane ($0.41 \mathrm{ml}, 6.6 \mathrm{mmol}, 10$ equiv). The neat reaction mixture was stirred
at ambient temperature for 8 h at which time TLC analysis showed the starting material to be completely consumed. The iodomethane was removed in vacuo to furnish the quaternary ammonium iodide quantitatively ($335 \mathrm{mg}, 0.659 \mathrm{mmol}$) without need for further purification. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.52(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.34 (d, $J=8.8,1 \mathrm{H}, \mathrm{ArH}$), $7.28-$ $7.12(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 4.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 4.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 3.55-3.49 (m, 2H, CH2O), $2.20\left(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 0.95\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.8,146.4,143.0,137.0,128.9,128.6,128.3,126.6$, $110.0,103.8,61.2,58.5,58.0,39.7,37.6,26.2,18.6,-5.0$. A portion of the quaternary ammonium salt ($100 \mathrm{mg}, 0.195 \mathrm{mmol}, 1.00$ equiv) was dissolved/suspended in tetrahydrofuran $(3.0 \mathrm{~mL})$ and added to a rapidly stirring solution of sodium ($18.0 \mathrm{mg}, 0.782 \mathrm{mmol}, 4.0$ equiv) in liquid ammonia (approx. 25 mL) at $-78^{\circ} \mathrm{C}$. After 5 min , the cold reaction mixture was treated with benzylmethyl ether $(0.2 \mathrm{~mL})$ and the deep blue color was supplanted almost immediately by a bright orange. The mixture was then treated with isopropanol (2 mL) and stirred at $-78{ }^{\circ} \mathrm{C}$ for another 5 min by which time all color had dissipated from the reaction. Diethyl ether (20 mL) and saturated aqueous ammonium chloride (10 mL) were added carefully and the reaction vessel was allowed to warm to room temperature. The organic phase was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and the residue purified by silica gel chromatography. Gradient elution with 2-10\% EtOAc in hexanes provided the deaminated product in 96% yield ($61.2 \mathrm{mg}, 0.187 \mathrm{mmol}$). IR (film) 3027, 2954, 2929, 2856, 1601, 1492, 1462, 1438, 1244, 1100, 1051, 945.9, 834.8, 775.2, $751.9,698.4 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.12$ (m, 7H, ArH), $6.93(\mathrm{dt}, J=1.1,7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}), 3.78(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.58\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.27\left(\mathrm{dq}, J=0.9,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 0.90(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.2,144.9,142.0,133.3$, 128.7, 128.5, 128.4, 128.3, 127.9, 127.3, 16.1, 126.0, 61.8, 55.7, 39.8, 38.3, 38.2, 26.3, 18.7, -4.9. HRMS (CI) exact mass calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}\right)$ requires $\mathrm{m} / \mathrm{z} 357.2250$ for $[\mathrm{M}+\mathrm{H}]^{+}$, found $m / z 357.2244 .[\alpha]_{\mathrm{D}}=-15.7\left(\mathrm{c}=0.977, \mathrm{CHCl}_{3}\right)$.

[^0]: ${ }^{1}$ Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals; 4th ed., Butterworth-Heinemann: Oxford, 1996.
 ${ }^{2}$ Still, W. C.; Kahn, M.; Mitra, A. J. J. Org. Chem. 1978, 43, 2923.

[^1]: ${ }^{3}$ Loiodice, et. al. Tet. Asymm. 1995, 1001-1012.

[^2]: ${ }^{4}$ Jørgensen, et. al. J. Am. Chem. Soc. 2000, 122, 12517.

[^3]: ${ }^{5}$ Meyers, A. I. et al, J. Org. Chem. 1979, 44, 2250-2256.

[^4]: ${ }^{6}$ Krause, et al, J. Organomet. Chem. 1992, 423, 271-279.

[^5]: ${ }^{7}$ Consiglio, et. al. Tetrahedron 1983, 2699-2708.

