Reactive ion etching of Ta–Si–N diffusion barriers in CF_(4)+O_(2)
Abstract
Ta_(36)Si_(14)N_(50) amorphous layers were reactive ion etched in CF_(4)+O_(2) plasmas. The etch depth was determined as a function of gas composition, pressure, and cathode power. Adding small amounts of O_2 to CF_4 increased the etch rates up to approximately 15% O_2 concentration, with etch rates then decreasing with further addition of O_2. Etch rates increased with both pressure and power. Etching proceeded only after an initial delay time which depended upon gas composition and power. The delay is probably caused by a surface native oxide which must be removed before etching can commence. The presence of a surface oxide was observed from Auger electron spectroscopy intensity depth profile measurements and is estimated to be 2 nm thick. Under optimal conditions, the etch rate of Ta_(36)Si_(14)N_(50) is about seven times higher than for SiO_2, thus providing a high degree of selectivity for integrated circuit processing.
Additional Information
© 1994 American Vacuum Society. Received 22 February 1994; Accepted 24 May 1994. The authors acknowledge A. Deanni for performing the sample patterning. Financial support for a portion of this work was provided by the Army Research Office.
Attached Files
Published - MCLjvstb94.pdf
Files
Name | Size | Download all |
---|---|---|
md5:cbc40af063981e7fe1fad198d8cdfa41
|
384.5 kB | Preview Download |
Additional details
- Eprint ID
- 29603
- DOI
- 10.1116/1.587763
- Resolver ID
- CaltechAUTHORS:20120306-151931971
- Army Research Office (ARO)
- Created
-
2012-03-13Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field