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Do gravitational interactions respect the basic principles of relativity and quantum mechanics? We show
that any graviton S-matrix that satisfies these assumptions cannot significantly differ from General
Relativity at low energies. We provide sharp bounds on the size of potential corrections in terms of the mass
M of new higher-spin states, in spacetime dimensions D ≥ 5 where the S-matrix does not suffer from
infrared ambiguities. The key novel ingredient is the full set of SOðD − 1Þ partial waves for this process,
which we show how to efficiently compute with Young tableau manipulations. We record new bounds on
the central charges of holographic conformal theories.
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I. INTRODUCTION

Relativity and quantum mechanics lie at the heart of
particle physics. Notions such as relativistic causality
(“signals cannot move faster than light”) naturally lead
to the concepts of waves, fields, and particles as force
carriers [1]. Gravity challenges this unification; for example
the precise meaning of causality in a fluctuating spacetime
remains unclear. In this paper we study a situation where
causality can be unambiguously stated, and is in principle
experimentally testable.
Our setup is 2 → 2 scattering between initially well-

separated objects in a flat Minkowski-like region of
spacetime. A notion of causality is inherited from the flat
background, and encoded in the mathematically precise
axioms of scattering (S-matrix) theory. It can be used to
constrain gravity itself. Consider higher-derivative correc-
tions to Einstein’s gravity at long distances,

S¼
Z

dDx
ffiffiffiffiffiffi−gp
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; ð1Þ

wwhere C2; C3; C03 are higher-curvature terms
defined below. Weinberg famously argued that any theory
of a massless spin-two boson must reduce to GR
at long distances [2]. This was significantly extended
in [3], who argued that the parameters αi must be

parametrically suppressed by the mass M of new
higher-spin states. In parallel, S-matrix dispersion rela-
tions have been used to constrain signs and sizes of certain
corrections [4–6].
Recently, by combining these methods we showed how

to bound dimensionless ratios of the form jαiMij in any
scenario where M ≪ Mpl, such that corrections are larger
than Planck suppressed. However, these bounds featured
the infrared logarithms that are well-known to plague
massless S-matrices in four dimensions.
In this paper we present rigorous bounds in higher-

dimensional gravity, where infrared issues are absent. We
overcome significant technical hurdles regarding the partial
wave decompositions of higher-dimensional amplitudes.
The resulting bounds have interesting applications to
holographic conformal field theories.

II. FOUR-POINT GRAVITY AMPLITUDES

A. Four-point S-matrices and local module

We treat the graviton as a massless particle of spin 2. The
amplitude for 2 → 2 graviton scattering depends on the
energy-momentum pμ

j and polarization ε
μ
j of each. It can be

written generally as a sum over Lorentz-invariant poly-
nomials times scalar functions,

M ¼
X
ðiÞ

PolyðiÞðfpj; εjgÞ ×MðiÞðs; tÞ: ð2Þ

We use conventions in which all momenta are outgoing and
Mandelstam invariants, satisfying sþ tþ u ¼ 0, are
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s¼−ðp1þp2Þ2; t¼−ðp2þp3Þ2; u¼−ðp1þp3Þ2:
ð3Þ

In kinematics where p1, p2 are incoming, s and −t are,
respectively, the squares of the center-of-mass energy and
momentum transfer.
The allowed polynomials in (2) are restricted by the fact

that graviton polarizations are transverse traceless and
subject to gauge redundancies [7],

pj · pj ¼ pj · εj ¼ εj · εj ¼ 0; εj ≃ εj þ #pj: ð4Þ

Depending on the choice of spanning polynomials, the
functions MðiÞðs; tÞ may develop spurious singularities
which would complicate their use. As explained in [8],
there exist special generators of the “local module” such
that any amplitude that is polynomial in polarizations and
momenta leads to MðiÞ’s that are polynomial in s and t.
These can be simply presented using gauge- and Lorentz-
invariant building blocks:

H12 ¼ Fμ
1νF

ν
2μ; H123 ¼ Fμ

1νF
ν
2σF

σ
3μ;

H1234 ¼ Fμ
1νF

ν
2σF

σ
3ρF

ρ
4μ; V1 ¼ p4μF

μ
1νp

ν
2; ð5Þ

where Fμ
iν ¼ pμ

i εiν − εμi piν is proportional to the field
strength. We define H’s with other indices by permutation,
and Vi by cyclic permutations.
In this notation, any S-matrix involving four photons

(thus homogeneous of degree 1 in each of the vectors εμj )
can be written as a sum of seven terms, involving three
basic functions [8],

M4γ ¼ ½H14H23M
ð1Þ
4γ ðs; uÞ þ X1243M

ð2Þ
4γ ðs; uÞ þ cyclic�

þ SMð3Þ
4γ ðs; tÞ: ð6Þ

Here, we introduced the shorthands X and S,

X1234 ¼ H1234 −
1

4
H12H34 −

1

4
H13H24 −

1

4
H14H23;

S ¼ V1H234 þ V2H341 þ V3H412 þ V4H123: ð7Þ

Thanks to Bose symmetry, all basic functions MðiÞ
4γ ða; bÞ

are symmetrical in their two arguments, while the third one
is further invariant under all permutations of s, t, u, since S
is fully permutation symmetric. The combination X enjoys
improved Regge behavior (discussed below).
The general four-graviton amplitude M can now be

written using all products of the photon structures, sup-
plemented by the element G equal to the determinant of all
dot products between ðp1; p2; p3; ε1; ε2; ε3; ε4Þ. The result-
ing 29 generators organize under permutations as two
singlets, seven cyclic triplets, and one sextuplet [8]:

singlets∶GMð1Þðs;uÞ; S2Mð10Þðs;uÞ;
triplets∶H2

14H
2
23M

ð2Þðs;uÞ; H12H13H24H34Mð3Þðs;uÞ;
H14H23ðX1243−X1234−X1324ÞMð4Þðs;uÞ;
X2
1243M

ð6Þðs;uÞ; X1234X1324Mð7Þðs;uÞ;
H14H23SMð8Þðs;uÞ; X1243SMð9Þðs;uÞ;

sextuplet∶H12H34X1243Mð5Þðs;uÞ: ð8Þ

These constitute a basis in generic spacetime dimension
(D ≥ 8); lower dimensions are reviewed in Appendix A.

B. Regge limit and dispersive sum rules

At low energies, the effect of quartic self-interactions
in the effective theory (1) is to add polynomials in
Mandelstam invariants to the amplitudes MðiÞ: this is a
defining property of the local module [9]. We would like to
use the assumption that graviton scattering remains sensible
at all energies to constrain the size of these interactions.
Our axioms are best stated using smeared amplitudes,

MΨðsÞ≡
Z

M

0

dpΨðpÞMðs;−p2Þ: ð9Þ

The traditional statement of causality in S-matrix theory,
alluded to in the introduction, is that amplitudes are analytic
in the upper-half s-plane. We will specifically assume that
the smeared amplitude is analytic in the upper-half-plane
for s large, jsj≳M2. As argued in [10–13], combined with
unitarity on the real axis, this implies boundedness along
any complex direction for suitable wavefunctions Ψ:

jMΨðsÞjs→∞ ≤ s × constant: ð10Þ

The essential conditions on ΨðpÞ are: finite support in p
(required for analyticity of MΨ), and normalizability at
large impact parameters (ensuring boundedness).
The bound (10) is assumed for polarizations that do not

grow with energy. The behavior of the scalar functions
MðiÞ can be deduced from the Regge scaling of the
polarization structures they multiply; leading growth rates
are recorded in Table I. An important observation is that the
leading terms are not all linearly independent, for example
while both X1234; X1324 ∼ s2, their difference grows more
slowly. The coefficients of these structures inherit the
opposite behavior. For example, the (smeared) photon

amplitudes Mð2Þ
4γ ðs; tÞ �Mð2Þ

4γ ðu; tÞ are bounded by con-
stants times s−1 and s0, respectively.
We say that a dispersive sum rule has Regge spin k if it

converges assuming that M=sk → 0; our axioms above
state that sum rules with k > 1 converge. As can be seen
from (8) and Table I, M ∼ sk implies Mð3Þ ∼ sk−4, ensur-
ing convergence of the following integral at fixed t ¼ −p2

(with u ¼ p2 − s):
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B½1�
k ðp2Þ ¼

I
∞

ds
4πi

�ðs−uÞMð3Þðs;uÞ
ð−suÞk−22

�
≡ 0 ðk≥ 2 evenÞ:

ð11Þ

This identity yields a Kramers-Kronig type relation
between scattering at low and high energies, by a standard
contour deformation argument. Namely, one finds a low-
energy contribution at the scaleM ≪ Mpl which is effective
field theory (EFT) computable by assumption, plus a
discontinuity at high energies s ≥ M2 (see Ref. [12]
for more detail). See Appendix D for the low-energy
amplitudes.
A salient feature of graviton scattering is that many sum

rules, like B½1�
2 above, have no denominator: only the poles

ofM contribute at low energies. Acting on the low-energy
amplitude [see (D4)], it yields,

8πG

�
1

2p2
þ α22 − 2α4

16
p2

�
¼

Z
∞

M2

ds
π
ðs − uÞImMð3Þðs; uÞ:

ð12Þ

The dependence on p is exact up to EFT-computable
contributions from other light poles (such as light Kaluza-
Klein modes), which we account for in our analysis below,
and Planck-suppressed loop corrections, which we neglect
sinceM ≪ Mpl. Thus (12) constitutes an infinite number of
sum rules involving two EFT parameters αi. This “super-
convergence” phenomenon is related to the graviton’s spin
and gauge invariance, which led to the energy growth of
structures in (8). For other sum rules we construct improved
combinations Bimp

k ðp2Þ which are designed to probe finite
sets of EFT couplings. Our complete set of sum rules is
detailed in Appendix A 1.

III. CONSTRUCTION OF PARTIAL WAVES

Our assumptions about the right-hand-side of (12) and
similar relations are minimal; Lorentz symmetry and
unitarity with respect to the asymptotic states. The inter-
mediate states that can appear in a scattering process in
D ¼ dþ 1 dimensions form representations ρ under SOðdÞ
rotations in the center-of-mass frame. Thus, the S-matrix
can be written as a sum over projectors onto each
representation. As far as the 2 → 2 S-matrix is concerned,
unitarity is simply the statement that jSρj ≤ 1 for the
coefficient of each projector.

The main technical complication in D > 4 is that many
intermediate representations can appear. Furthermore,
multiple index contractions can exist for a given repre-
sentation. Listing them is equivalent to enumerating on
shell three-point vertices between two massless and one
massive particle. We introduce here an efficient method to
construct structures and projectors in arbitrary D.

A. Partial wave expansion

Concretely, the partial wave expansion for a 2 → 2
graviton scattering amplitude takes the form

M ¼ s
4−D
2

X
ρ

nðDÞ
ρ

X
ij

ðaρðsÞÞjiπijρ ; ð13Þ

where ρ runs over finite-dimensional irreps of SOðdÞ, and
the normalization nðDÞ

ρ is in (C10). For completeness, a
derivation of this formula is presented in Appendix C.
The partial waves πijρ are functions of polarizations and

momenta that transform in the representation ρ under the
little group SOðdÞ preserving Pμ ¼ pμ

1 þ pμ
2. We build

them by gluing vertices vi;aðn; e1; e2Þ, where a is an
SOðdÞ-index for ρ, i labels linearly-independent vertices,
and

nμ ≡ pμ
2 − pμ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 − p2Þ2

p ; eμi ≡ εμi − pμ
i
εi · P
pi · P

; ð14Þ

are natural vectors orthogonal to P. Note that n2 ¼ 1, and
the ei are gauge invariant, null, and orthogonal to n,

n · ei ¼ e2i ¼ 0: ð15Þ

In the center-of-mass frame, n and ei are simply the orienta-
tion and polarizations of incoming particles. Defining an
outgoing orientation similarly, n0μ ∝ ðp4 − p3Þμ, partial
waves are defined by summing over intermediate indices,

πijρ ≡ ðvi; vjÞ≡ vi;aðn0; e3; e4Þgabvj;bðn; e1; e2Þ; ð16Þ

where gab is an SOðdÞ-invariant metric on ρ, and f̄ denotes
Schwarz reflection f̄ðxÞ ¼ ðfðx�ÞÞ�.
Unitarity of S implies that the matrix SρðsÞ≡ 1þ iaρðsÞ

satisfies jSρðsÞj ≤ 1, which implies 0 ≤ Imaρ ≤ 2 (where
an inequality of matrices is interpreted as positive-
semidefiniteness of the difference). We illustrate these
concepts in some examples in Appendix C.
Our method uses the two sides of the unitarity inequality

in different ways: the non-perturbative upper bound ensures
convergence of sum rules through (10), whereas positivity
(0 ≤ Imaρ) constrains the sign of otherwise unknown
heavy state contributions to these sum rules.

TABLE I. Behavior in the fixed-t Regge limit of polarization
structures, omitting some simple permutations, i.e. H34 ∼H12.

H12 H13 H14 X1234 X1324 X1243 X1234 − X1324 S G

s1 s1 s0 s2 s2 s1 s1 s2 s2
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B. Review of orthogonal representations

A finite-dimensional irrep of SOðdÞ is specified by a
highest weight ρ ¼ ðm1;…; mnÞ, where n ¼ bd=2c, see e.g.,
[14,15]. Them’s are integers for bosonic representations and
half-integers for fermionic representations, satisfying

m1 ≥ � � � ≥ mn−1 ≥ jmnj: ð17Þ

For tensor representations, jmij are the row lengths of the
Young diagram for ρ. Note thatmn must be positive in odd-d,
but can be negative in even-d—the sign of mn indicates the
chirality of the representation. We omit vanishing m’s from
the end of the list, for instance denoting a spin-J traceless
symmetric tensor by (J).
To manipulate tensors, we represent them as index-free

polynomials in polarization vectors w1;…; wn ∈ Cd, one
for each row. The traceless and symmetry properties of a
given irrep are captured by taking these to be orthogonal
and defined modulo gauge redundancies [16]:

w2
i ¼ wi · wj ¼ 0; wj ∼ wj þ #wi for j > i: ð18Þ

The latter means that allowed functions of w must be
annihilated by w1 · ∂w2

, etc. Three-point vertices are then
simply SOðdÞ-invariant polynomials viðw1;…; wn; n;
e1; e2Þ where the w’s play the same role for a massive
particle that the ε’s play for gravitons.
Polynomials satisfying the gauge condition can be

easily constructed by inscribing vectors in the boxes of a
Young tableau, where each column represents an anti-
symmetrized product with w’s. For example, given vectors
aμ;…; eμ ∈ Cd, we can define a tensor in the (3,2)
representation via

ð19Þ

Any tableau defines a valid tensor. Tableaux are not unique,
since we can permute columns. Also, antisymmetrizing all
the boxes in one column with another box (of not higher
height) yields a vanishing polynomial, e.g.,

ð20Þ

C. Vertices with two massless and one heavy state

With this technology, we can straightforwardly write all
three-point vertices between two gravitons and an arbitrary
massive state. Here we focus on generic dimensions
D ≥ 8, relegating special cases in lower dimensions to
Appendix B. All we can write are the dot product e1 · e2
and Young tableaux in which each box contains either n, e1
or e2. Evidently, no tableau can have more than three rows,
by antisymmetry.
As a warmup, consider two nonidentical massless

scalars. Two-particle states form traceless symmetric ten-
sors of rank J, i.e., single-row tableaux. The only possible
SOðdÞ-invariant vertex involving n is then

ð21Þ

Denoting by an arbitrary (possibly zero) number of
boxes containing n, the most general coupling between two
scalars and a heavy particle is thus simply .
Moving on to two spin-1 particles, one must add one

power of each of e1, e2. These can appear either as e1 · e2 or
inside a tableau, giving the exhaustive list:

ð22Þ

A potential tableau was removed since it is redundant

thanks to (20). Thus, there are six possible vertices. If the
two particles are identical, e.g., photons, we get additional
restrictions on the parity in n—for example the number of
boxes in the first two structures must be even.
The analogous basis of couplings for gravitons in generic

dimension D ≥ 8 are shown in Table II. This basis agrees
with [17]. Changes in lower dimensions are listed in
Appendix B.

TABLE II. The 20 graviton-graviton-massive couplings in generic dimension (D ≥ 8). Cells collect structures that can be in the same
representation. stands for an arbitrary (possibly zero) even number of n boxes; S flips n and swaps e1 and e2.
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D. Gluing vertices using weight-shifting operators

To glue vertices into partial waves we need to sum over
intermediate spin states. This can be achieved efficiently
using weight-shifting operators [18]. A general weight-
shifting operator Da is an SOðdÞ-covariant differential
operator that carries an index a for some finite-dimensional
representation of SOðdÞ, such that acting on a tensor in the
representation ρ it gives a tensor in the representation with
shifted weights ρþ δ. We will be particularly interested in
the operator DðhÞμ that removes one box at height h from a
Young diagram with height h,

DðhÞμ∶ ρ ¼ ðm1;…; mhÞ → ðm1;…; mh − 1Þ≡ ρ0: ð23Þ
Conceptually, DðhÞμ is a Clebsch-Gordon coefficient for

: this ensures its existence and uniqueness up to
normalization. Explicitly, DðhÞμ is given by [19]

DðhÞμ0 ¼
�
δμ0μ1 −

wμ0
1

NðhÞ
1

∂

∂wμ1
1

��
δμ1μ2 −

wμ1
2

NðhÞ
2

∂

∂wμ2
2

�
� � �

×

�
δμh−1μh −

wμh−1
h

NðhÞ
h − 1

∂

∂wμh
h

�
∂

∂whμh

; ð24Þ

where NðhÞ
i ¼ d − 1þmi þmh − i − h. Notice the shift by

1 in the last parenthesis: 1=ðNðhÞ
h − 1Þ. The h ¼ 1 case of

(24) is the familiar Todorov/Thomas operator that acts on
traceless symmetric tensors [21].
For the definition (24) to be consistent, the following

properties must hold:
(i) DðhÞμ preserves the gauge constraints: for all i < j,

wi · ∂wj
DðhÞμX ¼ 0 if X satisfies the same.

(ii) DðhÞμ sends traces to traces. By “traces” we mean
index contractions in strictly gauge-invariant poly-
nomials (not just products w2 · w3)—for example,
the following expression where μ denotes a unit
vector in the μ direction:

ð25Þ

These properties are nontrivial and determineDðhÞμ up to an
overall constant, which can be fixed by considering traces
on height-h columns. For example, consider adjacent gauge
transformations wi · ∂wiþ1

. Commuting across the ith and
(iþ 1)th parentheses one finds an unwanted term propor-

tional to ðNðhÞ
i −miÞ − ðNðhÞ

iþ1 −miþ1 þ 1Þ, whose vanish-

ing recursively determines all N’s in terms of NðhÞ
h as stated

below (24).
Effectively, DðhÞ recovers indices from index-free poly-

nomials and enables one to evaluate the pairing (16)
recursively in terms of simpler pairings, for example

ð26Þ

Such a formula holds for any choice of a column of
maximal height h on the left factor, giving 1=mh times a
sum with alternating sign over the boxes it contains,
see (F1). In practice, since DðhÞ sends tableaux to tableaux,
it can be elegantly implemented as a combinatorial oper-
ation, as discussed in Appendix F.
By repeatedly applying (26) and its generalization (F1),

any pairing can be reduced to a pairing between single-row
tableaux of length m1 ¼ J:

ð27Þ

This can be computed by taking derivatives with respect to
n and n0 of the scalar partial wave (see also [22]):

ð28Þ

where PJðxÞ is a Gegenbauer polynomial [see (C14)] and
ðaÞn is the Pochhammer symbol. Thus, (26) and (28) allow
us to glue the vertices from Table II into partial wave
expressions which hold for arbitrary J ¼ m1, involving
derivatives of PJðxÞ times dot products between graviton
polarizations ej and directions n, n0. This procedure can be
straightforwardly and efficiently automated on a computer.
To limit the size of final expressions, we use the

Gegenbauer equation ðx2 − 1Þ∂2xPJðxÞ þ… ¼ 0 to remove

any monomial of the form xaPðbÞ
J ðxÞwith a, b ≥ 2. We then

insert a set of linearly independent polarizations to project
onto the generators (8) of the local module and extract
MðiÞ’s that are polynomials in x. Finally, we use the Gram-
Schmidt method to find orthonormal combinations of
vertices according to (C15). As a consistency check on
our results, we verified that our partial waves are eigen-
vectors of the SOðdÞ quadratic Casimir.

IV. RESULTS AND INTERPRETATION

Dispersive sum rules like (12) express low-energy EFT
parameters as sums of high-energy partial waves, times
unknown positive couplings [through (13) with 0 ≤ Imaρ].
The “bootstrap” game consists in finding linear combinations
such that all unknowns contribute with the same sign. Such
combinations yield rigorous inequalities that EFT parameters
must satisfy if a causal and unitary UV completion exists.
To obtain optimal inequalities in a gravitational setting,

we follow the numerical search strategy of [10,12].
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Because of the graviton pole, it is not legitimate to expand
around the forward limit; rather our trial basis consists of
the improved sum rules Bimp

k ðp2Þ integrated against wave
packets ψ iðpÞwith jpj ≤ M. We ask for a positive action on
every state of mass m ≥ M and arbitrary SOðdÞ irrep, as
well as on light exchanges of spin J ≤ 2 and any mass. Full
details of our implementation are given in Appendix E.
Figure 1 displays our main result; the allowed region for

the dimensionless parameters ðα2M2; α4M4Þ which control
the leading corrections to the action (1), in terms of the
mass M of higher-spin states. For the purposes of illus-
tration, we show the results for D ¼ 5, 7, 10; other
dimensions D lead to qualitatively similar plots. The
parameters are defined more precisely in (D1), and enter
the on shell three-graviton vertex (D3). It would be
interesting to compare these bounds with the explicit
values of Wilson coefficients in “theory islands” arising
from known UV completions [23].
TheM scaling of the bounds is significant: it implies that

higher-derivative corrections can never parametrically com-
pete with the Einstein-Hilbert term, within the regime of
validity of a gravitational EFT. As soon as corrections
become significant, new particlesmust be around the corner.
Since we assumeM ≪ Mpl, graviton scattering is still weak
at the cutoff. In gravity, unlike in other low-energy theories,
the leading (Einstein-Hilbert) interactions cannot be tuned to
zero without setting all other interactions to zero.
What happens at the scale M? Since we allowed for

exchanges of arbitrary light states of low spins, M is
associated with the mass of J ≥ 3 states. The importance of
higher-spin states was anticipated in [3]. In general, higher-
spin states must come in towers that include all spins [24].
For instance, M could signal the beginning of a tower of
higher-spin particles (as in weakly coupled string theory),

that each couple to two gravitons with strength ∼M2
ffiffiffiffi
G

p
.

Alternatively, M could be the energy at which loops
representing a large number N ∼M2−D=G of two-particle
states that couple with weaker strength M

Dþ2
2 G to two

gravitons, become non-negligible [25,26]. Either way,
graviton scattering must be profoundly modified at the
scale M and above, while remaining weak.
Our flat-space bounds have implications in curved space-

times. As explained in [11], since the scattering processes
under consideration take place in a region of small size
∼1=M, flat-space dispersive bounds uplift in anti–de Sitter
(AdS) to rigorous bounds on holographic CFTs, up to
corrections suppressed by 1=ðMRAdSÞ ¼ 1=Δgap.
Focusing on D ¼ 5 (the AdS5=CFT4 correspondence),

stress-tensor two- and three-point functions are character-
ized by three parameters, including the central charges a
and c that enter the conformal anomaly [27]. Their relation
to higher-derivative couplings is particularly simple when
the EFTaction is expressed in terms of Weyl tensors, so that
renormalization of the AdS radius is avoided. Using the
field redefinition invariant formulas from [28] we find

a ¼ π2
R3
AdS

8πG
;

a − c
a

¼ 2α2
R2
AdS

: ð29Þ

Figure 1 thus implies a sharp central charge bound,

���� a − c
c

���� ≤ 23

Δ2
gap

þOð1=Δ4
gapÞ ðAdS5=CFT4Þ; ð30Þ

which could potentially be improved at the ∼5% level. In
holographic theories, this result is stronger than the
conformal collider bound 1

3
≤ a

c ≤
31
18

[29] and establishes
the parametric scaling anticipated in [3,30,31]. We stress
that since Δgap is the dimension of the lightest higher-spin
(nondouble-trace) operator, the bound holds even in the
presence of light Kaluza-Klein modes (as in AdS5 × S5)
and is generally independent of the geometry of the internal
manifold. The sign of (a − c) is significant [32]; our results
do not exclude either sign.
The leading contact interaction in D ≥ 7 is the

6-derivative “third Lovelock term”, which is related to
α04 in (1). Our bounds for this coefficient depend only
weakly on its sign and on α2, α4, and yield the absolute
limits in e.g., D ¼ 7, 10:

jα04M4j ≤ 56ðD ¼ 7Þ; jα04M4j ≤ 25ðD ¼ 10Þ: ð31Þ

In analogy with scalar EFTs [24,33–37] and four-
dimensional gravitons and photons [12,38–40], we expect
this method to yield two-sided bounds on all higher-
derivative interactions that can be probed by four-graviton
scattering, and on many derivative couplings involving
matter fields.

FIG. 1. Allowed region for couplings α2 and α4 inD ¼ 5, 7 and
10 spacetime dimensions, in units of the mass M of higher-spin
states.
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APPENDIX A: LOCAL MODULE AND SUM
RULES IN VARIOUS DIMENSIONS

1. Sum rules in D ≥ 8

In D ≥ 8, there are 19 independent sum rules with even
spin k ≥ 2 that can be constructed from applying dispersion
relations to coefficients of the local basis with independent
Regge limits (8),

Bkðp2Þ ¼
I
∞

ds
4πi

�ðs − uÞMð3;10Þðs; uÞ
ð−suÞk−22 ;

ðs − uÞMð2;5;8;9Þþðs; tÞ
ð−suÞk−22 ;

ðs − uÞðMð6Þþðs; tÞ þMð7Þðs; uÞÞ
ð−suÞk−22 ;

Mð4;6;9Þ−ðs; tÞ
ð−suÞk−22 ;

×
Mð5Þ−ðs; uÞ
ð−suÞk−22 ;

ðs − uÞMð1;6;7;8Þðs; uÞ
ð−suÞk2 ;

ðs − uÞMð3Þþðs; tÞ
ð−suÞk2 ;

ðs − uÞðMð5Þþðt; sÞ − 2Mð4Þðs; uÞÞ
ð−suÞk2 ;

Mð5Þ−ðt; uÞ
ð−suÞk2 ;

×
ðs − uÞMð2Þðs; uÞ

ð−suÞkþ2
2

	
¼ 0; ðA1Þ

where M� ≡M� ðs ↔ uÞ and t ¼ −p2 ¼ −s − u is held fixed. We use multiple superscripts Mði1;…;ikÞ to indicate a
sequence of similar expressions involving the amplitudesMði1Þ:…;MðikÞ. For odd k > 1, there are 10 independent sum rules,

Bkðp2Þ ¼
I
∞

ds
4πi

�
Mð2;5;8Þ−ðs; tÞ

ð−suÞk−32 ;
Mð3;7Þ−ðs; tÞ
ð−suÞk−12 ;

ðs − uÞMð4;7Þþðs; tÞ
ð−suÞ k−1

2

;
ðs − uÞMð5Þþðs; uÞ

ð−suÞk−12 ;

×
ðs − uÞMð9Þðs; uÞ

ð−suÞk−12 ;
ðs − uÞMð4Þðs; uÞ

ð−suÞkþ1
2

	
¼ 0: ðA2Þ

The Regge bound (10) implies that these sum rules converge for k > 1.

2. Sum rules in lower dimensions

In lower dimensions D ≤ 7, there are two novelties for local modules as noted in [8]. First, new identities can reduce the
number of parity-even generators of the local module. This does not occur in D ¼ 7. However, in D ¼ 6 the generator G
does not exist, thus we must remove the parity-even sum rules involvingMð1Þðs; uÞ. Similarly inD ¼ 5, we simply remove
the parity-even sum rules involving Mð1;6;7Þðs; uÞ.
The second novelty in lower dimensions is that new parity-odd structures appear. Following [8], we organize them into

multiplets under permutations. In D ¼ 7, there is one parity-odd singlet and two parity-odd triplets:

singlets∶ iSϵðε1; ε2; ε3; ε4; p1; p2; p4ÞMð13Þðs; uÞ;
triplets∶ iH14H23ϵðε1; ε2; ε3; ε4; p1; p2; p4ÞMð11Þðs; uÞ; ðD ¼ 7Þ

iX1243ϵðε1; ε2; ε3; ε4; p1; p2; p4ÞMð12Þðs; uÞ: ðA3Þ
Correspondingly, we can construct more sum rules

Bkðp2Þ ¼
I

ds
4πi

�
Mð11Þ−ðs; tÞ
ð−suÞk−22 ;

ðs − uÞMð12Þðs; uÞ
ð−suÞk2

	
¼ 0 ðeven k;D ¼ 7Þ;

Bkðp2Þ ¼
I

ds
4πi

�
Mð12Þ−ðs; tÞ
ð−suÞk−12 ;

ðs − uÞMð11;12Þþðs; tÞ
ð−suÞ k−1

2

;
ðs − uÞMð13Þðs; uÞ

ð−suÞk−12
	

¼ 0 ðodd k;D ¼ 7Þ: ðA4Þ

In D ¼ 6, there are three parity-odd triplets:
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H14H23σ1234 · ðV1ϵðε2; ε3; ε4; p2; p3; p4ÞÞMð10Þðs; uÞ;
σ1423 · ðσ3412 · ðH24H34V1ϵðε1; ε2; ε3; p1; p2; p3ÞÞÞMð11Þðs; uÞ;
σ3412 · ððH234V1 −H123V4Þð−p2 · p3ϵðε1; ε2; ε3; ε4; p1; p4Þ þ ðp3 ↔ ε3Þ − ðp2 ↔ ε2Þ þ ðp2;3 ↔ ε2;3ÞÞÞMð12Þðs; uÞ: ðA5Þ

Here, we have introduced permutation operators σ to simplify the expressions:

σ1234 · A1234 ≡ A1234 − A2341 þ A3412 − A4123;

σklij · A1234 ≡ A1234 þ ði ↔ j; k ↔ lÞ: ðA6Þ

The corresponding parity-odd sum rules in D ¼ 6 are given by

Bkðp2Þ ¼
I

ds
4πi

�ðs − uÞMð10Þþðs; tÞ
ð−suÞk−22 ;

Mð11Þ−ðs; uÞ
ð−suÞk−22 ;

Mð12Þðs; uÞ
ð−suÞk−22

	
¼ 0 ðeven k;D ¼ 6Þ;

Bkðp2Þ ¼
I
∞

ds
4πi

�
Mð11Þðs; uÞ
ð−suÞk−32 ;

Mð10;12Þ−ðt; sÞ
ð−suÞk−32 ;

Mð8Þðs; uÞ
ð−suÞk−12 ; ;

ðs − uÞMð10;12Þþðt; sÞ
ð−suÞk−12

	
¼ 0 ðodd k;D ¼ 6Þ: ðA7Þ

Finally, in D ¼ 5 there is one parity-odd triplet

−iσ3412 · ðσ14 · ðH23H234V1ϵðε1; ε4; p1; p2; p4ÞÞÞMð8Þðs; uÞ; ðD ¼ 5Þ ðA8Þ

which gives rise to three independent sum rules,

Bkðp2Þ ¼
I
∞

ds
4πi

�ðs − uÞMð8Þ−ðt; sÞ
ð−suÞk−22 ;

Mð8Þðs; uÞ
ð−suÞk−22

	
¼ 0 ðeven k;D ¼ 5Þ;

Bkðp2Þ ¼
I
∞

ds
4πi

�
Mð8Þ−ðt; sÞ
ð−suÞk−32

	
¼ 0 ðodd k;D ¼ 5Þ: ðA9Þ

3. Improved sum rules

Equations (A1)–(A9) provide complete sets of dispersive
sum rules in the considered dimensions. By “complete” we
mean that any sum rule with spin-k convergence can be
expressed as finite sum of the B≤k up to corrections that
vanish faster than spin-k at high energies. Generically, the
action of Bkðp2Þ on the low-energy amplitude (D4) yields
an infinite series of contact interactions. Following the
method in [10], all but a finite number of contacts can be
removed by adding an infinite series of higher-spin sum

rules BðnÞ
>kð0Þ expanded around the forward limit. As further

discussed in [12], while it is not allowed to expand k ¼ 2
sum rules in the forward limit (due to the graviton pole),
there are no analogous problems for k > 2. Explicit
formulas for the resulting Bimp

k ðp2Þ sum rules are recorded
in the Supplemental Material [41].

APPENDIX B: VERTICES IN LOWER
DIMENSIONS

In the main text, we described three-point vertices for
two gravitons and a massive state in dimensions D ≥ 8. In
lower spacetime dimensions, the counting of three-point

structures is modified, and we must take into account
additional ingredients in the representation theory of the
little group SOðdÞ (where d ¼ D − 1). In this section, we
describe these ingredients, and then discuss the individual
cases D ¼ 7, 6, 5 in turn. Detailed expressions can be
found in the Supplemental Material [41].

1. Representation theory ingredients

a. Self-duality and ϵ-symbols

When d ¼ 2n is even, representations with full-height
Young diagrams split into self-dual or anti-self-dual cases,
according to whether mn is positive or negative. Let us
explain how to account for this in our index-free formalism.
Recall that the polarization vectors wi satisfy the orthogon-
ality conditions and gauge redundancies (18). When d is
even, the variety defined by these conditions (called a “flag
variety”) splits into two irreducible components V�, dis-
tinguished by whether w1 ∧ � � � ∧ wn is self-dual or anti-
self-dual. Specifically, we have

in

n!
ϵν1���νn

μ1���μnwν1
1 � � �wνn

n ¼ �w½μ1
1 � � �wμn�

n on V�: ðB1Þ
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To see why there are two components V�, we can
recursively solve the orthogonality conditions wi · wj ¼ 0.
First, we use SOðdÞ-invariance and rescaling to set w1 ¼
ð1; i; 0;…; 0Þ. Using gauge-redundancies and w1 · wi ¼ 0,
the remaining wi must have the form wi ¼ ð0; 0; w⊥

i Þ,
where w⊥

i ∈ Cd−2 are null vectors. The w⊥
i satisfy precisely

the conditions and gauge redundancies for the flag variety
of SOðd − 2Þ. Repeating this process for the w⊥

i ’s, we
eventually arrive at the flag variety for SO(2), parametrized
by a single null vector w⊥���⊥

n ∈ C2. Up to SO(2)
transformations and rescaling, there are two possible null
vectors w⊥���⊥

n ¼ ð1;�iÞ, corresponding to the two
components.
The following combinations thus project the polynomial

(19) associated with a tableau onto its self-dual (antiself-
dual) part:

ðB2Þ

Furthermore, the product of (B2) with any polynomial in
the wi’s is also self-dual (antiself-dual), since it vanishes on
V− (Vþ). In general, we define a tableau with chirality� by
adding an ϵ term to any full-height column, for example,

ðB3Þ

Note that it doesn’t matter which full-height column we
choose—the resulting polynomial is the same since it
agrees on both components Vþ and V−; this can be verified
explicitly with Gram determinant identities.

b. Counting three-point structures

Using the methods of [17,42], one can show that possible
three-point vertices for the representation ρ are classified by
the following formula:

ðB4Þ

Here, denotes the spin-2 representation of SOðd − 1Þ.
When we tensor an SOðd − 1Þ representation with ρ, we
implicitly dimensionally reduce ρ to an SOðd − 1Þ repre-
sentation. The notation ðλÞ• denotes the SOðd − 1Þ-singlet
subspace of λ, and ðλÞ•� denotes the SOðd − 1Þ singlet
subspace with parity�. Finally, jρj is the number of boxes in
the Young diagram of ρ. The formula (B4) is useful for
detecting linear dependencies between Young tableau in
various spacetime dimensions.

c. Implications of CRT

CRT symmetry relates the SOðdÞ representation ρ to
the dual reflected representation ðρRÞ�. When d≡ 1, 2,
or 3 mod 4, we have simply ðρRÞ� ¼ ρ. In this case, we
can choose conventions where three-point couplings for
graviton-graviton-ρ vertices are real, simply by making
the couplings invariant under pμ

j ↦ −pμ
j ; i ↦ −i. In par-

ticular, when computing positivity bounds, we impose that
the contribution of each type of partial wave to a sum rule
is a positive-definite real symmetric matrix.
Meanwhile, when d≡ 0 mod 4, dual reflection changes

the sign of the weight mn, and hence exchanges self-dual
and antiself-dual representations ρþ ↔ ρ−. In this case,
CRT implies that three-point coefficients of ρþ and ρ− are
complex conjugates of each other. We discuss the impli-
cations of this for positivity bounds in D ¼ 5 below.

2. Vertices in D= 7 (d = 6)

Because d ¼ 6 is even, representations with height-3
Young diagrams split into self-dual and antiself-dual cases.
The only effect is to double the number of height-3 tableaux
in Table II by adding a � chirality to each.
Let us denote a self-dual (antiself-dual) representation by

ρþ (ρ−). In the absence of parity symmetry, the three-point
amplitudes gggρ� between two gravitons and states in ρþ or
ρ− need not be related. Consequently, we must sum over
partial waves for each type of representation ρþ and ρ−
independently. In bootstrap calculations, this requires
including separate positivity conditions for ρþ-exchange
and ρ−-exchange.
However, the contributions of ρþ-exchange and

ρ−-exchange to parity-even sum rules are identical.
Thus, when computing bounds using parity-even sum rules
(such as our bounds on α2 and α4), positivity conditions
associated to ρþ and ρ− are redundant, and it suffices to
include only one of them (say ρþ).

3. Vertices in D= 6 (d = 5)

In spacetime dimension D ¼ 6, SO(5) Young tableaux
can have at most two rows. Since vertices are functions of
five vectors ðw1; w2; e1; e2; nÞ, there is a unique way to use
the Levi-Civita tensor. It is convenient to write it as a
height-3 column,

ðB5Þ

At most one column can have height 3, due to a Gram
determinant identity. With this convention, the only change
to Table II is to remove the tableau for ðJ; 2; 2Þ, and to
reinterpret the tableaux for ðJ; 1; 1Þ, ðJ; 2; 1Þ, and ðJ; 3; 1Þ
as parity-odd vertices for ðJ; 1Þ, ðJ; 2Þ, and ðJ; 3Þ,
respectively.
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4. Vertices in D= 5 (d = 4)

In spacetime dimensionD ¼ 5, SO(4) tableaux with two
rows can have chirality�. In addition, we can use the Levi-
Civita tensor in the form ϵðw1; a; b; cÞ. Due to Gram
determinant identities, this term can never be used if
two-row columns are present, and it cannot be used twice.
It is again convenient to draw it as a 3-row column,

ðB6Þ

With this convention, the tableau with row lengths ðJ; 1; 1Þ
get reinterpreted as a parity-odd coupling for the repre-
sentation ρ ¼ ðJÞ. Note also that the counting formula (B4)
implies that there are only two linearly independent vertices
for the representations ðJ;�2Þ with even J. Overall, the
possible vertices in D ¼ 5 are given in Table III.
As discussed in section 1 c, when d ¼ 4, CRT implies

that three-point coefficients of ρþ and ρ− are complex
conjugates of each other. Given a pair of representations
ρþ, ρ− with opposite chirality, let us denote the corre-
sponding partial waves by πþ, π−. The π� are Hermitian
matrices indexed by vertex labels i, j. Exploiting fact
that generators of the local module are invariant under
the Z2 × Z2 symmetry which includes the interchange
between initial and final states, we can choose conventions
where

πþ ¼ π�− ¼ πT−: ðB7Þ

By choosing generators of the local module to be invariant
under pj ↦ −pj; i ↦ −i, these relations automatically
hold for all the coefficients of the projector on that basis.
A contribution from ρþ-exchange to the discontinuity of
the amplitude takes the form

TrðMπþÞ; ðB8Þ

where M ¼ gþg
†
þ is a Hermitian matrix built from a vector

of three-point couplings gþ. The three-point couplings for
ρ− are complex-conjugate to gþ and can be grouped into
the matrix g−g†− ¼ g�þgTþ ¼ M� ¼ MT . Together, ρþ and
ρ−-exchange thus contribute

TrðMπþÞ þ TrðMTπ−Þ ¼ TrðMðπþ þ πT−ÞÞ ¼ 2TrðMπþÞ:
ðB9Þ

So, summing the two opposite-chirality irreps simply gives
a factor of 2. In parity-even sum rules, only the real-
symmetric part ofM and π contributes, while for parity-odd
sum rules, only the imaginary part of both contributes.
Thus, when computing bounds using parity-even sum rules
(as we do in this paper), we can essentially pretend that
the three-point couplings are real and symmetrical.
Furthermore, we need only include positivity conditions
for one chirality (say ρþ), since the contributions from
ρ− are redundant.

APPENDIX C: DETAILS ON THE PARTIAL
WAVE DECOMPOSITION

In this appendix, we derive the properly normalized
partial wave decomposition (13) and illustrate it for scalars
and gravitons.

1. Normalized partial wave expansion

It is helpful to view the two-particle Hilbert space as a
direct integral over total momentumP ¼ p1 þ p2 of Hilbert
spaces HP with fixed P. Because the S-matrix preserves
momentum, it acts within each HP. When P ¼ ðE; 0⃗Þ, HP

is spanned by states jni such that p1 ¼ E
2
ð1; nÞ and

p2 ¼ E
2
ð1;−nÞ, where n is a unit vector. Let us momentarily

suppress the spin of the external particles, i.e., consider
scalars. The inner product on HP is a ratio of the two-
particle inner product and a momentum-conserving
δ-function,

hn0jni ¼ hp3jp1ihp4jp2i þ hp3jp2ihp4jp3i
ð2πÞDδDðp1 þ p2 − p3 − p4Þ

¼ 2dð2πÞd−1
s
D−4
2

ðδðn; n0Þ þ δðn;−n0ÞÞ; ðC1Þ

where D ¼ dþ 1 and we have used the standard single-
particle inner product

hp3jp1i ¼ 2E1ð2πÞD−1δD−1ðp⃗1 − p⃗3Þ: ðC2Þ

TABLE III. The graviton-graviton-massive couplings in D ¼ 5, as Young tableau for SO(4). We use the same notation as in Table II.
The meaning of the height-3 column is given in (B6).
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In (C1), δðn; n0Þ is a δ-function on the sphere Sd−1, and
s ¼ E2. The inner product (C1) yields a corresponding
completeness relation in HP:

1 ¼ s
D−4
2

2dð2πÞd−1
1

2

Z
Sd−1

dnjnihnj; ðC3Þ

where the factor of 1
2
reflects Bose symmetry jni ¼ j − ni.

Using this relation it will be straightforward to correctly
normalize the partial wave amplitudes.
For scalar scattering, HP decomposes into a direct sum

of irreducible representations ρ of SOðdÞ, where only even-
spin traceless symmetric tensors ρ ¼ ðJÞ appear, each with
multiplicity one. In the case of graviton scattering, the
statesHP acquire extra polarization labels jn; e1; e2i, where
e1, e2 are defined by (14), which adds corresponding
Kronecker deltas added to the above. More general irreps ρ
can appear in the decomposition of HP, and furthermore
they can have nontrivial multiplicity.
For each ρ, we can choose basis vectors ji; ai where a is

an SOðdÞ-index for ρ and i is a multiplicity label. The
vertices vi;aðn; e1; e2Þ are proportional to the overlap of
ji; ai with jn; e1; e2i:

hi; ajn; e1; e2i≡ ðs4−D2 nðDÞ
ρ Þ12vi;aðn; e1; e2Þ; ðC4Þ

where the constants out front have been introduced for later
convenience. We can choose the basis to be orthonormal,
hi; ajj; bi ¼ δijgab where gab is an SOðdÞ-invariant metric.
Projectors on ρ are then

Πij
ρ ≡ ji; aigabhj; bj; ðC5Þ

where gab is the inverse to gab. As an operator on HP, the
2 → 2 S-matrix can be expanded as a sum of projectors,

Sj2→2 ¼
X
ρ

X
ij

ðSρðsÞÞjiΠij
ρ : ðC6Þ

Unitarity of S implies that each SρðsÞ is separately a unitary
matrix SρðsÞSρðsÞ† ¼ 1. Taking a matrix element of M ¼
−iðS − 1Þ in the basis states jn; e1; e2i, we obtain the partial
wave decomposition of the gravity amplitudes (13),

M ¼ hn0; e�3; e�4j − iðS − 1Þjn; e1; e2i
¼

X
ρ

X
ij

ðaρðsÞÞjihn0; e�3; e�4jΠij
ρ jn; e1; e2i

¼ s
4−D
2

X
ρ

nðDÞ
ρ

X
ij

ðaρðsÞÞjiπijρ ; ðC7Þ

where πijρ ¼ v̄i;bgbavj;a ≡ ðv̄i; vjÞ and SρðsÞ ¼ 1þ iaρðsÞ.

From this derivation, the normalization can be fixed
simply by taking the trace of (C5) and using the com-
pleteness relation (C3),

δij dim ρ ¼ nðDÞ
ρ

2dþ1ð2πÞd−1
Z
Sd−1

dnTrðv̄iðnÞ; vjðnÞÞ

¼ nðDÞ
ρ volSd−1

2dþ1ð2πÞd−1 Trðv̄
iðnÞ; vjðnÞÞ; ðC8Þ

where we have used rotational invariance to perform the
integral over n, and Tr indicates a sum over polarization
states. [We detail the precise meaning of Tr for gravitons
below in (C15).] We choose to normalize the vertices so
that

Trðv̄iðnÞ; vjðnÞÞ ¼ δij: ðC9Þ

The normalization coefficient nðDÞ
ρ is thus fixed to be dim ρ

divided by essentially the phase-space volume,

nðDÞ
ρ ¼ 2dþ1ð2πÞd−1 dim ρ

volSd−1
: ðC10Þ

The dimension dim ρ can be computed from standard
formulas, see e.g., [15,20]. For spin-J traceless symmetric
tensors, we have simply

dimðJÞ ¼ ð2J þ d − 2ÞΓðdþ J − 2Þ
Γðd − 1ÞΓðJ þ 1Þ : ðC11Þ

2. Scalar scattering

Let us determine the precise expression for πρ in the case
of scalar scattering. Since each ρ ¼ ðJÞ appears with
multiplicity 1, there is a unique vertex function

ðC12Þ

up to a constant kJ that we determine shortly. The partial
waves are given by

πJðn0; nÞ ¼ k2Jðn0μ1 � � �n0μJ − tracesÞðnμ1 � � � nμJ − tracesÞ

¼ k2J
ðd − 2ÞJ
2Jðd−2

2
ÞJ
PJðxÞ; ðC13Þ

where x ¼ n · n0 ¼ 1þ 2t
s , ðaÞn is the Pochhammer symbol,

and PJðxÞ is a Gegenbauer polynomial given by
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PJðxÞ ¼ 2F1

�
−J; J þ d − 2;

d − 1

2
;
1 − x
2

�
: ðC14Þ

Our normalization condition on vertices is equivalent to

πJðn;nÞ ¼ 1,which fixeskJ ¼ ð ðd−2ÞJ
2Jðd−2

2
ÞJÞ

−1=2 sincePJð1Þ ¼ 1.

We finally obtain πJðn0; nÞ ¼ PJðxÞ, and (C7) recovers the
familiar partial wave expansion for scalars, see e.g., [43].

3. Graviton scattering

In the case of graviton scattering, the orthonormality
condition used in (C10) can be expanded as

δij ¼ Trðv̄i; vjÞ ¼
X
e1;e2

ðviðn;e1; e2Þ�; vjðn;e1; e2ÞÞ; ðC15Þ

where
P

e1;e2 denotes a sum over an orthonormal basis of
polarization states, and ðu; vÞ ¼ ubgbava as before.

Concretely, the sum over polarizations can be performed by
replacing

e�μ1 e�ν1 eρ1e
σ
1 →

1

2
ðĝμρĝνσ þ ĝνρĝμσÞ − 1

D − 2
ĝμνĝρσ

ĝμν ≡ δμν − nμnν; ðC16Þ

where μ, ν, etc. are SOðdÞ indices, and making a similar
replacement for e2. In practice, to obtain the vertices in the
SupplementalMaterial [41],webeganwith the basis of vertices
in Table II (and the analogous bases inD ≤ 7), and applied the
Gram-Schmidt procedure using the pairing (C15).
Let us illustrate some examples of graviton partial waves

for the representation ρ ¼ ðJ; 1; 1Þ in spacetime dimension
D ≥ 8. As shown in Table II, there are two linearly-
independent vertices for ðJ; 1; 1Þ. An orthonormal basis
with respect to the pairing (C15) is given by

ðC17Þ

Gluing these vertices, we can construct partial waves, which are 2-by-2 matrices indexed by the vertex labels. For brevity,
we record here only the top-left corner of this matrix π11ρ , obtained by gluing v1 to itself. We furthermore write the result in

terms of contributions π11;ðiÞρ ðs; uÞ to each of the 29 scalar amplitudes defined in (8) through the 10 generators MðiÞðs; uÞ
and their permutations. We find that s-channel exchange of ðJ; 1; 1Þ produces

π11;ð2ÞðJ;1;1Þðt; uÞ ¼
2ðD − 4ÞP0

JðxÞ
DðJ þ 2ÞðJ þD − 5Þm8

; π11;ð4ÞðJ;1;1Þðu; tÞ ¼
8ððD − 4ÞP0

JðxÞ þ xP00
JðxÞÞ

DðJ þ 2ÞðJ þD − 5Þm8
;

π11;ð5ÞðJ;1;1Þðs; uÞ ¼
8ððD − 4ÞP0

JðxÞ þ ðxþ 1ÞP00
JðxÞÞ

DðJ þ 2ÞðJ þD − 5Þm8
; π11;ð5ÞðJ;1;1Þðs; tÞ ¼

8ððD − 4ÞP0
JðxÞ þ ðx − 1ÞP00

JðxÞÞ
DðJ þ 2ÞðJ þD − 5Þm8

; ðC18Þ

and all other π11;ðiÞðJ;1;1Þ vanish. As before, x ¼ 1þ 2t
s . For

additional expressions for partial waves, we refer the reader
to the Supplemental Material [41].

APPENDIX D: LOW-ENERGY AMPLITUDES

1. Tree-level graviton amplitudes

The higher-derivative interactions entering the action (1)
are defined as

C2 ≡ CμνρσCμνρσ;

C3 ≡ 3CμνρσCρσ
αβCαβμν − 4CμνρσCνασβCα

μ
β
ρ;

C03 ≡ −CμνρσCρσ
αβCαβμν þ 2CμνρσCνασβCα

μ
β
ρ; ðD1Þ

where Cμνσρ is the Weyl tensor (traceless part of the
curvature tensor Rμνσρ). The Weyl tensor is convenient
for writing low-energy effective actions since, as mentioned

in the text, the Ricci tensor and scalar can be removed using
equations of motion and do not affect our bounds (see also
[44]). Thus C2 is equivalent to the Gauss-Bonnet density
(whose coefficient is sometimes called α2 ¼ λGB), and C03
is effectively proportional to the third Lovelock density.
The normalizations in (1) have been chosen so that the on
shell three-graviton vertex agrees with [3]

Mð123Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
ðA2

1 þ α2A1A2 þ α4A2
2Þ; ðD2Þ

where

A1 ≡ p1 · ε3ε1 · ε2 þ p3 · ε2ε1 · ε3 þ p2 · ε1ε2 · ε3;

A2 ≡ p1 · ε3p2 · ε1p3 · ε2: ðD3Þ

To illustrate scattering amplitudes in the local module,
we now give explicit expressions for the ten generating
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amplitudesMðiÞ entering (8) for tree-level gravity in generic dimensionD ≥ 8. We include here higher-derivative couplings
α2, α4 to linear order, and the unique 6-derivative interaction α04 which yields a contact term:

Mð1Þðs; uÞ ¼ 8πGα04 þ…; Mð2Þðs; uÞ ¼ 8πG
stu

þ…;

Mð3Þðs; uÞ ¼ 8πG
stu

�
2 −

t2α4
2

�
þ…; Mð4Þðs; uÞ ¼ 8πG

stu
ð4 − 2tα2 − 4suα4Þ þ…;

Mð5Þðs; uÞ ¼ 8πG
stu

ð8þ 2α2uÞ þ…; Mð6Þðs; uÞ ¼ 8πG
stu

ð4 − 4α2tÞ þ…;

Mð7Þðs; uÞ ¼ 8πG
stu

ð8þ 4α2tÞ þ…; Mð8Þðs; uÞ ¼ 8πG
stu

ð−2α2Þ þ…;

Mð9Þðs; uÞ ¼ 8πG
stu

ð−4α2 þ 8α4tÞ þ…; Mð10Þðs; uÞ ¼ 8πG
stu

ð4α4Þ þ…: ðD4Þ

All omitted terms are either quadratic in the α2, α4 or
involve higher derivative contacts, which are simply poly-
nomials in Mandelstam invariants subject to the symmetries
of the corresponding MðiÞ. Complete expressions, includ-
ing for lower dimensions, are recorded in the Supplemental
Material [41].

2. Kaluza-Klein and other light exchanges

In our bounds, we allow for tree-level exchanges of
massive particles that are part of the low-energy EFT—i.e.,
whose masses are below the cutoff scale M. We refer to
such particles as light; they could arise, for example, from
Kaluza-Klein reduction. However, we do not actually
assume anything about the existence of extra dimensions.
We do however, make a choice about which types of light
states to consider, and we include all representations with
J ¼ m1 ≤ 2. These include symmetric tensors with spin
≤ 2, and k-forms of any degree, which are the possible
massless string modes in string theory. It would be
interesting to consider other possible EFT matter content;
we leave this problem for future work.
Given the partial waves, it is straightforward to deter-

mine the amplitudes for light exchanges. We look for
meromorphic functions MðiÞðs; uÞ with the appropriate
symmetry properties under crossing, and possessing simple
poles in Mandelstam variables whose residues match the
partial waves. As an example, consider the possible KK-
mode representation ρ ¼ ð1; 1; 1Þ (a 3-form). The partial
waves expressions (C18) predict that only the following
amplitudes have s-channel poles,

4Mð2Þ
ð1;1;1Þðt; uÞ ¼ Mð4Þ

ð1;1;1Þðt; uÞ ¼ Mð5Þ
ð1;1;1Þðs; uÞ

¼ Mð5Þ
ð1;1;1Þðs; tÞ ¼

8

3Dm8ðm2 − sÞ
þ no s-poles: ðD5Þ

We then fill in the t- and u-channel poles using symmetries.
Since Mð2;4Þ are symmetric in their two arguments, and

Mð5Þ has no symmetry, there is in fact nothing to add. That
is, 3-form exchanges in all channels are accounted for by

setting the function Mð4Þ
ð1;1;1Þðs; uÞ≡ 8

3Dm8ðm2þsþuÞ, etc.
The light amplitudes constructed via this procedure

naturally have polynomial ambiguities, which represent
four-point contact interactions. Following [12], we fix these
ambiguities by demanding that light states contribute to
sum rules with the minimal possible spin k. The contri-
bution of light exchanges to various sum rules is then
obtained by performing the appropriate contour integrals
[e.g., (A1)] on these amplitudes. Our full expressions for
light exchange amplitudes, and their contributions to
various sum rules, can be found in the Supplemental
Material [41].
When computing bounds, we demand that the contri-

bution of each possible light exchange is sign-definite, so
that the resulting bounds are true independently of the light
content of the EFT.

APPENDIX E: DETAILS OF NUMERICAL
IMPLEMENTATION AND SUPPLEMENTAL

MATERIAL

Figure 1 was produced by numerically searching for
combinations of the Bimp

k ðp2Þ sum rules whose action on
every unknown state is positive, following the strategy
detailed in [12]. The sum rules are integrated against wave
packets that are polynomials in p over p ∈ ½0;M�, where
we typically use 5 or 6 different exponents of p for each
sum rules and reach up to Regge spin k ¼ 5 or k ¼ 7. Our
search space thus contains between 200 and 400 trial
sum rules.
To test positivity, we sample the action of these sum rules

on a large number of heavy states with m ≥ M (and light
states with J ≤ 2), which are distributed in spin up to
J ¼ 400. We typically sample their action on between
10,000 and 200,000 states that have spin up to J ¼ 400. We
also include constraints from the m → ∞ scaling limit with
various b ¼ 2J

m . For the k ¼ 2 sum rules, which dominate at
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m → ∞, it is important that the wave packets include an
overall factor pαðM − pÞ so the sum rules decay at large
impact parameters (like ∼1=b3 in D ¼ 5). We use the
SDPB solver [45,46] to search for linear combinations of
the trial sum rules which are positive on all states and
establish optimal bounds on the radial distance from the
origin along various rays in the ðα2; α4Þ plane. Since the
functionals depend quadratically on the αj, we converge
toward the boundary by optimizing a sequence of linearized
quantities.
In practice, we fix the set of functionals and increase the

number of states until the bounds do not change, keeping
only those sets of functionals for which such convergence
could be achieved. In going from 5 to 6 exponents, the
bounds improved by no more than a few percent. We thus
expect that the recorded bounds are conservatively correct,
and likely within 5% of being optimal.
We anticipate that the partial waves computed in this

paper will serve in many other studies. We have thus
prepared “process files” which contain the complete
information used to bootstrap each of the graviton
scattering process studied in this paper: GGGG5.txt,
GGGG6.txt, GGGG7.txt, GGGGd.txt, for D ¼ 5, 6,
7 and D ≥ 8 respectively, as well as a file GGGG4.txt,
which characterizes the D ¼ 4 case studied in our earlier
paper [12]. Each file contains, in a native Mathematica
notation:

(i) The basis localbasis[GGGG[d]] of polariza-
tion structures used throughout the file, i.e., the L
elements generated from (8) where L ¼ 29 for
D ≥ 8, written in terms of the H, V, X, S and G
structures defined in section II (the latter two are
denoted HS and HGram in the files).

(ii) A list vertices[GG[d]] of three-point cou-
plings vi between two gravitons and a massive state,
written in the Young tableau notation of Sec. III and
Appendix B and divided by the scalar factor kJ of
(C13) (and ei denoted ep[i]).

(iii) On shell three-graviton vertices amplow[GGG
[d]], which define higher-derivative corrections
like α2, α4.

(iv) Low-energy amplitudes amplow[GGGG[d]],
which including tree-level graviton exchanges keep-
ing the αk, as well as contact interactions g
[p,...] that contribute up to relatively high
power p in Mandelstam invariants. The coefficient
8πGα04 in the main text is given by g[3,0,{GGGG
[d],1}] in the process files.

(v) Partial waves partialwaves[GG[d], GG[d]]
which list, for each possible SOðdÞ irrep, an entry
exchange[irrep,{amplitude,channel,
x},normalizations,matrix] with typically
channel ¼ s and x ¼ 1þ 2t

s . If an irrep allows n
independent vertices, normalizations is an
n × n matrix and matrix is n × n × L, such that

their entry-wise product express the projector πij

in localbasis[amplitude]. The the ath

derivative PðaÞ
J ðxÞ with respect to x of the

Gegenbauer polynomial (C14) is denoted as pj
[J,x,D,a]. Irreps are denoted from the row
lengths of the Young tableau with a formal integer
m ≥ 0; for example f2mþ 3; 1g denotes the family
of representations ðJ; 1Þ where J ≥ 3 is odd. Non-
generic irreps with low spin, for which some vertex
structures disappear and the matrix becomes smaller,
are explicitly separated.

(vi) Light exchanges ampKK[GG[d],GG[d]], simi-
larly written as lists of exchange[irrep,ma-
trix] for each irrep, where the n × n × L matrix
gives explicit functions of Mandelstam invariants.

(vii) Improved sum rules sumrules[bkimp[GGGG
[d],k]], which give Bimp

k derived from (A1), in
terms of amplitude labels M[...][s,-t] entering
localbasis[GGGG[d]], with arguments ½s;−t�
that indicate which Mandelstam invariants get
mapped to the independent variables m2, p2 (sum
rules are then m2 integrals at fixed p2).

(viii) The actions sumruleslow[bkimp[GGGG[d],
k]] and sumrulesKK[bkimp[GGGG[d],k]]
of sum rules on the amplow and ampKK low-energy
data.

This constitutes the full information from which the boot-
strap problem can be implemented in an automated way.

APPENDIX F: WEIGHT-SHIFTING
AS A COMBINATORIAL OPERATION

In general, the weight-shifting operator DðhÞμ lets one
“integrate-by-parts” inside an SOðdÞ-invariant pairing to
remove a box from the left factor and replace it with DðhÞμ
acting on the right factor. Specifically, we have

ðw½μ1
1 � � �wμh�

h g; fÞ ¼ 1

mh
ðw½μ1

1 � � �wμh−1
h−1g;D

ðhÞμh�fÞ; ðF1Þ

where the Young diagram for f has height h. This is the
generalization of (26) in the main text. In practice, this lets
us remove a box from any of the tallest columns in a pairing
of Young tableau.
Given (F1), we should look for an efficient way to apply

DðhÞμ to a Young tableau. This can be accomplished with
the help of the following observation:

(i) When acting on a polynomial defined via a tableau,
the derivative in the ith parenthesis in (24) acts only
on columns with height exactly i.

This leads to a simple formula for applying DðhÞμ to a
Young tableau. To state it, we first define some simple
operations on columns of height k:
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ðF2Þ

We define S½k� and T½k� to give zero when acting on
columns with height k0 ≠ k. We furthermore extend them to
derivations on the algebra generated by columns, so that
they are linear and satisfy Leibniz rules,

S½k�μνðxyÞ ¼ ðS½k�μνxÞyþ xðS½k�μνyÞ;
T½k�μðxyÞ ¼ ðT½k�μxÞyþ xðT½k�μyÞ: ðF3Þ

Finally, given a tableau Y, let Y ½k� denote the product of all
columns of Y with height k. In particular, Y can be
decomposed as Y ¼ Q

h
k¼1 Y

½k�, where h is the height of
Y. We claim that the action of DðhÞ on Y is given by

DðhÞμ0Y ¼
��

δμ0μ1 −
S½1�μ0μ1
NðhÞ

1

�
Y ½1�

���
δμ1μ2 −

S½2�μ1μ2
NðhÞ

2

�
Y ½2�

�

� � �
��

δμh−1μh −
S½h�μh−1μh
NðhÞ

h − 1

�
T½h�μhY ½h�

�
: ðF4Þ

The virtue of (F4) is that it works symbolically within the
algebra generated by Young tableaux. For example, we have

ðF5Þ

The first line comes from applying v · T½3� and simply sums
all the ways of erasing one box, while the second line comes
from applying v · S½3� · T½3�. After including permutations,
it contains 9 pairs of terms similar to the shown pair (with c
replaced by a or b, or f replaced by d or e). If we add boxes
with a vector n to the first row, then (F4) implies

ðF6Þ

where each square bracket is given by Eq. (F5).
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