of 8
Measurement of the branching fractions of the radiative leptonic
τ
decays
τ
e
γν
̄
ν
and
τ
μγν
̄
ν
at
BABAR
J. P. Lees,
1
V. Poireau,
1
V. Tisserand,
1
E. Grauges,
2
A. Palano,
3a,3b
G. Eigen,
4
B. Stugu,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
M. J. Lee,
5
G. Lynch,
5
H. Koch,
6
T. Schroeder,
6
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
R. Y. So,
7
A. Khan,
8
V. E. Blinov,
9a,9b,9c
A. R. Buzykaev,
9a
V. P. Druzhinin,
9a,9b
V. B. Golubev,
9a,9b
E. A. Kravchenko,
9a,9b
A. P. Onuchin,
9a,9b,9c
S. I. Serednyakov,
9a,9b
Yu. I. Skovpen,
9a,9b
E. P. Solodov,
9a,9b
K. Yu. Todyshev,
9a,9b
A. J. Lankford,
10
B. Dey,
11
J. W. Gary,
11
O. Long,
11
M. Franco Sevilla,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. A. West,
12
A. M. Eisner,
13
W. S. Lockman,
13
W. Panduro Vazquez,
13
B. A. Schumm,
13
A. Seiden,
13
D. S. Chao,
14
C. H. Cheng,
14
B. Echenard,
14
K. T. Flood,
14
D. G. Hitlin,
14
T. S. Miyashita,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
M. Röhrken,
14
R. Andreassen,
15
Z. Huard,
15
B. T. Meadows,
15
B. G. Pushpawela,
15
M. D. Sokoloff,
15
L. Sun,
15
P. C. Bloom,
16
W. T. Ford,
16
A. Gaz,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17
,
W. H. Toki,
17
B. Spaan,
18
D. Bernard,
19
M. Verderi,
19
S. Playfer,
20
D. Bettoni,
21a
C. Bozzi,
21a
R. Calabrese,
21a,21b
G. Cibinetto,
21a,21b
E. Fioravanti,
21a,21b
I. Garzia,
21a,21b
E. Luppi,
21a,21b
L. Piemontese,
21a
V. Santoro,
21a
A. Calcaterra,
22
R. de Sangro,
22
G. Finocchiaro,
22
S. Martellotti,
22
P. Patteri,
22
I. M. Peruzzi,
22
,
M. Piccolo,
22
M. Rama,
22
A. Zallo,
22
R. Contri,
23a,23b
M. R. Monge,
23a,23b
S. Passaggio,
23a
C. Patrignani,
23a,23b
B. Bhuyan,
24
V. Prasad,
24
A. Adametz,
25
U. Uwer,
25
H. M. Lacker,
26
U. Mallik,
27
C. Chen,
28
J. Cochran,
28
S. Prell,
28
H. Ahmed,
29
A. V. Gritsan,
30
N. Arnaud,
31
M. Davier,
31
D. Derkach,
31
G. Grosdidier,
31
F. Le Diberder,
31
A. M. Lutz,
31
B. Malaescu,
31
P. Roudeau,
31
A. Stocchi,
31
G. Wormser,
31
D. J. Lange,
32
D. M. Wright,
32
J. P. Coleman,
33
J. R. Fry,
33
E. Gabathuler,
33
D. E. Hutchcroft,
33
D. J. Payne,
33
C. Touramanis,
33
A. J. Bevan,
34
F. Di Lodovico,
34
R. Sacco,
34
G. Cowan,
35
D. N. Brown,
36
C. L. Davis,
36
A. G. Denig,
37
M. Fritsch,
37
W. Gradl,
37
K. Griessinger,
37
A. Hafner,
37
K. R. Schubert,
37
R. J. Barlow,
38
,
G. D. Lafferty,
38
R. Cenci,
39
B. Hamilton,
39
A. Jawahery,
39
D. A. Roberts,
39
R. Cowan,
40
R. Cheaib,
41
P. M. Patel,
41
,*
S. H. Robertson,
41
N. Neri,
42a
F. Palombo,
42a,42b
L. Cremaldi,
43
R. Godang,
43
D. J. Summers,
43
M. Simard,
44
P. Taras,
44
G. De Nardo,
45a,45b
G. Onorato,
45a,45b
C. Sciacca,
45a,45b
G. Raven,
46
C. P. Jessop,
47
J. M. LoSecco,
47
K. Honscheid,
48
R. Kass,
48
M. Margoni,
49a,49b
M. Morandin,
49a
M. Posocco,
49a
M. Rotondo,
49a
G. Simi,
49a,49b
F. Simonetto,
49a,49b
R. Stroili,
49a,49b
S. Akar,
50
E. Ben-Haim,
50
M. Bomben,
50
G. R. Bonneaud,
50
H. Briand,
50
G. Calderini,
50
J. Chauveau,
50
Ph. Leruste,
50
G. Marchiori,
50
J. Ocariz,
50
M. Biasini,
51a,51b
E. Manoni,
51a
A. Rossi,
51a
C. Angelini,
52a,52b
G. Batignani,
52a,52b
S. Bettarini,
52a,52b
M. Carpinelli,
52a,52b
,**
G. Casarosa,
52a,52b
M. Chrzaszcz,
52a
F. Forti,
52a,52b
M. A. Giorgi,
52a,52b
A. Lusiani,
52a,52c
B. Oberhof,
52a,52b
E. Paoloni,
52a,52b
G. Rizzo,
52a,52b
J. J. Walsh,
52a
D. Lopes Pegna,
53
J. Olsen,
53
A. J. S. Smith,
53
F. Anulli,
54a
R. Faccini,
54a,54b
F. Ferrarotto,
54a
F. Ferroni,
54a,54b
M. Gaspero,
54a,54b
A. Pilloni,
54a,54b
G. Piredda,
54a
C. Bünger,
55
S. Dittrich,
55
O. Grünberg,
55
M. Hess,
55
T. Leddig,
55
C. Voß,
55
R. Waldi,
55
T. Adye,
56
E. O. Olaiya,
56
F. F. Wilson,
56
S. Emery,
57
G. Vasseur,
57
D. Aston,
58
D. J. Bard,
58
C. Cartaro,
58
M. R. Convery,
58
J. Dorfan,
58
G. P. Dubois-Felsmann,
58
W. Dunwoodie,
58
M. Ebert,
58
R. C. Field,
58
B. G. Fulsom,
58
M. T. Graham,
58
C. Hast,
58
W. R. Innes,
58
P. Kim,
58
D. W. G. S. Leith,
58
D. Lindemann,
58
S. Luitz,
58
V. Luth,
58
H. L. Lynch,
58
D. B. MacFarlane,
58
D. R. Muller,
58
H. Neal,
58
M. Perl,
58
,*
T. Pulliam,
58
B. N. Ratcliff,
58
A. Roodman,
58
R. H. Schindler,
58
A. Snyder,
58
D. Su,
58
M. K. Sullivan,
58
J. Va
vra,
58
W. J. Wisniewski,
58
H. W. Wulsin,
58
M. V. Purohit,
59
J. R. Wilson,
59
A. Randle-Conde,
60
S. J. Sekula,
60
M. Bellis,
61
P. R. Burchat,
61
E. M. T. Puccio,
61
M. S. Alam,
62
J. A. Ernst,
62
R. Gorodeisky,
63
N. Guttman,
63
D. R. Peimer,
63
A. Soffer,
63
S. M. Spanier,
64
J. L. Ritchie,
65
R. F. Schwitters,
65
J. M. Izen,
66
X. C. Lou,
66
F. Bianchi,
67a,67b
F. De Mori,
67a,67b
A. Filippi,
67a
D. Gamba,
67a,67b
L. Lanceri,
68a,68b
L. Vitale,
68a,68b
F. Martinez-Vidal,
69
A. Oyanguren,
69
P. Villanueva-Perez,
69
J. Albert,
70
Sw. Banerjee,
70
A. Beaulieu,
70
F. U. Bernlochner,
70
H. H. F. Choi,
70
G. J. King,
70
R. Kowalewski,
70
M. J. Lewczuk,
70
T. Lueck,
70
I. M. Nugent,
70
J. M. Roney,
70
R. J. Sobie,
70
N. Tasneem,
70
T. J. Gershon,
71
P. F. Harrison,
71
T. E. Latham,
71
H. R. Band,
72
S. Dasu,
72
Y. Pan,
72
R. Prepost,
72
and S. L. Wu
72
(
B
A
B
AR
Collaboration)
1
Laboratoire d
Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3,
F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9a
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia
9b
Novosibirsk State University, Novosibirsk 630090, Russia
PHYSICAL REVIEW D
91,
051103(R) (2015)
1550-7998
=
2015
=
91(5)
=
051103(8)
051103-1
© 2015 American Physical Society
RAPID COMMUNICATIONS
9c
Novosibirsk State Technical University, Novosibirsk 630092, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
19
Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
20
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
21a
INFN Sezione di Ferrara, I-44122 Ferrara, Italy
21b
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy
22
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
23a
INFN Sezione di Genova, I-16146 Genova, Italy
23b
Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
24
Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
25
Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany
26
Humboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany
27
University of Iowa, Iowa City, Iowa 52242, USA
28
Iowa State University, Ames, Iowa 50011-3160, USA
29
Physics Department, Jazan University, Jazan 22822, Kingdom of Saudia Arabia
30
Johns Hopkins University, Baltimore, Maryland 21218, USA
31
Laboratoire de l
Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11,
Centre Scientifique d
Orsay, F-91898 Orsay Cedex, France
32
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
33
University of Liverpool, Liverpool L69 7ZE, United Kingdom
34
Queen Mary, University of London, London E1 4NS, United Kingdom
35
University of London, Royal Holloway and Bedford New College,
Egham, Surrey TW20 0EX, United Kingdom
36
University of Louisville, Louisville, Kentucky 40292, USA
37
Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
38
University of Manchester, Manchester M13 9PL, United Kingdom
39
University of Maryland, College Park, Maryland 20742, USA
40
Massachusetts Institute of Technology, Laboratory for Nuclear Science,
Cambridge, Massachusetts 02139, USA
41
McGill University, Montréal, Québec, Canada H3A 2T8
42a
INFN Sezione di Milano, I-20133 Milano, Italy
42b
Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
43
University of Mississippi, University, Mississippi 38677, USA
44
Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
45a
INFN Sezione di Napoli, I-80126 Napoli, Italy
45b
Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
46
NIKHEF, National Institute for Nuclear Physics and High Energy Physics,
NL-1009 DB Amsterdam, Netherlands
47
University of Notre Dame, Notre Dame, Indiana 46556, USA
48
Ohio State University, Columbus, Ohio 43210, USA
49a
INFN Sezione di Padova, I-35131 Padova, Italy
49b
Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
50
Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS,
Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
51a
INFN Sezione di Perugia, I-06123 Perugia, Italy
51b
Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
52a
INFN Sezione di Pisa, I-56127 Pisa, Italy
52b
Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
52c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
53
Princeton University, Princeton, New Jersey 08544, USA
54a
INFN Sezione di Roma, I-00185 Roma, Italy
54b
Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
J. P. LEES
et al.
PHYSICAL REVIEW D
91,
051103(R) (2015)
051103-2
RAPID COMMUNICATIONS
55
Universität Rostock, D-18051 Rostock, Germany
56
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
57
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
58
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
59
University of South Carolina, Columbia, South Carolina 29208, USA
60
Southern Methodist University, Dallas, Texas 75275, USA
61
Stanford University, Stanford, California 94305-4060, USA
62
State University of New York, Albany, New York 12222, USA
63
Tel Aviv University, School of Physics and Astronomy, Tel Aviv 69978, Israel
64
University of Tennessee, Knoxville, Tennessee 37996, USA
65
University of Texas at Austin, Austin, Texas 78712, USA
66
University of Texas at Dallas, Richardson, Texas 75083, USA
67a
INFN Sezione di Torino, I-10125 Torino, Italy
67b
Dipartimento di Fisica, Università di Torino, I-10125 Torino, Italy
68a
INFN Sezione di Trieste, I-34127 Trieste, Italy
68b
Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
69
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
70
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
71
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
72
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 10 February 2015; published 25 March 2015)
We perform a measurement of the
τ
l
γν
̄
ν
(
l
¼
e;
μ
) branching fractions for a minimum photon energy
of 10 MeV in the
τ
rest frame, using
431
fb
1
of
e
þ
e
collisions collected at the center-of-mass energy of
the
Υ
ð
4
S
Þ
resonance with the
BABAR
detector at the PEP-II storage rings. We find
B
ð
τ
μγν
̄
ν
Þ¼
ð
3
.
69

0
.
03

0
.
10
Þ
×
10
3
and
B
ð
τ
e
γν
̄
ν
Þ¼ð
1
.
847

0
.
015

0
.
052
Þ
×
10
2
, where the first quoted
error is statistical and the second is systematic. These results are substantially more precise than previous
measurements.
DOI:
10.1103/PhysRevD.91.051103
PACS numbers: 13.35.-r, 13.40.Em, 13.40.Ks, 14.60.Fg
Leptonic
τ
decays are generally well suited to investigate
the Lorentz structure of electroweak interactions in a
model-independent way
[1]
. In particular, leptonic radiative
decays
τ
l
γν
̄
ν
, where the charged lepton (
l
) is either
an electron (
e
) or a muon (
μ
), have been studied for a long
time because they are sensitive to the anomalous magnetic
moment of the
τ
lepton
[2]
. At tree level, these decays can
proceed through three Feynman diagrams depending on
whether the photon is emitted by the incoming
τ
, the
outgoing charged lepton, or the intermediate
W
boson, as
shown in Fig.
1
. The amplitude for the emission of the
photon by the intermediate boson is suppressed by a factor
ð
m
τ
=M
W
Þ
2
with respect to a photon from the incoming/
outgoing fermions and is thus negligible with respect to
next-to-leading-order QED radiative corrections
[3]
. Both
branching fractions have been measured by the CLEO
collaboration. CLEO obtained
B
ð
τ
μγν
̄
ν
Þ¼ð
3
.
61

0
.
16

0
.
35
Þ
×
10
3
and
B
ð
τ
e
γν
̄
ν
Þ¼ð
1
.
75

0
.
06

0
.
17
Þ
×
10
2
for a minimum photon energy of 10 MeV
in the
τ
rest frame
[4]
. In addition, the OPAL collaboration
finds
B
ð
τ
μγν
̄
ν
Þ¼ð
3
.
0

0
.
4

0
.
5
Þ
×
10
3
for a mini-
mum photon energy of 20 MeV in the
τ
rest frame
[5]
.
In the present work, we perform a measurement of
τ
l
γν
̄
ν
branching fractions for a minimum photon energy
of 10 MeV in the
τ
rest frame. This analysis uses data
recorded by the
BABAR
detector at the PEP-II asymmetric-
energy
e
þ
e
storage rings operated at the SLAC National
Accelerator Laboratory. The data sample consists of
431
fb
1
of
e
þ
e
collisions recorded at at the center-of-
mass energy (CM)
ffiffiffi
s
p
¼
10
.
58
GeV
[6]
. The cross section
for
τ
-pair production is
σ
ττ
¼
0
.
919

0
.
003
nb
[7]
corre-
sponding to a data sample of about
400
×
10
6
τ
-pairs. A
detailed description of the
BABAR
detector is given else-
where
[8,9]
. Charged particle momenta are measured with a
five-layer double-sided silicon vertex tracker and a 40-layer
helium-isobutane drift chamber inside a 1.5 T supercon-
ducting solenoid magnet. An electromagnetic calorimeter
(EMC) consisting of 6580 CsI(Tl) crystals is used to
measure electron and photon energies; a ring-imaging
Cherenkov detector is used to identify charged hadrons;
the instrumented magnetic flux return (IFR) is used for
*
Deceased.
Now at University of Tabuk, Tabuk 71491, Saudi Arabia.
Also at Università di Perugia, Dipartimento di Fisica, I-06123
Perugia, Italy.
§
Now at Laboratoire de Physique Nucléaire et de Hautes
Energies, IN2P3/CNRS, F-75252 Paris, France.
Now at University of Huddersfield, Huddersfield HD1 3DH,
United Kingdom.
Now at University of South Alabama, Mobile, Alabama
36688, USA.
**
Also at Università di Sassari, I-07100 Sassari, Italy.
MEASUREMENT OF THE BRANCHING FRACTIONS OF THE
...
PHYSICAL REVIEW D
91,
051103(R) (2015)
051103-3
RAPID COMMUNICATIONS
muon identification. About half of the data were taken
with the IFR embedded with resistive plate chambers, later
partially replaced by limited streamer tubes.
For this analysis, a Monte Carlo (MC) simulation is
used to estimate the signal efficiency and to optimize the
selection algorithm. Simulated
τ
-pair events are generated
using KK2
F
[10]
, and
τ
decays are simulated with T
AUOLA
[11]
. Final-state radiative effects for
τ
decays in T
AUOLA
are simulated using P
HOTOS
[12]
. A signal
τ
-pair MC
sample is generated where one of the
τ
leptons decays to
τ
l
γν
̄
ν
, and the other decays according to known decay
modes
[13]
. For the signal sample, we require the minimum
photon energy in the
τ
rest frame to be
E

γ
;
min
>
10
MeV.
The
τ
l
γν
̄
ν
decays with
E

γ
;
min
<
10
MeV are treated as
background. A separate
τ
-pair MC sample is generated
requiring each
τ
lepton to decay in a mode based on current
experimental knowledge; we exclude signal events in the
former sample to obtain a
τ
-pair background sample. Other
MC simulated background samples include
μ
þ
μ
,
q
̄
q
(
u
̄
u
,
d
̄
d
,
s
̄
s
,
c
̄
c
), and
B
̄
B
(
B
¼
B
þ
,
B
0
) events. The
μ
þ
μ
events
are generated by KK2
F
,
q
̄
q
events are generated using the
JETSET generator
[14]
, while
B
̄
B
events are simulated
with EVTGEN
[15]
. The detector response is simulated
with GEANT4
[16]
. Background from two-photon and
Bhabha events is estimated from data.
The signature for
τ
l
γν
̄
ν
decays is a charged particle
(track), identified either as an electron or a muon, and an
energy deposit (cluster) in the EMC not associated with any
track, the photon. Since
τ
leptons decay mostly to a single
charged particle, events with two well-reconstructed tracks
and zero total charge are selected, where no track pair is
consistent with being a photon conversion in the detector
material. The transverse momentum of each track is
required to be
p
T
>
0
.
3
GeV
=c
, and the cosine of the
polar angle is required to be between
0
.
75
and 0.95 within
the calorimeter acceptance range to ensure good particle
identification. The total missing transverse moment of the
event is required to be
p
T;
miss
>
0
.
5
GeV
=c
. All clusters in
the EMC with no associated tracks (neutral clusters) are
required to have a minimum energy of 50 MeV. We also
reject events with neutral clusters having
E<
110
MeV if
they are within 25 cm of a track, where the distance is
measured on the inner wall of the EMC.
Each event is divided into hemispheres (signal and tag
hemispheres) in the CM frame by a plane perpendicular to
the thrust axis, calculated using all reconstructed charged
and neutral particles
[17]
. For every event, the magnitude of
the thrust is required to be between 0.9 and 0.995. The
lower limit on the thrust magnitude rejects most
q
̄
q
events,
while the upper limit removes
e
þ
e
μ
þ
μ
and Bhabha
events. The signal hemisphere must contain one track and
one neutral cluster. The tag hemisphere must contain one
track, identified either as an electron, muon, or pion, and
possibly one additional neutral cluster or
n
π
0
(
n
¼
1
, 2).
Each
π
0
candidate is built up from a pair of neutral clusters
with a diphoton invariant mass in the range [100,
160] MeV. To further suppress dimuon and Bhabha events,
we reject events where the leptons in the signal and tag
hemispheres have the same flavor. Since there are at least
three undetected neutrinos in the final state, we require the
total energy to be less than 9 GeV. In the signal hemisphere,
we require that the distance (
d
l
γ
) between the track and the
neutral cluster, measured on the inner wall of the EMC, to
be less than 100 cm.
Electrons are identified by applying an Error Correcting
Output Code
[18]
algorithm based on bagged decision tree
(BDT)
[19]
classifiers using as input the ratio of the energy
in the EMC to the magnitude of the momentum of the track
ð
E=p
Þ
, the ionization loss in the tracking system
ð
d
E=
d
x
Þ
,
and the shape of the shower in the electromagnetic
calorimeter.
Muon identification makes use of a BDT algorithm,
using as input the number of hits in the IFR, the number of
interaction lengths traversed, and the energy deposition in
the calorimeter. Since muons with momenta less than
500
MeV
=c
do not penetrate into the IFR, the BDT also
uses as input the energy loss
dE=dx
in the tracking system
to maintain a very low
μ
misidentification probability and a
high selection efficiency. The electron and muon identi-
fication efficiencies are 91% and 62%, respectively. The
probability for a
π
to be misidentified as an
e
is below
0.1%, while the probability to be misidentified as a
μ
is
around 1% depending on momentum.
After the preselection, both samples are dominated by
background events. For the
τ
μγν
̄
ν
sample, the main
background sources are initial-state radiation,
τ
ππ
0
ν
FIG. 1. Standard Model Feynman diagrams for
τ
l
γν
̄
ν
at tree level.
J. P. LEES
et al.
PHYSICAL REVIEW D
91,
051103(R) (2015)
051103-4
RAPID COMMUNICATIONS
decays,
e
þ
e
μ
þ
μ
events, and
τ
πν
decays. For the
τ
e
γν
̄
ν
sample, almost all background contribution is
from
τ
e
ν
̄
ν
decays in which the electron radiates a
photon in the magnetic field of the detector (bremsstrah-
lung). Further background suppression is obtained by
placing requirements on the angle between the lepton
and photon in the CM frame (cos
θ
l
γ
). For
τ
μγν
̄
ν
we
require cos
θ
l
γ
>
0
.
99
, while for
τ
e
γν
̄
ν
we require
cos
θ
l
γ
>
0
.
97
(see Figs.
2
and
3
). To reject background
from
τ
e
ν
̄
ν
decays in the
τ
e
γν
̄
ν
sample, we further
impose a minimum value for the invariant mass of the
lepton-photon pair
M
l
γ
0
.
14
GeV
=c
2
for this channel. In
addition to the aforementioned quantities, the selection
criteria use the energy of the photon and
d
l
γ
. The selection
criteria are optimized in order to give the smallest statistical
and systematic uncertainty on the branching fractions.
After optimization, for
τ
μγν
̄
ν
, we require
cos
θ
l
γ
0
.
99
,
0
.
10
E
γ
2
.
5
GeV,
6
d
l
γ
30
cm,
and
M
l
γ
0
.
25
GeV
=c
2
. The requirement on
M
l
γ
rejects
backgrounds from nonsignal
τ
decays. For the
τ
e
γν
̄
ν
channel, we require cos
θ
l
γ
0
.
97
,
0
.
22
E
γ
2
.
0
GeV,
8
d
l
γ
65
cm in addition to
M
l
γ
0
.
14
GeV
=c
2
.
The signal efficiencies, the fraction of background
events, and the number of events selected in the data are
given in Table
I
.
The branching fraction is determined using
B
¼
N
obs
ð
1
f
bkg
Þ
2
σ
ττ
L
ε
;
where
N
obs
is the number of observed events,
σ
ττ
is the
cross section for
τ
pair production,
L
is the total integrated
luminosity, and the signal efficiency
ε
is determined from
the MC sample.
After applying all selection criteria, we find
B
ð
τ
μγν
̄
ν
Þ¼ð
3
.
69

0
.
03

0
.
10
Þ
×
10
3
B
ð
τ
e
γν
̄
ν
Þ¼ð
1
.
847

0
.
015

0
.
052
Þ
×
10
2
;
where the first error is statistical and the second is
systematic.
The systematic uncertainties on signal efficiency and on
the number of the expected background events affect the
final result and are summarized in Table
II
. The most
(cm)
γ
l
d
0 10203040506070
Events/cm
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
3
10
×
(a)
ν
ν
γ
μ
τ
ν
ν
γ
μ
τ
ν
ν
μ
τ
ν
0
π
π
τ
decays
τ
Other
-
μ
+
μ
-
e
+
e
Data
γ
l
×
γ
l
θ
cos
0.94
0.95
0.96
0.97
0.98
0.99
1.00
Events/0.002
0
1
2
3
4
5
3
10
×
(b)
γ
l
θ
×
)
2
(GeV/c
γ
l
M
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
2
Events/0.01 GeV/c
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3
10
×
(c)
)
2
γ
l
2
1.5
×
(GeV)
γ
E
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Events/0.05 GeV
1
10
2
10
3
10
(d)
γ
2
3
FIG. 2 (color online). Selection of the
τ
μγν
̄
ν
: (a) distance between lepton and photon candidates on the inner EMC wall, (b) cosine
of the angle between momenta of the lepton and photon candidates in the CM frame, (c) invariant mass of the lepton photon pair, and (d)
photon candidate energy in the CM frame for radiative
τ
decay into a muon after applying all selection criteria except the one on the
plotted quantities. The selection criteria on the plotted quantities are highlighted by the vertical lines; we retain the regions indicated by
the horizontal arrows.
MEASUREMENT OF THE BRANCHING FRACTIONS OF THE
...
PHYSICAL REVIEW D
91,
051103(R) (2015)
051103-5
RAPID COMMUNICATIONS
important contributions to the total uncertainty are from the
uncertainties on particle identification and photon detection
efficiency.
To estimate the uncertainty on photon detection effi-
ciency, we rely on
e
þ
e
μ
þ
μ
γ
events for the high
energy region (
E
γ
>
1
GeV) and photons from
π
0
decays
for the low energy region (
E
γ
<
1
GeV). Using fully
reconstructed
e
þ
e
μ
þ
μ
γ
events, we find that the
photon detection efficiency for data and MC samples are
consistent within 1% for
E
γ
>
1
GeV. For photon energies
E
γ
<
1
GeV, we measure the ratio of the branching
fractions for
τ
πν
and
τ
ρν
decays. The resulting
uncertainty on the
π
0
reconstruction efficiency is found to
be below 3%. Taking into account the 1.1% uncertainty on
the branching fractions, the resulting energy-averaged
(cm)
γ
l
d
0 1020304050607080
Events/1.5 cm
0.0
0.2
0.4
0.6
0.8
1.0
1.2
3
10
×
(a)
ν
ν
γ
e
τ
ν
ν
γ
e
τ
ν
ν
e
τ
decays
τ
Other
Data
γ
l
×
γ
l
θ
cos
0.70
0.75
0.80
0.85
0.90
0.95
1.00
Events/0.005
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
3
10
×
(b)
γ
l
θ
×
)
2
(GeV/c
γ
l
M
0.10
0.12 0.14
0.16
0.18
0.20
0.22 0.24
2
Events/0.0025 GeV/c
0.0
0.5
1.0
1.5
2.0
2.5
3
10
×
(c)
)
2
γ
l
M
2
×
(GeV)
γ
E
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Events/0.05 GeV
1
10
2
10
3
10
(d)
γ
2
3
FIG. 3 (color online). Selection of the
τ
e
γν
̄
ν
sample: (a) distance between lepton and photon candidates on the inner EMC wall, (b)
cosine of the angle between momenta of the lepton and photon candidates in the CM frame, (c) invariant mass of the lepton photon pair,
and (d) photon candidate energy in the CM frame for radiative
τ
decay into an electron after applying all selection criteria except the one
on the plotted quantities. The selection criteria on the plotted quantities are highlighted by the vertical lines; we retain the regions
indicated by the horizontal arrows.
TABLE I. Signal efficiencies
ε
(%); expected fractional back-
ground contribution
f
bkg
¼
N
bkg
=
ð
N
sig
þ
N
bkg
Þ
, where
N
sig
is
the number of signal events and
N
bkg
is the number of back-
ground events; and number of observed events (
N
obs
) for the two
decay modes after applying all selection criteria. All quoted
uncertainties are statistical.
τ
μγν
̄
ντ
e
γν
̄
ν
ε
0
.
480

0
.
010
0
.
105

0
.
003
f
bkg
0
.
102

0
.
002
0
.
156

0
.
003
N
obs
15688

125
18149

135
TABLE II. Summary of systematic contributions (%) to the
branching fraction from the different uncertainty sources for
the two signal channels. The total systematic uncertainties are
obtained summing in quadrature the various systematic uncer-
tainties for each decay channel.
τ
μγν
̄
ντ
e
γν
̄
ν
Photon efficiency
1.8
1.8
Particle identification
1.5
1.5
Background evaluation
0.9
0.7
Branching fractions
[13]
0.7
0.7
Luminosity and cross section
0.6
0.6
Monte Carlo statistics
0.5
0.6
Selection criteria
0.5
0.5
Trigger selection
0.5
0.6
Track reconstruction
0.3
0.3
Total
2.8
2.8
J. P. LEES
et al.
PHYSICAL REVIEW D
91,
051103(R) (2015)
051103-6
RAPID COMMUNICATIONS
uncertainty on the single photon detection efficiency is
1.8%. We use this value as the systematic uncertainty in the
efficiency for
τ
l
γν
̄
ν
.
The uncertainties on particle identification efficiency
are estimated using control samples, by measuring the
deviation of the data and MC efficiencies for tracks with the
same kinematic properties. The uncertainty on the effi-
ciency of the electron identification is evaluated using a
control sample consisting of radiative and nonradiative
Bhabha events, while the uncertainty for muons is an
e
þ
e
μ
þ
μ
γ
control sample. The uncertainty on the
probability of misidentifying the pion as a muon or electron
is evaluated using samples of
τ
πππν
decays. The
corresponding systematic uncertainty on the efficiency
for
τ
l
γν
̄
ν
is 1.5% for both channels.
For the background estimation, we define control regions
that are enhanced with background events. For
τ
μγν
̄
ν
,
where the major background contribution is not peaking in
cos
θ
μγ
, we invert the cut on cos
θ
μγ
. For cos
θ
μγ
<
0
.
8
, the
maximum expected signal rate is 3% of the corresponding
background rate. The maximum discrepancy between the
MC sample prediction and the number of observed events
is 8%, with an excess of events in the MC sample. We take
this discrepancy as an estimate of the uncertainty on the
background prediction. For
τ
e
γν
̄
ν
, where the major
background contributions have similar cos
θ
e
γ
distributions
as signal, we apply a similar strategy after requiring the
invariant mass
M
l
γ
<
0
.
14
GeV
=c
2
; in this case we take
cos
θ
e
γ
<
0
.
90
. The maximum contamination of signal
events in this region is 10%, and the maximum discrepancy
between the prediction and the number of observed events
is 4% with an excess of data events. We take this value as an
estimate of the uncertainty on the background rate. The
errors on the branching fractions due to the uncertainty on
background estimates are 0.9% for
τ
μγν
̄
ν
and 0.7% for
τ
e
γν
̄
ν
, respectively (Table
II
).
Cross-checks of the background estimation are per-
formed by considering the number of events expected
and observed in different sideband regions immediately
neighboring the signal region for each decay mode and
found to be compatible with the aforementioned systematic
uncertainties.
The asymmetric configuration of the
BABAR
experiment
may lead to a dependence of the result on the charge of the
final state lepton. We studied this possible bias source by
comparing the efficiencies and the branching fractions, as
found separately for the two charge conjugated states, for
the two signal channels. In both cases we find the yields to
be in agreement within statistical uncertainties, and we
conclude that this contribution is negligible.
All other sources of uncertainty, including current
knowledge of the
τ
branching fractions
[13]
, total number
of
τ
pairs, limited MC statistics, dependence on selection
criteria, and track momentum resolution are found to be
smaller than 1.0%.
In conclusion, we have made a measurement of the
branching fractions of the radiative leptonic
τ
decays
τ
e
γν
̄
ν
and
τ
μγν
̄
ν
, for a minimum photon energy
of 10 MeV in the
τ
rest frame, using the full data set of
e
þ
e
collisions collected by
BABAR
at the center-of-mass
energy of the
Υ
ð
4
S
Þ
resonance. We find
B
ð
τ
μγν
̄
ν
Þ¼
ð
3
.
69

0
.
03

0
.
10
Þ
×
10
3
and
B
ð
τ
e
γν
̄
ν
Þ¼ð
1
.
847

0
.
015

0
.
052
Þ
×
10
2
, where the first error is statistical
and the second is systematic. These results are more precise
by a factor of 3 compared to previous experimental
measurements. Our results are in agreement with the
Standard Model values at tree level,
B
ð
τ
μγν
̄
ν
Þ¼
3
.
67
×
10
3
and
B
ð
τ
e
γν
̄
ν
Þ¼
1
.
84
×
10
2
[3]
, and with current
experimental bounds.
We are grateful for the extraordinary contributions of our
PEP-II colleagues in achieving the excellent luminosity and
machine conditions that have made this work possible. The
success of this project also relies critically on the expertise
and dedication of the computing organizations that support
BABAR
. The collaborating institutions wish to thank SLAC
for its support and the kind hospitality extended to them.
This work is supported by the US Department of Energy
and National Science Foundation, the Natural Sciences and
Engineering Research Council (Canada), the Commissariat
àl
Energie Atomique and Institut National de Physique
Nucléaire et de Physique des Particules (France), the
Bundesministerium für Bildung und Forschung and
Deutsche Forschungsgemeinschaft (Germany), the
Istituto Nazionale di Fisica Nucleare (Italy), the
Foundation for Fundamental Research on Matter
(Netherlands), the Research Council of Norway, the
Ministry of Education and Science of the Russian
Federation, Ministerio de Economía y Competitividad
(Spain), the Science and Technology Facilities Council
(United Kingdom), and the Binational Science Foundation
(US
Israel). Individuals have received support from the
Marie-Curie IEF program (European Union) and the A. P.
Sloan Foundation (USA).
MEASUREMENT OF THE BRANCHING FRACTIONS OF THE
...
PHYSICAL REVIEW D
91,
051103(R) (2015)
051103-7
RAPID COMMUNICATIONS
[1] L. Michel,
Proc. Phys. Soc. London Sect. A
63
, 514
(1950)
.
[2] M. L. Laursen, M. A. Samuel, and A. Sen,
Phys. Rev. D
29
,
2652 (1984)
.
[3] M. Fael, L. Mercolli, and M. Passera,
Phys. Rev. D
88
,
093011 (2013)
.
[4] T. Bergfeld
et al.
(CLEO collaboration),
Phys. Rev. Lett.
84
,
830 (2000)
.
[5] G. Alexander
et al.
(OPAL collaboration),
Phys. Lett. B
388
,
437 (1996)
.
[6] J. P. Lees
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
726
, 203 (2013)
.
[7] S. Banerjee, B. Pietrzyk, J. Michael Roney, and Z. Was,
Phys. Rev. D
77
, 054012 (2008)
.
[8] B. Aubert
et al.
(
BABAR
collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[9] B. Aubert
et al.
(
BABAR
collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
729
, 615 (2013)
.
[10] S. Jadach, B. F. Ward, and Z. Was,
Comput. Phys. Commun.
130
, 260 (2000)
.
[11] S. Jadach, Z. Was, R. Decker, and J. H. Kühn,
Comput.
Phys. Commun.
76
, 361 (1993)
.
[12] E. Barberio and Z. Was,
Comput. Phys. Commun.
79
, 291
(1994)
.
[13] K. A. Olive
et al.
(Particle Data Group),
Chin. Phys. C
38
,
090001 (2014)
.
[14] T. Sjostrand, S. Mrenna, and P. Skands,
J. High Energy
Phys. 05 (2006) 026.
[15] D. J. Lange,
Nucl. Instrum. Methods Phys. Res., Sect. A
462
, 152 (2001)
.
[16] S. Agostinelli
et al.
,
Nucl. Instrum. Methods Phys. Res.,
Sect. A
506
, 250 (2003)
.
[17] E. Farhi,
Phys. Rev. Lett.
39
, 1587 (1977)
.
[18] T. Dietterich and G. Bakiri, J. Artif. Intell. Res.
2
, 263 (1995).
[19] E. L. Allwein, R. E. Schapire, and Y. Singer, J. Mach. Learn.
Res.
1
, 113 (2000).
J. P. LEES
et al.
PHYSICAL REVIEW D
91,
051103(R) (2015)
051103-8
RAPID COMMUNICATIONS