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Supplementary Figures 

 

 

Supplementary Figure S1. Schematic of PZT nanoribbon and nanobeam fabrication 
process. PZT nanoribbons were patterned on a MgO substrate via lift-off. ITO electrodes were 
then patterned on the nanoribbons. SiNx

 

 was deposited to coat the electrodes, but not the exposed 
PZT nanoribbons. Phosphoric acid was finally used to undercut-etch the MgO substrate, thereby 
suspending the PZT nanoribbons. 
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Supplementary Figure S2. Cell viability tests. a. Cells cultured on PZT nanoribbons at various 
locations show primarily green fluorescence – an indicator of cell health. b. Optical image shows 
differentiated cells with long, healthy neurites when cultured on PZT nanoribbons. 
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Supplementary Figure S3. Electrophysiological behavior of PC12 cells. a. From left to right: 
patch-clamp recording of PC12 on a PZT thin film, on PZT nanoribbons, and on suspended PZT 
nanoribbons (scale bars are 40 µm for all images). b. A typical stimulus-evoked action potential 
of PC12 on PZT nanoribbons. Similar behavior was seen in cells cultured on PZT films and 
suspended PZT nanoribbons. 
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Supplementary Figure S4. AFM force curve. A typical force-curve of an AFM tip was 
collected in ramping mode. The spring constant k ~ 38 ± 7 N/m was identified via thermal tune. 
The applied force of the AFM tip on PZT nanobeams was calculated as F = k * Δx, where Δx is 
the sudden deflection of the AFM tip (~0.04 nm) when it descends to the surface of the PZT 
nanobeams. Using different AFM tips with different spring constants, minute differential forces 
can be applied on the PZT nanobeams as seen in Figure 3c of the main text. 
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Supplementary Figure S5. Patch-clamp control experiment. In this experiment, the pipette tip 
was used to inject current on the PZT nanoribbons without the presence of cells. The upper trace 
is the injecting current from the pipette, while the lower trace is the PZT response, which shows 
no discernible signal. 
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Supplementary Methods

In our experiments the cells are patch clamped to induce depolarization and they rest
on PZT nanobeams so that a change in radius of the cell causes a deflection of the beam,
which in turn can be easily detected because the piezoelectric properties of PZT lead to the
generation of a voltage upon bending. Our goal is to analyze these experiements so as to be
able to predict the change in shape of the cells in response to membrane depolarization.

Model for voltage dependent membrane tension

The surface tension σ in a single leaflet of lipid bilayer membrane is controlled by the
Lippmann equation which dictates that

σ = σ0 −
1

2
CDV 2

s , (1)

where σ0 is the voltage independent tension, CD is the specific capacitance of the electric
double layer (or cloud of ions) next to the leaflet, and Vs is the surface potential at the
leaflet [S1]. This surface potential and the distribution of ions in the electric double layer is
governed by the Poisson-Boltzmann equation [S2]. From the solution to the fully non-linear
Poisson-Boltzmann equation near a surface with charge density q it can be shown that

Vs =
2kBT

e
sinh−1

(
q

2
√

2cεwε0kBT

)
, (2)

where c is the ionic strength of the solution far away from the surface, εw is the relative
perimittivity of water, ε0 is the permittivity of vaccuum and kBT is the thermal energy scale
and we have assumed that both positive and negative ions of valence 1 are present in the
solution. This equation and (1) can then be applied to both the interior and exterior leaflets
of the membrane and the surface tension in both can be added to give the surface tension τ
in the cell-membrane. The result is:

(τ − τI)e√
(2kBT )3εwε0

=
√

cext

[
sinh−1

(
qext − CmV

2
√

2cextεwε0kBT

)]2

+
√

cint

[
sinh−1

(
qint + CmV

2
√

2cintεwε0kBT

)]2

,

(3)
where Cm is the capacitance of the lipid bilayer (assumed much larger than CD on both the
interior and exterior), V is the applied potential through the patch clamp and τI is a voltage
independent tension. qint and qext are the charge densities on the interior and exterior leaflets
of the cell membrane and have to be treated as fitting parameters along with Cm and τI .
But, appropriate values for these parameters are available from earlier work [S1].

Using the Young-Laplace law

In this section we will assume for simplicity that the cell remains spherical and demonstrate
how a change in voltage through the patch-clamp results in a force exerted by the cell on
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Figure 1: A cell ‘patch-clamped’ using a pipette. The potential difference between the
interior and exterior of the cell can be changed using the patch clamp technique. There
are ions both inside and outside the cell as shown in the left panel. The ions interact
with opposite charges on the membrane and with each other to induce a tension in the
membrane. The membrane tension can be changed by artificially changing the potential
difference between the inside and outside of the cell. This causes a change in shape of the
cell which can be detected by the deflection of the PZT beam as shown in the right panel.
Here we assume for simplicity that the cell remains spherical. The more realistic case is
treated later.

the substrate. Once the surface tension τ in the cell membrane is known in terms of the
applied voltage V we can apply the Young-Laplace law to calculate how its shape changes.
This law states that the pressure difference p between the interior and exterior of the cell is
related to the surface tension and local mean curvature on the cell membrane through

p = τ

(
1

Rm

+
1

Rp

)
, (4)

where Rm is the meridional (principal) curvature and Rp is the principal curvature along
lines perpendicular to the meridians. We have, of course, assumed here that the cell mem-
brane has an axisymmetric shape, which is good for the geometry of our experiments. Note
that p remains constant even though the cell shape changes since the concentrations cint and
cext of ions are realistically assumed not to change when the cell is electrically and mechan-
ically manipulated since they are controlled by regulation of ion channels by the cell. The
Young-Laplace law (which is a statement of local mechanical equilibrium) and the boundary
conditions imposed by the pipette and the PZT beam are sufficient to calculate the shape
of the cell for some applied voltage V . The final expressions for the shape of the cell are in
terms of elliptic functions as shown by Lin and Freund [S3] in a different context.

In order to illustrate how the general framework given above can be applied we will
illustrate it by assuming that the cell remains spherical even after the tension in the cell
membrane changes (see figure 1). Let us assume that at the resting state of a cell when
V = 0 the membrane tension is τ0, the radius of the cell is R0 and the pressure difference is
p. Then the Young-Laplace law gives 2τ0

R0
= p. When V 6= 0 the cell’s radius changes to R

and the tension τ is given by eqn.(3). The PZT beam deflects by an amount δ = 2(R−R0)
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at the center. This provides a reaction F = kδ where k is a spring constant. For instance,
k = 192EI

L3 for a clamped-clamped beam and k = 48EI
L3 for a hinged-hinged beam, where E

is the Young’s modulus of PZT, I is the moment of inertia of the cross-section of the PZT
beam, and L is its length. Realistically, k should be determined from experiment since we
expect manufacturing defects in the PZT beam that would result in 48EI

L3 ≤ k ≤ 192EI
L3 .

Mechanical equilibrium at the equator of the spherical cell demands that

2τ

R
+

F

πR2
= p =

2τ0

R0

. (5)

This equation can be solved immediately to give

R = R0

 τ

2τ0

+
k

2πτ0

+

√√√√( τ

2τ0

+
k

2πτ0

)2

− k

πτ0

 . (6)

This formula provides a good estimate of the actual radius of the cell in the limit when k is
small. Clearly, when k = 0, meaning the PZT beam is absent, the Young-Laplace result is
recovered. The force F exerted by the cell on the PZT beam due to the change in voltage
V can be computed using F = 2k(R − R0). When k is large we have to resort to a more
general method explained in the following.

Analysis of cells on stiff PZT beams

V=0

R0

r(s)

z

r1

S=S1

S=0
φ(s)

V=0/

(a) (b)

Figure 2: (a) Schematic diagram with the pipette and PZT beam replaced by planes. We
assume that the pipette does not move and the PZT beam is much stiffer than the cell.
The response of the cell resembles converse flexoelectricity – a potential difference causes a
change in curvature of the cell membrane. (b) The change in membrane curvature causes a
change in the shape of the cell. We assume that it remains axisymmetric about the vertical
dashed line. The geometrical variables are indicated.

When the PZT beam on which the cell rests is stiff then it does not deflect much in
response to the depolarization. We approximate the PZT beam as being infinitely stiff and

9

© 2012 Macmillan Publishers Limited.  All rights reserved. 

 



directly compute the reaction force imposed by the beam on the cell. Let this force be F .
Then if we make a cut perpendicular to the axis of the cell where the radius is r(s) and the
tangent angle to the contour of the axisymmetric shape is φ(s) (see figure 2) then equilibrium
demands that

2πτr(s) sin φ(s) = πr2(s)p− F. (7)

We want to know F and r(s) as a function of τ . When τ = τ0, F = 0 and the cell is a sphere
of radius R0, so that by applying the above equation at the equator where φ = π

2
we see that

p =
2τ0

R0

. (8)

When τ > τ0 the cell tends to bulge but we will assume that the distance 2R0 between the
pipette and the PZT beam changes by a negligible amount. This constraint is enforced by a
force F 6= 0. In the experiments 2R0 is about 20µm and it changes by only a few nanometers
when the cells are depolarized. So, our assumption that the distance between the pipette
and the PZT beam does not change is justified. When F 6= 0 the cell is squished and it
makes contact with the PZT beam over a circular region of radius r1. The angle φ1 at r = r1

depends on the adhesion energy per unit area between the cell and the PZT beam. If the
adhesion energy density is zero then the angle φ1 is zero too. So, we have

sin φ1 =
pr1

2τ
− F

2πr1τ
= 0 (9)

which gives r2
1 = F

πp
. From geometry,

dr

ds
= cos φ(s) =

√
1− sin2 φ(s),

dz

ds
= sin φ(s) (10)

where sin φ(s) is given by (7) in terms of r(s) and F . We can therefore integrate the
differential equation for r(s) and get

r(s) =

√
2τ

p

√√√√
1 +

Fp

2πτ 2
+

√
1 +

Fp

πτ 2
cos

ps

τ
, (11)

where s = 0 is taken to be at the equator of the cell. Let s = s1 be such that r(s1) = r1 and
φ(s1) = φ1 = 0. Using r2

1 = F/πp and (11) above it is easy to see that

cos
ps1

τ
=

−1√
1 + Fp

πτ2

, (12)

from which we get

s1 =
τ

p

π + cos−1 1√
1 + Fp

πτ2

 . (13)

Integrating the equation for z(s) we get

z(s) =
∫ s

0
sin φ(s) ds =

∫ s

0

(
pr(s)

2τ
− F

2πτr(s)

)
, (14)
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where r(s) is given by (11) above. We substitute for r(s) to get

z(s) =
1√
2

∫ s

0

√√√√
1 +

Fp

2πτ 2
+

√
1 +

Fp

πτ 2
− 2

√
1 +

Fp

πτ 2
sin2 ps

2τ
ds

− Fp

2
√

2πτ 2

∫ s

0

ds√
1 + Fp

2πτ2 +
√

1 + Fp
πτ2 − 2

√
1 + Fp

πτ2 sin2 ps
2τ

. (15)

We take s = s1 and reduce this expression to

z(s1) =
τ

p

1 +

√
1 +

Fp

πτ 2

∫ ps1
2τ

0

√
1−m2 sin2 θ dθ − F

πτ

1

1 +
√

1 + Fp
πτ2

∫ ps1
2τ

0

dθ√
1−m2 sin2 θ

,

(16)
where

m2 =
2
√

1 + Fp
πτ2

1 + Fp
2πτ2 +

√
1 + Fp

πτ2

≤ 1, (17)

and θ is a dummy variable. Recognizing the incomplete elliptic integrals above we write

z(s1) =
τ

p

1 +

√
1 +

Fp

πτ 2

E(θ1|m)− F

πτ

1

1 +
√

1 + Fp
πτ2

F (θ1|m), (18)

where E(x|k) is the incomplete elliptic integral of the second kind with modulus k and
F (x|k) is the incomplete elliptic integral of the first kind with modulus k and θ1 = ps1

2τ
. The

stiff PZT beams enforce the constraint that z(s1) = R0. For small values of Fp
πτ2 we see from

(13) and (17) that θ1 ≈ π
2

and m2 ≈ 1. Under these circumstances the second term involving
F (θ1|m) is much smaller than the first term involving E(θ1|m), so we neglect the second
term. Furthermore, E(θ1|1) = sin θ1. We note that

θ1 =
ps1

2τ
=

π

2
+

1

2
cos−1 1√

1 + y
, y =

Fp

πτ 2
<< 1. (19)

So (18) becomes

pR0

τ
≈
(
1 +

√
1 + y

)√√√√1 + 1√
1+y

2
, y << 1. (20)

Expanding upto linear order in y we are left with

1 +
y

8
=

pR0

2τ
, (21)

which can be solved to get

y =
Fp

πτ 2
= −8

(
1− pR0

2τ

)
. (22)

This gives the force exerted by the beam on the cell. The final formula for the force exerted
by the cell on the beam is (note the change in sign of F ):

F =
8πτ 2

p

(
1− R0

R

)
, (23)
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where

p =
2τ0

R0

, R =
2τ

p
, (24)

and τ is given by (3). Clearly, F > 0 when R > R0.

Pancake shaped cell

Cells on many substrates become pancake shaped. This suggests that there is an adhesive
interaction between the cell and the substrate that results in a decrease of free energy by
amount Γ per unit contact area. To account for the adhesive interactions we have to make
some non-trivial modifications to the theory given in the previous section. The shape of the
cell is still described by the same equation for r(s) (eqn. (11)). But, the expression for s1

becomes more complicated:

cos
ps1

τ
=

p2r2
1

2τ2 − 1− Fp
2πτ2√

1 + Fp
πτ2

. (25)

Here r1 is the radius over which contact occurs between the cell and the substrate and it is no
longer zero when F = 0 because of the adhesive interactions. The integral for z(s) remains
the same but ps1

2τ
appears in the limit of the integral where the expression for calculating

s1 is given above. The analysis to impose the constraint that the cell is confined between
two fixed surfaces proceeds along the same lines as in the previous section. If the distance
between the two confining surfaces is 2Z0 (see figure 3) then the equation to solve for F
takes the form

Z0 =
τ

p

1 +

√
1 +

Fp

πτ 2

 sin
ps1

2τ
=

τ

p

1 +

√
1 +

Fp

πτ 2

√1− cos ps1

τ

2
, (26)

where we can use (25) for cos ps1

τ
. When τ = τ0, F = 0 and r1 = r0 the above equation yields

Z0 =
2τ0

p

√√√√1− pr2
0

4τ 2
0

. (27)

Note that if r0 = 0 when τ = τ0 and F = 0 then the cell is a sphere and Z0 = R0 = 2τ0
p

, as
expected. This is the case when Γ = 0. When Γ 6= 0 we have to determine the magnitude
of Γ from the known pancake shape of the cell when F = 0. This is a difficult exercise in
general, but in a certain limit it is possible to write some simple relations [S3]. In particular,
the radius r1 over which contact between the cell and the substrate occurs in this limit is
given by [S3]:

r1 =
Γ

p

[√
pR0

Γ
− F

πR0Γ
− 1 +

√
pR0

Γ
− F

πR0Γ
+

Fp

πΓ2
− 1

]
. (28)

When F = 0 and τ = τ0 this reduces to

r0 =
2Γ

p

√
pR0

Γ
− 1, (29)
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Figure 3: (a) The cell is a sphere of radius R0 when it is not in contact with a substrate. (b)
When it is brought in contact with a substrate at the top and bottom it becomes pancake
shaped due to adhesive interactions. The geometry of the pancake is characterized by Z0 and
r0, both of which depend on R0 and the adhesion energy density Γ. (c) The force exerted
by the cell on the substrate when V 6= 0 is determined by enforcing the constraint that Z0

remains fixed even though the contact radius r1 changes.

where p = 2τ0
R0

. If we know τ0, R0, and r0 then the parameter Γ can be estimated. Then
Z0 can be calculated from (27) and we can solve for F from (26). After carrying out these
calculations we find that the equation for F is

Z0 = R0(1−
Γ

τ0

) =
τ

p

1 +
√

1 + Fp
πτ2√

2

1− p2r2
1

2τ2 − 1− Fp
2πτ2√

1 + Fp
πτ2

1/2

. (30)

We can solve this equation for F using Newton’s method. Unfortunately, a simple solution
like the one in the previous section is difficult to obtain. In figure 4 we have plotted the
solution for F using R0 = 10µm and r0 = 0.85R0. It fits the data quite well and corresponds
to Γ

pR0
≈ 0.23 which is in the regime where (28) is valid.

Cell off-center on the PZT beam

The cell contacts the PZT beam over a circular patch of radius r1. Let us assume for
simplicity that r1 << L where L is the length of the beam. In that case we can assume that
the cell is exerting a point force F on the beam. Let this point force F act at x = x0 with
0 < x0 < L (see figure 5(a)). If the beam is clamped at both ends this leads to a deflection
profile:

y(x|x0) =
F

6EI
(1− x0

L
)2
[
x3(1 +

2x0

L
)− 3x0x

2
]
− F

6EI
〈x− x0〉3, (31)

dy

dx
=

F

2EI
(1− x0

L
)2
[
x2(1 +

2x0

L
)− 2x0x

]
− F

2EI
〈x− x0〉2. (32)
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Figure 4: The experimental data (pink points) can be fit by theory even if we start with a
pancake shaped cell. For this plot we have taken R0 = 10µm and r0 = 0.85R0.

where 〈x− x0〉n = 0, if x < x0 and 〈x− x0〉n = (x− x0)
n, if x ≥ x0. The deflection y(x0|x0)

right under the load is given by

y(x0|x0) = − F

3EIL3
[x0(L− x0)]

3 . (33)

This deflection is zero when x0 = 0, L and maximum when x0 = L
2
. For a given F , if x0 = L

2

the deflection y(L
2
) is given by

y(
L

2
) = − FL3

192EI
. (34)

We can now compute the ratio y(x0)

y(L
2
)

as follows:

y(x0|x0)

y(L
2
|L
2
)

= 64
[
x0

L
(1− x0

L
)
]3

. (35)

In our experiments the PZT beams are calibrated so that a measured voltage gives us the
force exerted by the cell on the PZT beam assuming that the cell is at x = L

2
. If the cell

is not at the center of the beam then the deflection of the beam will be smaller and the
apparent force Fapp = 192EIy(x0|x0)

L3 . This is related to the actual F exerted by the cell as
follows:

Fapp

F
=

y(x0|x0)

y(L
2
|L
2
)

= 64
[
x0

L
(1− x0

L
)
]3

. (36)

E, I and L for the PZT beams are known but the deflections y(x) are too small to measure
accurately. The voltages produced by the beam deflections, however, can be accurately
measured and give us Fapp.

Let us now consider the case when the load F is not a point load but is distributed
over a length 2z along the beam and centered at x0. The load is uniformly distributed with
intensity q, so that 2qz = F as shown in figure 5(b). In this case the deflection profile is
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given by:

y(x|x0, z) =
2qzx3

EIL

[
(1− x0

L
)2(

L

2
+ x0)−

z2

L2
(
L

2
− x0)

]
+

qzx2

EIL

[
z2(

2

3
− x0

L
)− x0

L
(L− x0)

2
]

− q

24EI
〈x− x0 + z〉4 +

q

24EI
〈x− x0 − z〉4. (37)

Evaluating the deflection at the center point of the distributed load x0, we get

y(x0|x0, z) =
2qzx2

0

3EIL
(L− x0)

2

[
z2

L2
− x0

L
(1− x0

L
)

]
− qz4

24EI
. (38)

Note that as z → 0 with 2qz = F we recover (33). To get an idea of how the distributed

L
x0

F

L
x0

q
2z

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

1

x0 /L

y(
x 0

)/
y(

L/
2)

z/L = 0.2

z/L = 0.3

z/L = 0.4
(a)

(b)

(c)

Figure 5: A cell exerts a distributed load q on a beam over a region of length 2z as shown
in (b) with 2qz = F . The center point of the distributed load is at x0. z = 0 corresponds to

a point load on the beam as shown in (a). We wish to compute the ratio of deflections y(x0)

y(L
2
)

as a function of z and x0. This is plotted in (c). The black curve corresponds to z = 0. For

z 6= 0 the curve remains the same but the range over which y(x0)

y(L
2
)

varies is smaller because

the range of x0 becomes z ≤ x0 ≤ L − z. Using optical images we were able to observe a
cell near x/L = 0.15 and another near x/L = 0.5. Recall that y(x0)

y(L
2
)

= Fapp

F
from (36). For

x/L = 0.5 we found Fapp = 1.7nN and for x/L = 0.15 we got Fapp = 0.34nN for the same
amount of depolarization. These are plotted as magenta squares in (c) assuming F = 1.7nN.
The point corresponding to x/L = 0.15 lies close to the theoretical curve.

load affects the deflection let us compute the ratio y(x0|x0,z)

y(L
2
|L
2

,z)
which we will call y(x0)

y(L
2
)

for

compactness. This is given by

y(x0|x0, z)

y(L
2
|L
2
, z)

=
16
[

x0

L
(1− x0

L
)
]2 [

z2

L2 − x0

L
(1− x0

L
)
]
− z3

L3[
z2

L2 − 1
4

]
− z3

L3

=
y(x0)

y(L
2
)
. (39)

This expression is plotted for z = 0 (corresponding to a point force) in figure 5(c) as the

black curve. The range for y(x0)

y(L
2
)

is 0 ≤ y(x0)

y(L
2
)
≤ 1.0 when z = 0. If the point of applica-

tion of F is nearer to the ends than to the center then the deflection at x0 is lesser than
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what it would be if F was acting at L
2
. If z 6= 0 (corresponding to a distributed load q

over a region 2z) then the range for x0 becomes z ≤ x0 ≤ L − z but the curve does not
change. So, the conclusion that the beam deflection is maximum when x0 = L

2
does not

change. But, the range over which the deflection at x0 varies decreases as z increases. In
figure 5(c) the range for y(x0)

y(L
2
)

is above the dashed horizontal line labeled z/L = 0.3 when

z = 0.3L – 0.6 ≤ y(x0)

y(L
2
)
≤ 1.0. This means that the error in computing the force exerted

by the cell by just looking at the deflection at the center of the beam decreases as z increases.
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