Searches for
B
Meson Decays to
,
,
f
0
ð
980
Þ
, and
f
0
ð
980
Þ
f
0
ð
980
Þ
Final States
B. Aubert,
1
M. Bona,
1
Y. Karyotakis,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
X. Prudent,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
L. Lopez,
3a,3b
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
G. S. Abrams,
5
M. Battaglia,
5
D. N. Brown,
5
R. N. Cahn,
5
R. G. Jacobsen,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
M. T. Ronan,
5,
*
K. Tackmann,
5
T. Tanabe,
5
C. M. Hawkes,
6
N. Soni,
6
A. T. Watson,
6
H. Koch,
7
T. Schroeder,
7
D. Walker,
8
D. J. Asgeirsson,
9
B. G. Fulsom,
9
C. Hearty,
9
T. S. Mattison,
9
J. A. McKenna,
9
M. Barrett,
10
A. Khan,
10
V. E. Blinov,
11
A. D. Bukin,
11
A. R. Buzykaev,
11
V. P. Druzhinin,
11
V. B. Golubev,
11
A. P. Onuchin,
10
S. I. Serednyakov,
11
Yu. I. Skovpen,
11
E. P. Solodov,
11
K. Yu. Todyshev,
11
M. Bondioli,
12
S. Curry,
12
I. Eschrich,
12
D. Kirkby,
12
A. J. Lankford,
12
P. Lund,
12
M. Mandelkern,
12
E. C. Martin,
12
D. P. Stoker,
12
S. Abachi,
13
C. Buchanan,
13
J. W. Gary,
14
F. Liu,
14
O. Long,
14
B. C. Shen,
14,
*
G. M. Vitug,
14
Z. Yasin,
14
L. Zhang,
14
V. Sharma,
15
C. Campagnari,
16
T. M. Hong,
16
D. Kovalskyi,
16
M. A. Mazur,
16
J. D. Richman,
16
T. W. Beck,
17
A. M. Eisner,
17
C. J. Flacco,
17
C. A. Heusch,
17
J. Kroseberg,
17
W. S. Lockman,
17
T. Schalk,
17
B. A. Schumm,
17
A. Seiden,
17
L. Wang,
17
M. G. Wilson,
17
L. O. Winstrom,
17
C. H. Cheng,
18
D. A. Doll,
18
B. Echenard,
18
F. Fang,
18
D. G. Hitlin,
18
I. Narsky,
18
T. Piatenko,
18
F. C. Porter,
18
R. Andreassen,
19
G. Mancinelli,
19
B. T. Meadows,
19
K. Mishra,
19
M. D. Sokoloff,
19
P. C. Bloom,
20
W. T. Ford,
20
A. Gaz,
20
J. F. Hirschauer,
20
M. Nagel,
20
U. Nauenberg,
20
J. G. Smith,
20
K. A. Ulmer,
20
S. R. Wagner,
20
R. Ayad,
21,
+
A. Soffer,
21,
‡
W. H. Toki,
21
R. J. Wilson,
21
D. D. Altenburg,
22
E. Feltresi,
22
A. Hauke,
22
H. Jasper,
22
M. Karbach,
22
J. Merkel,
22
A. Petzold,
22
B. Spaan,
22
K. Wacker,
22
M. J. Kobel,
23
W. F. Mader,
23
R. Nogowski,
23
K. R. Schubert,
23
R. Schwierz,
23
J. E. Sundermann,
23
A. Volk,
23
D. Bernard,
24
G. R. Bonneaud,
24
E. Latour,
24
Ch. Thiebaux,
24
M. Verderi,
24
P. J. Clark,
25
W. Gradl,
25
S. Playfer,
25
J. E. Watson,
25
M. Andreotti,
26a,26b
D. Bettoni,
26a
C. Bozzi,
26a
R. Calabrese,
26a,26b
A. Cecchi,
26a,26b
G. Cibinetto,
26a,26b
P. Franchini,
26a,26b
E. Luppi,
26a,26b
M. Negrini,
26a,26b
A. Petrella,
26a,26b
L. Piemontese,
26a
V. Santoro,
26a,26b
R. Baldini-Ferroli,
27
A. Calcaterra,
27
R. de Sangro,
27
G. Finocchiaro,
27
S. Pacetti,
27
P. Patteri,
27
I. M. Peruzzi,
27,
x
M. Piccolo,
27
M. Rama,
27
A. Zallo,
27
A. Buzzo,
28a
R. Contri,
28a,28b
M. Lo Vetere,
28a,28b
M. M. Macri,
28a
M. R. Monge,
28a,28b
S. Passaggio,
28a
C. Patrignani,
28a,28b
E. Robutti,
28a
A. Santroni,
28a,28b
S. Tosi,
28a,28b
K. S. Chaisanguanthum,
29
M. Morii,
29
J. Marks,
30
S. Schenk,
30
U. Uwer,
30
V. Klose,
31
H. M. Lacker,
31
D. J. Bard,
32
P. D. Dauncey,
32
J. A. Nash,
32
W. Panduro Vazquez,
32
M. Tibbetts,
32
P. K. Behera,
33
X. Chai,
33
M. J. Charles,
33
U. Mallik,
33
J. Cochran,
34
H. B. Crawley,
34
L. Dong,
34
W. T. Meyer,
34
S. Prell,
34
E. I. Rosenberg,
34
A. E. Rubin,
34
Y. Y. Gao,
35
A. V. Gritsan,
35
Z. J. Guo,
35
C. K. Lae,
35
A. G. Denig,
36
M. Fritsch,
36
G. Schott,
36
N. Arnaud,
37
J. Be
́
quilleux,
37
A. D’Orazio,
37
M. Davier,
37
J. Firmino da Costa,
37
G. Grosdidier,
37
A. Ho
̈
cker,
37
V. Lepeltier,
37
F. Le Diberder,
37
A. M. Lutz,
37
S. Pruvot,
37
P. Roudeau,
37
M. H. Schune,
37
J. Serrano,
37
V. Sordini,
37,
k
A. Stocchi,
37
G. Wormser,
37
D. J. Lange,
38
D. M. Wright,
38
I. Bingham,
39
J. P. Burke,
39
C. A. Chavez,
39
J. R. Fry,
39
E. Gabathuler,
39
R. Gamet,
39
D. E. Hutchcroft,
39
D. J. Payne,
39
C. Touramanis,
39
A. J. Bevan,
40
C. K. Clarke,
40
K. A. George,
40
F. Di Lodovico,
40
R. Sacco,
40
M. Sigamani,
40
G. Cowan,
41
H. U. Flaecher,
41
D. A. Hopkins,
41
S. Paramesvaran,
41
F. Salvatore,
41
A. C. Wren,
41
D. N. Brown,
42
C. L. Davis,
42
K. E. Alwyn,
43
D. Bailey,
43
R. J. Barlow,
43
Y. M. Chia,
43
C. L. Edgar,
43
G. Jackson,
43
G. D. Lafferty,
43
T. J. West,
43
J. I. Yi,
43
J. Anderson,
44
C. Chen,
44
A. Jawahery,
44
D. A. Roberts,
44
G. Simi,
44
J. M. Tuggle,
44
C. Dallapiccola,
45
X. Li,
45
E. Salvati,
45
S. Saremi,
45
R. Cowan,
46
D. Dujmic,
46
P. H. Fisher,
46
K. Koeneke,
46
G. Sciolla,
46
M. Spitznagel,
46
F. Taylor,
46
R. K. Yamamoto,
46
M. Zhao,
46
P. M. Patel,
47
S. H. Robertson,
47
A. Lazzaro,
48,48b
V. Lombardo,
48
F. Palombo,
48,48b
J. M. Bauer,
49
L. Cremaldi,
49
V. Eschenburg,
49
R. Godang,
49,
{
R. Kroeger,
49
D. A. Sanders,
49
D. J. Summers,
49
H. W. Zhao,
49
M. Simard,
50
P. Taras,
50
F. B. Viaud,
50
H. Nicholson,
51
G. De Nardo,
52a,52b
L. Lista,
52a
D. Monorchio,
52a,52b
G. Onorato,
52a,52b
C. Sciacca,
52a,52b
G. Raven,
53
H. L. Snoek,
53
C. P. Jessop,
54
K. J. Knoepfel,
54
J. M. LoSecco,
54
W. F. Wang,
54
G. Benelli,
55
L. A. Corwin,
55
K. Honscheid,
55
H. Kagan,
55
R. Kass,
55
J. P. Morris,
55
A. M. Rahimi,
55
J. J. Regensburger,
55
S. J. Sekula,
55
Q. K. Wong,
55
N. L. Blount,
56
J. Brau,
56
R. Frey,
56
O. Igonkina,
56
J. A. Kolb,
56
M. Lu,
56
R. Rahmat,
56
N. B. Sinev,
56
D. Strom,
56
J. Strube,
56
E. Torrence,
56
G. Castelli,
57a,57b
N. Gagliardi,
57a,57b
M. Margoni,
57a,57b
M. Morandin,
57a
M. Posocco,
57a
M. Rotondo,
57a
F. Simonetto,
57a,57b
R. Stroili,
57a,57b
C. Voci,
57a,57b
P. del Amo Sanchez,
58
E. Ben-Haim,
58
H. Briand,
58
G. Calderini,
58
J. Chauveau,
58
P. David,
58
L. Del Buono,
58
O. Hamon,
58
Ph. Leruste,
58
J. Ocariz,
58
A. Perez,
58
J. Prendki,
58
S. Sitt,
58
L. Gladney,
59
M. Biasini,
60a,60b
R. Covarelli,
60a,60b
E. Manoni,
60a,60b
C. Angelini,
61a,61b
G. Batignani,
61a,61b
S. Bettarini,
61a,61b
M. Carpinelli,
61a,61b,
**
A. Cervelli,
61a,61b
F. Forti,
61a,61b
M. A. Giorgi,
61a,61b
A. Lusiani,
61a,61c
G. Marchiori,
61a,61b
M. Morganti,
61a,61b
N. Neri,
61a,61b
E. Paoloni,
61a,61b
G. Rizzo,
61a,61b
J. J. Walsh,
61a
D. Lopes Pegna,
62
C. Lu,
62
J. Olsen,
62
A. J. S. Smith,
62
A. V. Telnov,
62
F. Anulli,
63a
E. Baracchini,
63a,63b
G. Cavoto,
63a
D. del Re,
63a,63b
PRL
101,
201801 (2008)
PHYSICAL REVIEW LETTERS
week ending
14 NOVEMBER 2008
0031-9007
=
08
=
101(20)
=
201801(7)
201801-1
Ó
2008 The American Physical Society
E. Di Marco,
63a,63b
R. Faccini,
63a,63b
F. Ferrarotto,
63a
F. Ferroni,
63a,63b
M. Gaspero,
63a,63b
P. D. Jackson,
63a
L. Li Gioi,
63a
M. A. Mazzoni,
63a
S. Morganti,
63a
G. Piredda,
63a
F. Polci,
63a,63b
F. Renga,
63a,63b
C. Voena,
63a
M. Ebert,
64
T. Hartmann,
64
H. Schro
̈
der,
64
R. Waldi,
64
T. Adye,
65
B. Franek,
65
E. O. Olaiya,
65
F. F. Wilson,
65
S. Emery,
66
M. Escalier,
66
L. Esteve,
66
S. F. Ganzhur,
66
G. Hamel de Monchenault,
66
W. Kozanecki,
66
G. Vasseur,
66
Ch. Ye
`
che,
66
M. Zito,
66
X. R. Chen,
67
H. Liu,
67
W. Park,
67
M. V. Purohit,
67
R. M. White,
67
J. R. Wilson,
67
M. T. Allen,
68
D. Aston,
68
R. Bartoldus,
68
P. Bechtle,
68
J. F. Benitez,
68
R. Cenci,
68
J. P. Coleman,
68
M. R. Convery,
68
J. C. Dingfelder,
68
J. Dorfan,
68
G. P. Dubois-Felsmann,
68
W. Dunwoodie,
68
R. C. Field,
68
A. M. Gabareen,
68
S. J. Gowdy,
68
M. T. Graham,
68
P. Grenier,
68
C. Hast,
68
W. R. Innes,
68
J. Kaminski,
68
M. H. Kelsey,
68
H. Kim,
68
P. Kim,
68
M. L. Kocian,
68
D. W. G. S. Leith,
68
S. Li,
68
B. Lindquist,
68
S. Luitz,
68
V. Luth,
68
H. L. Lynch,
68
D. B. MacFarlane,
68
H. Marsiske,
68
R. Messner,
68
D. R. Muller,
68
H. Neal,
68
S. Nelson,
68
C. P. O’Grady,
68
I. Ofte,
68
A. Perazzo,
68
M. Perl,
68
B. N. Ratcliff,
68
A. Roodman,
68
A. A. Salnikov,
68
R. H. Schindler,
68
J. Schwiening,
68
A. Snyder,
68
D. Su,
68
M. K. Sullivan,
68
K. Suzuki,
68
S. K. Swain,
68
J. M. Thompson,
68
J. Va’vra,
68
A. P. Wagner,
68
M. Weaver,
68
C. A. West,
68
W. J. Wisniewski,
68
M. Wittgen,
68
D. H. Wright,
68
H. W. Wulsin,
68
A. K. Yarritu,
68
K. Yi,
68
C. C. Young,
68
V. Ziegler,
68
P. R. Burchat,
69
A. J. Edwards,
69
S. A. Majewski,
69
T. S. Miyashita,
69
B. A. Petersen,
69
L. Wilden,
69
S. Ahmed,
70
M. S. Alam,
70
J. A. Ernst,
70
B. Pan,
70
M. A. Saeed,
70
S. B. Zain,
70
S. M. Spanier,
71
B. J. Wogsland,
71
R. Eckmann,
72
J. L. Ritchie,
72
A. M. Ruland,
72
C. J. Schilling,
72
R. F. Schwitters,
72
B. W. Drummond,
73
J. M. Izen,
73
X. C. Lou,
73
F. Bianchi,
74a,74b
D. Gamba,
74a,74b
M. Pelliccioni,
74a,74b
M. Bomben,
75a,75b
L. Bosisio,
75a,75b
C. Cartaro,
75a,75b
G. Della Ricca,
75a,75b
L. Lanceri,
75a,75b
L. Vitale,
75a,75b
V. Azzolini,
76
N. Lopez-March,
76
F. Martinez-Vidal,
76
D. A. Milanes,
76
A. Oyanguren,
76
J. Albert,
77
Sw. Banerjee,
77
B. Bhuyan,
77
H. H. F. Choi,
77
K. Hamano,
77
R. Kowalewski,
77
M. J. Lewczuk,
77
I. M. Nugent,
77
J. M. Roney,
77
R. J. Sobie,
77
T. J. Gershon,
78
P. F. Harrison,
78
J. Ilic,
78
T. E. Latham,
78
G. B. Mohanty,
78
H. R. Band,
79
X. Chen,
79
S. Dasu,
79
K. T. Flood,
79
Y. Pan,
79
M. Pierini,
79
R. Prepost,
79
C. O. Vuosalo,
79
and S. L. Wu
79
(
B
A
B
AR
Collaboration)
1
Laboratoire de Physique des Particules, IN2P3/CNRS et Universite
́
de Savoie, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy;
3b
Dipartmento di Fisica, Universita
`
di Bari, I-70126 Bari, Italy;
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
University of Birmingham, Birmingham, B15 2TT, United Kingdom
7
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
8
University of Bristol, Bristol BS8 1TL, United Kingdom
9
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12
University of California at Irvine, Irvine, California 92697, USA
13
University of California at Los Angeles, Los Angeles, California 90024, USA
14
University of California at Riverside, Riverside, California 92521, USA
15
University of California at San Diego, La Jolla, California 92093, USA
16
University of California at Santa Barbara, Santa Barbara, California 93106, USA
17
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18
California Institute of Technology, Pasadena, California 91125, USA
19
University of Cincinnati, Cincinnati, Ohio 45221, USA
20
University of Colorado, Boulder, Colorado 80309, USA
21
Colorado State University, Fort Collins, Colorado 80523, USA
22
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
23
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
24
Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
25
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
26a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy;
26b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
27
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
28a
INFN Sezione di Genova, I-16146 Genova, Italy;
28b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
29
Harvard University, Cambridge, Massachusetts 02138, USA
PRL
101,
201801 (2008)
PHYSICAL REVIEW LETTERS
week ending
14 NOVEMBER 2008
201801-2
30
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
31
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
32
Imperial College London, London, SW7 2AZ, United Kingdom
33
University of Iowa, Iowa City, Iowa 52242, USA
34
Iowa State University, Ames, Iowa 50011-3160, USA
35
Johns Hopkins University, Baltimore, Maryland 21218, USA
36
Universita
̈
t Karlsruhe, Institut fu
̈
r Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
37
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3/CNRS et Universite
́
Paris-Sud 11, Centre Scientifique d’Orsay,
B. P. 34, F-91898 Orsay Cedex, France
38
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
39
University of Liverpool, Liverpool L69 7ZE, United Kingdom
40
Queen Mary, University of London, London, E1 4NS, United Kingdom
41
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
42
University of Louisville, Louisville, Kentucky 40292, USA
43
University of Manchester, Manchester M13 9PL, United Kingdom
44
University of Maryland, College Park, Maryland 20742, USA
45
University of Massachusetts, Amherst, Massachusetts 01003, USA
46
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
47
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
48
INFN Sezione di Milano, I-20133 Milano, Italy;
48b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
49
University of Mississippi, University, Mississippi 38677, USA
50
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
51
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
52a
INFN Sezione di Napoli, I-80126 Napoli, Italy;
52b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
53
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
54
University of Notre Dame, Notre Dame, Indiana 46556, USA
55
Ohio State University, Columbus, Ohio 43210, USA
56
University of Oregon, Eugene, Oregon 97403, USA
57a
INFN Sezione di Padova, I-35131 Padova, Italy;
57b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
58
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN2P3/CNRS,
Universite
́
Pierre et Marie Curie-Paris6, Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
59
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
60a
INFN Sezione di Perugia, I-06100 Perugia, Italy;
60b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
61a
INFN Sezione di Pisa, I-56127 Pisa, Italy;
61b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy;
61c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
62
Princeton University, Princeton, New Jersey 08544, USA
63a
INFN Sezione di Roma, I-00185 Roma, Italy;
63b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
64
Universita
̈
t Rostock, D-18051 Rostock, Germany
65
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
66
DSM/Irfu, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
67
University of South Carolina, Columbia, South Carolina 29208, USA
68
Stanford Linear Accelerator Center, Stanford, California 94309, USA
69
Stanford University, Stanford, California 94305-4060, USA
70
State University of New York, Albany, New York 12222, USA
71
University of Tennessee, Knoxville, Tennessee 37996, USA
72
University of Texas at Austin, Austin, Texas 78712, USA
73
University of Texas at Dallas, Richardson, Texas 75083, USA
74a
INFN Sezione di Torino, I-10125 Torino, Italy;
74b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
75a
INFN Sezione di Trieste, I-34127 Trieste, Italy;
75b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
76
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
77
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
79
University of Wisconsin, Madison, Wisconsin 53706, USA
PRL
101,
201801 (2008)
PHYSICAL REVIEW LETTERS
week ending
14 NOVEMBER 2008
201801-3
(Received 24 July 2008; published 10 November 2008)
We present the results of searches for
B
decays to charmless final states involving
,
f
0
ð
980
Þ
, and
charged or neutral
mesons. The data sample corresponds to
384
10
6
B
B
pairs collected with the
BABAR
detector operating at the PEP-II asymmetric-energy
e
þ
e
collider at SLAC. We find no
significant signals and determine the following 90% confidence level upper limits on the branching
fractions, including systematic uncertainties:
B
ð
B
0
!
Þ
<
2
:
0
10
7
,
B
ð
B
þ
!
þ
Þ
<
30
10
7
,
B
ð
B
0
!
0
Þ
<
3
:
3
10
7
,
B
½
B
0
!
f
0
ð
980
Þ
B
½
f
0
ð
980
Þ!
þ
<
3
:
8
10
7
, and
B
½
B
0
!
f
0
ð
980
Þ
f
0
ð
980
Þ
B
½
f
0
ð
980
Þ!
þ
B
½
f
0
ð
980
Þ!
K
þ
K
<
2
:
3
10
7
.
DOI:
10.1103/PhysRevLett.101.201801
PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh
We report the results of searches for the decays
B
0
!
,
0
,
f
0
ð
980
Þ
,
f
0
ð
980
Þ
f
0
ð
980
Þ
, and
B
!
[
1
]
using data collected with the
BABAR
detector. The
B
0
!
decay is an OZI suppressed process with an expected
branching fraction in the range
ð
0
:
1
–
3
Þ
10
8
in the
standard model (SM) [
2
–
4
]. The decays
B
0
!
0
and
B
þ
!
þ
are pure
b
!
d
loop processes; the expected
branching fractions for these modes range from
ð
2
–
7
Þ
10
8
[
5
–
9
]. The presence of new physics (NP) would give
rise to additional amplitudes that could enhance the
branching fractions for these decay modes relative to the
SM predictions [
2
,
3
,
6
]. The branching fraction for
B
0
!
could be enhanced to
10
7
[
2
], and the branching
fractions for
B
!
decays could be enhanced by 20%
[
8
] in the presence of NP. We are not aware of branching
fraction predictions for
B
0
!
f
0
and
B
0
!
f
0
f
0
.
The
B
decays to
and
are complicated by the
presence of one amplitude with longitudinal polarization
and two amplitudes with transverse polarization. The frac-
tion of longitudinally polarized events is denoted by
f
L
.
Integrating over the angle between the vector meson decay
planes, the angular distribution
ð
1
=
Þ
d
2
=d
cos
1
d
cos
2
is
9
4
½
f
L
cos
2
1
cos
2
2
þ
1
4
ð
1
f
L
Þ
sin
2
1
sin
2
2
;
(1)
where the indices 1, 2 label the two vector mesons in the
final state, and the helicity angles
1
;
2
are the angles
between the direction opposite to that of the
B
0
(
B
þ
) and
the
K
þ
or
þ
(
0
) momentum in the
or
0
(
þ
) rest
frame. We define the angles
1
;
2
for
f
0
mesons in an
analogous way. The expected values of
f
L
range from 0.6
to 0.8 [
3
,
4
,
6
,
7
] for
B
0
!
,
0
, and
B
!
. The
presence of NP could lead to enhancements of the trans-
verse polarization amplitudes [
2
,
3
,
6
].
The current upper limit on the
B
0
!
branching
fraction, obtained from a data sample of
82 fb
1
,is
1
:
5
10
6
[
10
]. The upper limits on
B
0
!
0
and
B
þ
!
þ
, determined using
3
:
1fb
1
of data, are
1
:
3
10
5
and
1
:
6
10
5
[
11
], respectively. Using a data sample of
349 fb
1
,
BABAR
recently reported an upper limit of
1
:
6
10
7
for
B
0
!
f
0
f
0
[
12
]. This last result relies on the
assumption that the
f
0
!
þ
branching fraction is
100%. In this analysis, we make the complimentary as-
sumption that one
f
0
decays to
þ
and the other to
K
þ
K
and search for
B
0
!
f
0
f
0
in a cleaner final state
than Ref. [
12
]. All these limits correspond to a confidence
level (C.L.) of 90%.
The results presented here are based on an integrated
luminosity of
349 fb
1
, corresponding to (
384
4
) mil-
lion
B
B
pairs. These data were recorded at the
ð
4
S
Þ
resonance with a center-of-mass (c.m.) energy
ffiffiffi
s
p
¼
10
:
58 GeV
. The
BABAR
detector is described in detail
elsewhere [
13
], and is situated at the interaction region of
the PEP-II asymmetric energy
e
þ
e
collider located at the
Stanford Linear Accelerator Center (SLAC). We use
Monte Carlo (MC) simulated events generated using the
GEANT4
based [
14
]
BABAR
simulation.
Photons are reconstructed from localized deposits of
energy greater than 50 MeV in the electromagnetic calo-
rimeter that are not associated with a charged track. We
require
candidates to have a lateral shower profile [
15
]
that is consistent with the expectation for photons.
0
candidates are reconstructed from two
candidates with
invariant mass
0
:
10
<m
<
0
:
16 GeV
=c
2
.
We use information from the vertex detector, drift cham-
ber and detector of internally reflected Cherenkov light
to select charged tracks that are consistent with kaon or
pion signatures in the detector [
16
]. We reconstruct
(
0
)
candidates from pairs of oppositely charged kaon (pion)
candidates with invariant mass
0
:
99
<m
KK
<
1
:
05 GeV
=c
2
(
0
:
55
<m
<
1
:
05 GeV
=c
2
). For
0
can-
didates we require the helicity angles to satisfy
j
cos
i
j
<
0
:
98
since signal efficiency falls off near
j
cos
i
j¼
1
.
Charged
candidates are reconstructed from a charged
track consistent with the pion signature and a
0
candidate.
The invariant mass
m
0
of the
þ
candidate is required to
lie between 0.5 and
1
:
0 GeV
=c
2
. We also require that the
helicity angles satisfy
0
:
8
<
cos
i
<
0
:
98
as signal effi-
ciency is asymmetric because of the
0
meson, and falls
off near
cos
i
¼
1
, and background peaks near
1
.We
select
f
0
candidates from two charged tracks that are both
either consistent with the kaon or the pion signature in the
detector. We apply the same selection criteria to
f
0
!
þ
candidates as for
0
mesons. Similarly, we apply
the same selection criteria to
f
0
!
K
þ
K
candidates as
for
mesons as the minimum
m
KK
we can reconstruct in
the detector is
0
:
99 GeV
=c
2
.
We reconstruct signal
B
candidates (
B
rec
) from combi-
nations of two
mesons, one
and one
or
f
0
, and two
f
0
mesons. The
f
0
f
0
mode is required to have one
f
0
PRL
101,
201801 (2008)
PHYSICAL REVIEW LETTERS
week ending
14 NOVEMBER 2008
201801-4
decaying into
þ
, and the other decaying into
K
þ
K
.
We require the
f
0
in
f
0
to decay into
þ
.
We use two kinematic variables,
m
ES
and
E
, in order to
isolate the signal:
m
ES
¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
s=
2
þ
p
i
p
B
Þ
2
=E
2
i
p
2
B
q
is
the beam-energy substituted mass and
E
¼
E
B
ffiffiffi
s
p
=
2
is the difference between the
B
candidate energy and the
beam energy in the
e
þ
e
c.m. frame. Here the
B
rec
mo-
mentum
p
B
and four-momentum of the initial state (
E
i
,
p
i
)
are defined in the laboratory frame, and
E
B
is the
B
rec
energy in the
e
þ
e
c.m. frame. The distribution of
m
ES
(
E
) peaks at the
B
mass (near zero) for signal events and
does not peak for background. We require
m
ES
>
5
:
25 GeV
=c
2
. For the
final state we require
j
E
j
<
0
:
15 GeV
. To reduce background from nonsignal
B
meson
decays we apply the more stringent cut of
0
:
07
<
E<
0
:
15 GeV
for all other modes.
The angle in the c.m. frame between the thrust axis of
the rest of the event (ROE) and that of the
B
candidate is
required to satisfy
j
cos
ð
TB
;
TR
Þj
<
0
:
8
in order to reduce
the background from
e
þ
e
!
q
q
(
q
¼
u
,
d
,
s
,
c
) contin-
uum events. The variable
j
cos
ð
TB
;
TR
Þj
is strongly peaked
near 1 for
q
q
events, whereas
B
B
events are more isotropic
because the
B
mesons are produced close to the kinematic
threshold. Additional separation between the signal and
continuum events is obtained by combining several kine-
matic and topological variables into a Fisher discrimi-
nant
F
, which we use in the maximum-likelihood fit de-
scribed below. The variables
j
cos
ð
TB
;
TR
Þj
,
j
t
j
=
ð
t
Þ
,
j
cos
ð
B;Z
Þj
,
j
cos
ð
TB
;Z
Þj
, and the output of a multivariate
tagging algorithm [
17
] are used as inputs to
F
. The time
interval
t
is calculated from the measured separation
distance
z
between the decay vertices of
B
rec
and the
other
B
in the event (
B
ROE
) along the beam axis (
z
). The
vertex of
B
rec
is reconstructed from the tracks that come
from the signal candidate; the vertex of
B
ROE
is recon-
structed from tracks in the ROE, with constraints from the
beam spot location and the
B
rec
momentum. The uncer-
tainty on the measured value of
t
is
ð
t
Þ
. The variable
B;Z
is the angle between the direction of
B
rec
and the
z
axis
in the c.m. frame. This variable follows a sine squared
distribution for
B
B
events, whereas it is almost uniform for
q
q
. The variable
TB
;Z
is the angle between the
B
thrust
direction and the
z
axis in the laboratory frame.
The decay modes studied are classified into three groups
according to the final state particles: (i)
B
0
!
,
(ii)
B
þ
!
þ
, and (iii)
B
0
!
0
,
B
0
!
f
0
, and
B
0
!
f
0
f
0
. We find that 6% of events for the mode in
group (ii) and 3% of events for the modes in group
(iii) have more than one candidate that passes our selection
criteria. For such events we retain the candidate with the
smallest
2
for the
B
rec
vertex for use in the fits described
below. The numbers of selected candidates are given in
Table
I
.
The dominant background for all modes comes from
continuum events. The yield of this background compo-
nent is determined from the fit to data. The dominant
B
backgrounds for group (i) are
B
0
!
K
0
and
f
0
K
0
,
which are estimated to contribute 1.4 and 0.6 events to
the data, respectively. The
B
backgrounds for group (ii) are
events from
B
decays to final states including charm and
B
þ
!
K
þ
. These are estimated to contribute 107 and
5.5 events to the data. The
B
backgrounds for group (iii) are
events from
B
decays to final states including charm,
B
0
decays to
K
0
,
f
0
K
0
,
K
0
2
ð
1430
Þ
, and
B
þ
decays to
K
þ
and
K
þ
estimated to contribute 249, 25.9, 9.1, 2.3,
4.7, and 1.8 events to the data. The branching fractions for
the
B
backgrounds are taken from Ref. [
18
], except for
B
0
!
f
0
K
0
, which has not yet been measured, and
þ
where we use the results obtained here. The current upper
limit on the
B
0
!
f
0
K
0
branching fraction is
4
:
3
10
6
and we assume a branching fraction of
ð
2
2
Þ
10
6
.
We obtain yields for each mode from extended unbinned
maximum likelihood (ML) fits with the input observables
m
ES
,
E
, and
cos
1
;
2
. In addition, for all modes except
, we include
m
1
;
2
and
F
in the likelihood, where
m
1
;
2
is
m
or
m
KK
for the
,
or
f
0
candidates. A total of three
fits are performed, one for each group of signal modes. We
include event hypotheses for signal events and the afore-
mentioned backgrounds in each of the fits. For each event
i
TABLE I. Number of events
N
in the data sample, signal yield
Y
S
(corrected for fit bias), fit bias, detection efficiency
, daughter
branching fraction product (
Q
B
i
), significance
(including additive systematic uncertainties, taken to be zero if the fitted yield is
negative), measured branching fraction where the first error is statistical, and the second systematic (see text), and the 90% C.L. upper
limit on this branching fraction (including systematic uncertainties). For
B
decays to
and
, two efficiencies are reported, one for
longitudinally and one for transversely polarized events. The reported branching fractions for
f
0
and
f
0
f
0
are product branching
fractions that are not corrected for the probability of
f
0
decaying into
þ
or
K
þ
K
.
Group
N
Mode
Y
S
Bias
(%)
Q
B
i
(%)
B
ð
10
7
Þ
UL
ð
10
7
Þ
(i)
209
1
:
5
þ
3
:
7
2
:
9
0
:
4
0
:
2
40.4 [28.7]
24
:
3
1
:
2
0.0
0
:
4
þ
1
:
2
0
:
9
0
:
3
<
2
:
0
(ii)
3175
þ
22
:
5
þ
11
:
3
9
:
7
þ
2
:
3
1
:
1
5.7 [9.8]
49
:
3
0
:
6
2.2
15
þ
7
6
9
<
30
(iii)
3949
0
3
:
9
þ
6
:
3
4
:
4
þ
0
:
8
0
:
4
24.1 [26.5]
49
:
3
0
:
6
1.0
0
:
9
þ
1
:
3
0
:
9
0
:
9
<
3
:
3
f
0
0
:
8
þ
2
:
4
1
:
4
1
:
7
0
:
5
22.1
...
0.0
0
:
2
þ
0
:
6
0
:
3
0
:
3
<
3
:
8
f
0
f
0
13
:
6
þ
4
:
8
3
:
5
1
:
8
0
:
5
25.5
...
0.0
1
:
4
þ
0
:
5
0
:
4
1
:
5
<
2
:
3
PRL
101,
201801 (2008)
PHYSICAL REVIEW LETTERS
week ending
14 NOVEMBER 2008
201801-5
and hypothesis
j
, the likelihood function is
L
¼
e
ð
P
n
j
Þ
N
!
Y
N
i
¼
1
X
N
j
j
¼
1
n
j
P
j
ð
x
i
Þ
;
where
N
is the number of input events,
N
j
is the number of
hypotheses,
n
j
is the number of events for hypothesis
j
and
P
j
ð
x
i
Þ
is the corresponding probability density function
(PDF) evaluated for the observables
x
i
of the
i
th event. The
correlations between input observables are small and are
assumed to be negligible. Possible biases due to residual
correlations are evaluated as described below. We compute
the combined PDFs
P
j
ð
x
i
Þ
as the product of PDFs for each
of the input observables. These combined PDFs are used in
the fit to the data.
For
B
decays to
and
, the
m
ES
distribution is
parametrized with the sum of a Gaussian and a Gaussian
with a low-side exponential component. The
E
distribu-
tion is described by the sum of two Gaussian distributions,
and the
cos
1
;
2
distributions are described by Eq. (
1
) multi-
plied by an acceptance function. The acceptance function
is a polynomial for all
cos
1
;
2
, with the exception of the
þ
helicity angle distribution for longitudinally polarized
þ
, which uses a polynomial multiplied by the sigmoid
function
1
=
ð
1
þ
exp
½
ð
cos
1
;
2
þ
ÞÞ
, where the parame-
ters
and
are determined from MC simulated data. For
the
final states we use a Gaussian to describe the
F
distribution, and the sum of a relativistic Breit-Wigner
(BW) resonance with two Gaussians for
m
1
;
2
. The contin-
uum background
m
ES
distribution is described by an
ARGUS function [
19
]. We parameterize the continuum
E
distribution using a second-order polynomial and use
polynomials to describe
cos
1
;
2
. Where appropriate, we
parameterize the
F
distributions for the continuum back-
ground using a Gaussian, and we parameterize the
m
1
;
2
distributions using the sum of a BW coordinate and a
polynomial. We use smoothed histograms of MC simulated
data as the PDFs for all other signal and background
modes. We generate
B
0
!
f
0
assuming that the
is
longitudinally polarized, and we use phase space distribu-
tions for
B
0
!
f
0
f
0
. Before fitting the data, we validate the
fitting procedure using the methods described in Ref. [
20
].
We determine a bias correction on our ability to correctly
determine the signal yield using ensembles of simulated
experiments generated from samples of MC simulated data
for the signal and exclusive backgrounds and from the
PDFs for the other backgrounds.
Our results are summarized in Table
I
where we show
the measured yield, fit bias, efficiency, and the product of
daughter branching fractions for each decay mode. We
compute the branching fractions from the fitted signal
event yields corrected for the fit bias, reconstruction effi-
ciency, daughter branching fractions, and the number of
produced
B
mesons, assuming equal production rates of
charged and neutral
B
pairs. As we do not know the value
of
f
L
for the
and
modes, we fit the data for
different physically allowed values of
f
L
in steps of 0.1.
We find no evidence for any of the signal modes and
calculate 90% C.L. branching fraction upper limits
x
UL
such that
R
x
UL
0
L
ð
Y
S
;f
L
Þ
d
Y
S
=
R
þ1
0
L
ð
Y
S
;f
L
Þ
d
Y
S
¼
0
:
9
,
where
L
ð
Y
S
;f
L
Þ
is the likelihood as a function of signal
yield
Y
S
and
f
L
multiplied by a uniform prior. We report
the most conservative (largest) upper limits for each mode,
for which
f
L
¼
0
:
5
, 0.7, and 0.2 for groups (i), (ii), and
(iii), respectively. The central values of the branching
fractions given in Table
I
correspond to these values of
f
L
. Figure
1
shows the
m
ES
distributions in subsamples of
the data where
j
E
j
<
0
:
05 GeV
for
B
þ
!
þ
, and
j
E
j
<
0
:
025 GeV
for all other modes.
We estimate the systematic uncertainty related to the
parametrization of the PDF by varying each parameter by
its estimated uncertainty, and by substituting smoothed
histograms by unsmoothed ones. The total contribution
2
Events / 4.0 MeV / c
0
2
4
6
8
10
12
2
Events / 2.0 MeV / c
20
40
60
80
100
120
)
2
(GeV / c
ES
m
5.25
5.26
5.27
5.28
5.29
0
10
20
30
40
50
60
70
80
)
2
(GeV / c
ES
m
5.25
5.26
5.27
5.28
5.29
2
Events / 2.0 MeV / c
FIG. 1 (color online). Signal-enhanced distributions of
m
ES
in
data, with a projection of the fitted likelihood for (top)
B
0
!
, (middle)
B
þ
!
þ
, and (bottom)
B
0
!
0
,
B
0
!
f
0
,
and
B
0
!
f
0
f
0
. The solid line represents the total PDF, the
dotted line represents signal, and the dashed line represents the
sum of continuum and
B
backgrounds.
PRL
101,
201801 (2008)
PHYSICAL REVIEW LETTERS
week ending
14 NOVEMBER 2008
201801-6
of all variations in signal yields, when added in quadrature,
gives an error between 0.2 and 5.6 events, depending on the
mode. We account for possible differences between data
and MC events from studies of a control sample of
B
!
D
events, yielding an uncertainty of 0.1 to 12.2 events
depending on the mode. The uncertainty from fit bias is
taken to be half the correction listed in Table
I
.
Incorporating the statistical uncertainty of the bias has a
negligible effect. The uncertainty on
B
-daughter branching
fractions is in the range (1.2– 4.9)% [
18
]. The modes in
group (iii),
0
,
f
0
, and
f
0
f
0
have systematic uncertain-
ties from the
f
0
line shape [
21
] of 0.2, 3.1, and 15.9 events,
respectively. The mode
B
þ
!
þ
has a fractional sys-
tematic uncertainty of 3.0% from the reconstruction effi-
ciency of
0
mesons. Other sources of systematic errors
are track reconstruction efficiency [(2.4–3.2)%], uncer-
tainty on the number of
B
meson pairs (1.1%), particle
identification efficiency (3.5%), and differences between
data and MC efficiencies related to the cut on the vertex
2
(0.6%).
Assuming isospin is conserved in
f
0
!
hh
decays,
where
h
¼
,
K
, we correct for factors of
B
ð
f
0
!
hh
Þ
=
B
ð
f
0
!
h
þ
h
Þ
, to obtain the product branching frac-
tion upper limits of
B
ð
B
0
!
f
0
Þ
B
ð
f
0
!
Þ
<
5
:
7
10
7
, and
B
ð
B
0
!
f
0
f
0
Þ
B
ð
f
0
!
Þ
B
ð
f
0
!
KK
Þ
<
6
:
9
10
7
at 90% C.L.
In summary we have performed searches for the decays
B
0
!
,
0
,
f
0
,
f
0
f
0
, and
B
!
and place
upper limits on these modes. The upper limit on
B
0
!
reported here can be used to constrain possible NP
enhancements suggested in Ref. [
2
].
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MEC (Spain), and STFC
(United Kingdom). Individuals have received support from
the Marie Curie EIF (European Union) and the A. P. Sloan
Foundation.
*
Deceased.
+
Present address: Temple University, Philadelphia, PA
19122, USA.
‡
Present address: Tel Aviv University, Tel Aviv, 69978,
Israel.
x
Also with Universita
`
di Perugia, Dipartimento di Fisica,
Perugia, Italy.
k
Also with Universita
`
di Roma La Sapienza, I-00185
Roma, Italy.
{
Present address: University of South Alabama, Mobile,
AL 36688, USA.
**
Also with Universita
`
di Sassari, Sassari, Italy.
[1] Throughout this Letter, charge conjugation states are
implied, and when we refer to
f
0
, we mean specifically
f
0
ð
980
Þ
.
[2] S. Bar-Shalom, G. Eilam, and Y. D. Yang, Phys. Rev. D
67
,
014007 (2003).
[3] C. D. Lu
et al.
, Eur. Phys. J. C
41
, 311 (2005).
[4] M. Beneke, J. Rohrer, and D. Yang, Nucl. Phys.
B774
,64
(2007).
[5] W. Zou and Z. Xiao, Phys. Rev. D
72
, 094026 (2005).
[6] C. D. Lu
et al.
, Chin. Phys. Lett.
23
, 2684 (2006).
[7] J. Li
et al.
, arXiv:hep-ph/0607249.
[8] S. Bao, F. S. Su, Y.-L. Wu, and C. Zhuang, Phys. Rev. D
77
, 095004 (2008).
[9] M. Gronau and J. Rosner, Phys. Lett. B
666
, 185 (2008).
[10] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
93
, 181806 (2004).
[11] T. Bergfeld
et al.
(CLEO Collaboration), Phys. Rev. Lett.
81
, 272 (1998).
[12] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
98
, 111801 (2007).
[13] B. Aubert
et al.
(
BABAR
Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002).
[14] S. Agostinelli
et al.
(
GEANT4
Collaboration), Nucl.
Instrum. Methods Phys. Res., Sect. A
506
, 250 (2003).
[15] A. Drescher
et al.
, Nucl. Instrum. Methods Phys. Res.,
Sect. A
237
, 464 (1985).
[16] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. D
66
,
032003 (2002).
[17] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. Lett.
99
, 171803 (2007);
94
, 161803 (2005).
[18] Y.-M. Yao
et al.
(Particle Data Group), J. Phys. G
33
,1
(2006) and web-based 2007 partial update for the 2008
edition.
[19] H. Albrecht
et al.
(ARGUS Collaboration), Phys. Lett. B
254
, 288 (1991).
[20] B. Aubert
et al.
(
BABAR
Collaboration), Phys. Rev. D
76
,
052007 (2007).
[21] K. Abe
et al.
(Belle Collaboration), Phys. Rev. D
75
,
051101 (2007).
PRL
101,
201801 (2008)
PHYSICAL REVIEW LETTERS
week ending
14 NOVEMBER 2008
201801-7