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Estimation-Based Synthesis ofH -Optimal
Adaptive FIR Filters for Filtered-LMS Problems

Bijan Sayyarrodsari, Member, IEEE, Jonathan P. How, Babak Hassibi, and Alain Carrier

Abstract—This paper presents a systematic synthesis procedure
for -optimal adaptive FIR filters in the context of an active
noise cancellation (ANC) problem. An estimation interpretation of
the adaptive control problem is introduced first. Based on this in-
terpretation, an estimation problem is formulated, and its fi-
nite horizon prediction (filtering) solution is discussed. The solu-
tion minimizes the maximum energy gain from the disturbances to
the predicted (filtered) estimation error and serves as the adapta-
tion criterion for the weight vector in the adaptive FIR filter. We
refer to this adaptation scheme as estimation-based adaptive fil-
tering (EBAF). We show that the steady-state gain vector in the
EBAF algorithm approaches that of the classical (normalized) fil-
tered-X LMS algorithm. The error terms, however, are shown to
be different. Thus, these classical algorithms can be considered to
be approximations of our algorithm.

We examine the performance of the proposed EBAF algorithm
(both experimentally and in simulation) in an active noise cancella-
tion problem of a one-dimensional (1-D) acoustic duct for both nar-
rowband and broadband cases. Comparisons to the results from
a conventional filtered-LMS (FxLMS) algorithm show faster con-
vergence without compromising steady-state performance and/or
robustness of the algorithm to feedback contamination of the ref-
erence signal.

Index Terms—Adaptive filters, filtered LMS, optimal adaptive
filters, robustness.

I. INTRODUCTION

L MS [1] has been the centerpiece of a wide variety of
adaptive filtering algorithms for almost four decades.

The straightforward derivation, and the simplicity of its im-
plementation (especially at a time when computational power
was a significant limitation) encouraged experiments with
the algorithm in a diverse range of applications (see [1] and
[2], for instance). In some applications, however, the simple
implementation of LMS algorithm was found inadequate, and
many attempts were made to overcome its shortcomings. A
rich body of literature reflects the innovative solutions that
have proved successful in practice. Commonly used algorithms
such as normalized LMS, correlation LMS [3], leaky LMS [4],
variable-step-size LMS [5], and filtered-LMS (FxLMS) [6] are
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the outcome of such efforts. These algorithms employ the same
adaptation criterion as the LMS algorithm, i.e., they use the
instantaneous squared error to estimate the mean-square error
[1]) and often assume slow adaptation to allow for the necessary
linear operations in their derivation (see [2, Chs. 2 and 3],
for instance). As [7] points out: “Many of the algorithms and
approaches used are of an ad hoc nature; the tools are gathered
from a wide range of fields; and good systematic approaches
are still lacking.” Introducing a systematic procedure for the
synthesis of adaptive filters is one of the main goals of this
paper.

Parallel to the efforts on the practical application of the LMS-
based adaptive schemes, there has been a concerted effort to an-
alyze these algorithms (see [8]–[14], for instance).1 As the dis-
cussions in the above-mentioned references indicate, the anal-
ysis of an LMS-based adaptive algorithm often relies on sim-
plifying assumptions (such as slow convergence of the adap-
tive filter, negligible contribution of the nonlinear/time-varying
component of signals) and generally addresses only one par-
ticular aspect of its behavior. Narendra and Annaswamy [16]
explain why this has been the case: “adaptive systems are
special classes of nonlinear systemsgeneral methods for the
analysis and synthesis of nonlinear systems do not exist since
conditions for their stability can be established only on a system
by system basis.”

In this paper, we introduce a new framework for the synthesis
and analysis of adaptive FIR filters for problems containing both
a primary and secondary path. Whereas the connection between
estimation problems and adaptive filtering problems devoid of a
secondary path is well recognized (see, e.g., [22]), in this paper,
we establish such a connection for problems containing a sec-
ondary path. In effect, we will show that an estimation inter-
pretation of the “nonlinear” adaptive control problem leads to a
carefully constructed “linear” estimation problem. The predic-
tion (filtering) solution to this estimation problem then serves
as the basis for an adaptation scheme for the weight vector of
the adaptive FIR filter. Systematic analysis of the proposed al-
gorithm can also be addressed in this framework using the anal-
ysis tools that are well developed in robust estimation.

This new framework is based on the recent results in robust
estimation and is in the general spirit of [22]. Following the pi-
oneering work in [17], robust control theory produced solutions
[18], [19] that were designed to meet some performance crite-
rion in the face of the limited knowledge of the exogenous dis-

1Our brief survey here is intended to provide some references to the type of
the problems that have captured the attention of researchers in the field. The
shear volume of the literature makes subjective selection of the references un-
avoidable. For a more detailed discussion of this subject and additional related
references, see [15].
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turbances and imperfect system models. Further work in robust
control and estimation (see [20] and [21] and references therein)
produced straightforward solutions that allowed in depth study
of the properties of the robust controllers/estimators. Of crucial
importance for the work in this paper is the result in [22], where
the -optimality of the LMS algorithm was established. Note
that despite a long history of successful applications, prior to the
work in [22], the LMS algorithm was regarded as an approxi-
mate solution to the least-squares minimization problem. The
result in [22] proved that the LMS algorithm is indeed an exact
solution to a minmax estimation problem and revealed a funda-
mental connection between an adaptive control algorithm (the
LMS in this case) and a robust estimation problem.

Inspired by the analysis in [22], in this paper, we introduce an
estimation interpretation of a general adaptive filtering problem
(Fig. 1) and develop a systematic procedure for the synthesis of
adaptive FIR filters based on this interpretation. The results of
this paper demonstrate that the proposed estimation-based adap-
tive filtering (EBAF) algorithm is a systematic -based so-
lution to the problem for which filtered-LMS algorithms have
been developed in the past. In particular, it will be shown that
the steady-state gain vector in the EBAF algorithm converges
to the gain vector in the classical filtered-X LMS (normalized
filtered-X LMS) adaptive algorithm when the prediction (fil-
tering) solution to the equivalent estimation problem is used.
The error term, however, is modified. Simulation results in this
paper show that the Riccati-based gain vector in the EBAF algo-
rithm leads to an improved transient behavior compared with its
classical LMS-based counterparts. Improved steady-state per-
formance of the new EBAF algorithm can be associated with
the modification to the error term in the classical LMS-based
adaptive algorithms.

The EBAF approach is applicable (due to its systematic na-
ture) to both FIR and IIR adaptive filter design, but for sim-
plicity, this paper only considers the FIR case. Furthermore,
both the single and multichannel cases can be handled in this
framework. We, however, will focus on the single channel sce-
nario in this paper. Experimental results are included to validate
the proposed adaptive algorithm. Matlab simulations are used
to examine various aspects of the algorithm. Comparisons with
a relevant, well-studied conventional adaptive algorithm (i.e.,
FxLMS) are also provided. We address the computational com-
plexity of the proposed EBAF algorithm (see Section V) and
show that it grows linearly with the length of the adaptive filter.

II. BACKGROUND

This section introduces the context in which the new esti-
mation-based adaptive filtering (EBAF) algorithm will be pre-
sented. It defines the adaptive filtering problem of interest and
describes the terminology that is used in this paper. We also out-
line a conventional solution to the problem based on the FxLMS
algorithm. The discussion of key concepts of the EBAF algo-
rithm and the mathematical formulation of the algorithm are left
to Sections III and IV, respectively.

Referring to Fig. 1, the objective in this adaptive filtering
problem is to adjust the weight vector in the adaptive FIR filter

( is the discrete time

Fig. 1. General block diagram for an active noise cancellation (ANC) problem.

index), such that the cancellation error is small in
some appropriate measure. Note that and are outputs
of the primary path and the secondary path , respec-
tively. Moreover

input to the primary path;
properly selected reference signal with a nonzero cor-
relation with the primary input;
control signal applied to the secondary path [generated
as ];
measuredresidual error available to the adaptation
scheme.

Note that in a typical practice, is obtained via some mea-
surement of the primary input. The quality of this measurement
will impact the correlation between the reference signal and the
primary input. Similar to the conventional development of the
FxLMS algorithm, however, this paper assumes perfect correla-
tion between the two.

The FxLMS solution to this is shown in Fig. 2, where perfect
correlation between the primary disturbance and the ref-
erence signal is assumed [1], [2]. Minimizing theinstan-
taneoussquared error as an approximation to the mean-
square error, FxLMS follows the LMS update criterion (i.e., to
recursively adapt in the negative gradient direction)

where
adaptation rate;
impulse response of the secondary path;

“ ” convolution.
Assuming slow adaptation, the FxLMS algorithm thenapprox-
imatesthe instantaneous gradient in the weight vector update
with

(1)
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Fig. 2. Standard implementation of FxLMS algorithm.

where represents a filtered version of the
reference signal that is available to the LMS adaptation [hence,
the name (normalized) filtered-X LMS]. This yields the fol-
lowing adaptation criterion for the FxLMS algorithm:

(2)

In practice, however, only an approximate model of the
secondary path (obtained via some identification scheme) is
known, and it is this approximate model that is used to filter
the reference signal.

A closely related adaptive algorithm is the one in which the
adaptation rate is normalized with the estimate of the power of
the reference vector, i.e.,

(3)

where indicates complex conjugate. This algorithm is known
as the normalized-FxLMS algorithm. For further discussion on
the derivation and analysis of the FxLMS algorithm see [2] and
[14].

III. EBAF A LGORITHM—MAIN CONCEPT

The principal goal of this section is to introduce the under-
lying concepts of the new EBAF algorithm. For the develop-
ments in this section, we assume perfect correlation between

and in Fig. 1 [i.e., for all ]. This is the
same condition under which the FxLMS algorithm was devel-
oped. We assume that the dynamics of the secondary path are
known (e.g. by system identification). No explicit model for the
primary path is needed.

As stated before, the objective in the adaptive filtering
problem of Fig. 1 is to generate a control signal such
that the output of the secondary path is “close” to the
output of the primary path . To achieve this goal, for the
given reference signal , the series connection of the FIR
filter and the secondary path must constitute an appropriate
model for the unknown primary path. In other words, with the
adaptive FIR filter properly adjusted, the path from to

must be equivalent to the path from to . Based
on this observation, in Fig. 3, the structure of the path from

to is used to model the primary path. The modeling
error is included to account for the imperfect cancellation. The
above-mentioned observation forms the basis for the following

Fig. 3. Pictorial representation of the estimation interpretation of the adaptive
control problem. Primary path is replaced by its approximate model.

steps in anestimation interpretationof the adaptive control
problem:

1) Introduce an approximate model for the primary path
based on the architecture of the adaptive path from
to (as shown in Fig. 3). There is anoptimalvalue for
the weight vector in the approximate model’s FIR filter
for which the modeling error is the smallest. This optimal
weight vector, however, is not known. State-space models
are used for both FIR filter and the secondary path.

2) In the approximate model for the primary path, use the
available information to formulate an estimation problem
that recursively estimates this optimal weight vector.

3) Adjust the weight vector of the adaptive FIR filter to the
best available estimate of the optimal weight vector.

Before formalizing this estimation-based approach, we take
a closer look at the signals (i.e., information) involved in Fig. 1.
Note that , where

available measurement;
exogenous disturbance that captures the effect of
measurement noise, modeling error, and the initial
condition uncertainty in error measurements;
output of the secondary path;
output of the primary path.

Note that unlike , the signals and are not directly
measurable. With fully known, however, the assumption
of a known initial condition for the secondary path leads to the
exact knowledge of . We later relax this assumption and
consider the effect of an “inexact” initial condition in the per-
formance of the adaptive filter (see Section VIII). We can now
introduce thederivedmeasured quantity that will be used in the
estimation process

(4)

IV. PROBLEM FORMULATION

Fig. 4 shows a block diagram representation of the
approximate model to the primary path. We assume a
state space model for the
secondary path. Note that both primary and secondary
paths are assumed stable. We treat the weight vector

as the state vector
capturing the trivial dynamics that we
assume for the FIR filter. With the state variable for the
secondary path, is then the state vector
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Fig. 4. Block diagram for the approximate model of the primary path.

for the overall system. The state space representation of the
system is then

(5)
where captures the
effect of the reference input . For this system, thederived
measured output defined in (4) is

(6)

We also define a linear combination of the states as the desired
quantity to be estimated

(7)

For simplicity, the single-channel problem is considered here,
i.e., , , , and

. Extension to the multichannel case is
straightforward and is discussed in [15]. There are several alter-
natives for selecting and, thus, the variable to be estimated

. The end goal of the estimation-based approach, however,
is to set the weight vector in the adaptive FIR filter such that
the output of the secondary path [ in Fig. 3] best matches

. Therefore, we pick , i.e., . Any
estimation algorithm can now be used to generate an estimate
of the desired quantity . Two main estimation approaches
are considered next.

A. H Optimal Estimation

Here, stochastic interpretation of the estimation problem is
possible. Assuming that (the initial condition for the system
in Fig. 4) and are zero mean uncorrelated random vari-
ables with known covariance matrices

(8)

, which is the causal linear least-
mean-squares estimate of , is given by the Kalman filter
recursions [23].

There are two primary difficulties with the optimal solu-
tion: a) The solution is optimal only if the stochastic assump-
tions are valid. If the external disturbance is not Gaussian (for
instance when there is a considerable modeling error that should
be treated as a component of the measurement disturbance), then

pursuing an filtering solution may yield undesirable perfor-
mance; b) regardless of the choice for, the recursive fil-
tering solution does not simplify to the same extent as the
solution considered below. This can be of practical importance
when the real-time computational power is limited. We there-
fore do not pursue the solution in this paper.

B. H Optimal Estimation

To avoid difficulties associated with the estimation, we
consider a minmax formulation of the estimation problem in
this section. This was first done in an adaptive filtering con-
text in [22]. Here, the main objective is to limit the worst-case
energy gain from the measurement disturbance and the initial
condition uncertainty to the error in a causal (or strictly causal)
estimate of . More specifically, we are interested in the fol-
lowing two cases. Let denote
an estimate of given observations for time

up to and including time , and let
denote an estimate of given

for time up to and including . Note that
and are known as filtering and prediction estimates of ,
respectively. Two estimation errors can now be defined: the fil-
tered error

(9)

and the predicted error

(10)

Given a final time , the objective of the filtering problem can
be formalized as finding such that for

(11)
for a given scalar . Similarly, the objective of the predic-
tion problem is to find s.t.

(12)
for a given scalar . The question of optimality of the so-
lution can be answered by finding theinfimumvalue among all
feasible s. Note that for the optimal estimation, there is no
statistical assumption regarding the measurement disturbance.
Therefore, the modeling error block (see Fig. 3) can be treated
as a component of the measurement disturbance. For this reason,
in Fig. 4, the “modeling error” block is eliminated.

V. -OPTIMAL SOLUTION

For the remainder of this paper, we consider the case where
. Note that this is the same assumption used in [22].
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Referring to Fig. 4, this means that . To discuss
the solution, we draw from [23] the solutions to the-subop-
timal finite-horizon filtering problem of (11) and the prediction
problem of (12). Finally, we find the optimal value of and
show how simplifies the solutions.

A. -Suboptimal Finite Horizon Filtering Solution

Theorem 1 [23]: Consider the state space representation of
the block diagram of Fig. 4, which is described by (5)–(7). A
level- filter that achieves (11) exists if, and only if, the
matrices

and

(13)

(here, and are used to indicate the correct dimensions) have
the same inertia2 for all , where
satisfies the Riccati recursion

(14)

where

(15)

If this is the case, then the central estimator is given by

(16)

(17)

with and .
Proof: See [23].

B. -Suboptimal Finite Horizon Prediction Solution

Theorem 2 [23]: For the system described by (5)–(7), the
level- filter that achieves (12) exists if, and only if, all
leading submatrices of

and

(18)

have the same inertia for all . Note that is updated
according to (14). If this is the case, then one possible level-

filter is given by

(19)

(20)

(21)

(22)

Proof: See [23].

2By the inertia of a Hermitian matrix, we mean the number of its positive,
negative, and zero eigenvalues.

Note that the condition in (18) is equivalent to

for (23)

and hence, in (22) is well defined. can also be defined as

for (24)

which proves useful in rewriting the prediction coefficient
in (21), as follows. First, note that

(25)
and hence, replacing for from (24)

(26)

Theorems 1 and 2 (see Sections V-A and B) provide the form
of the filtering and prediction estimators, respectively. The fol-
lowing section investigates the optimal value offor both of
these solutions and outlines the simplifications that follow.

C. Optimal Value of

The optimal value of for the filtering solution will be dis-
cussed first. The discussion of the optimal prediction solution
utilizes the results in the filtering case. The optimality discus-
sions that follow are extensions to the results in [22] in which

optimality of the LMS algorithm for was derived.
1) Filtering Case:

a) : We first show that for the filtering solution,
. Using (11), we can always pick to be simply

. With this choice

for all (27)

and (11) reduces to

(28)
which can never exceed 1 (i.e., ). We are therefore
guaranteed afeasiblesolution for the estimation problem
in (11) when is chosen to be 1. Note that it is possible to di-
rectly demonstrate the feasibility of . Using simple matrix
manipulation, we can show that for and for ,

and have the same inertia for all.
b) : To show that is indeed 1, we must con-

struct an admissible sequence of disturbances and a valid initial
condition for which could be made arbitrarily close to 1 re-
gardless of the filtering solution chosen. The necessary and suf-
ficient conditions for the optimality of are developed
in the course of constructing this admissible sequence of distur-
bances.

Assume that is the best estimate for the
initial condition of the system in the approximate model of the
primary path (see Fig. 4). Moreover, assume thatis indeed
the actual initial condition for the secondary path in Fig. 4. The
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actual initial condition for the weight vector of the FIR filter in
this approximate model is . Then

(29)

(30)

where is the (derived) measurement at time . Now,
if we set

(31)
then , and the estimate of the weight vector
will not change. More specifically, (16) and (17) reduce to the
following simple updates:

and (32)

which, given , generates the estimation error

(33)

Repeating a similar argument at and 2, it is easy to see
that if we pick

then

for (34)

Note that when (34) holds, and with , (17) reduces to

(35)

and hence

for (36)

Continuing this process, we can define , for ,
as seen in (37), shown at the bottom of the page, such that

, is an admissible disturbance. In this case, (11) re-
duces to (38), shown at the bottom of the page. From (37), note
that

(39)

and hence, the ratio in (38) can be made arbitrarily close to one
if

(40)

Equation (40) will be referred to as thecondition for optimality
of for the filtering solution. Equation (40) can now be
used to derive necessary and sufficient conditions for optimality
of . First, note that anecessary conditionfor (40) is

(41)

...
...

...
...

...

(37)

(38)
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or equivalently

(42)

The that satisfies the condition in (42) is referred to asex-
citing [22]. Several sufficient conditions can now be developed.
Since

(43)

onesufficient conditionis that

and (44)

For LTI systems, the sufficient condition (44) is equivalent to
the system having no zeros on the unit circle. Another sufficient
condition is that s bepersistently exciting, i.e.,

(45)

which holds for most reasonable systems.
2) Prediction Case:The optimal value for cannot be less

than one in the prediction case. In the previous section, we
showed that despite using all available measurements up to and
including time , the sequence of the admissible disturbances

for [where
is given by (37)] prevented the filtering solution from achieving

. The prediction solution that uses only the measurements
up to time (not including itself) cannot improve over the fil-
tering solution, and therefore, the energy gainis at least one.

Next, we show that if the initial condition is chosen appro-
priately (i.e., if it is small enough), then can be guar-
anteed. Referring to the Lyapunov recursion of (61), the Riccati
matrix at time can be written as

(46)

Defining

(47)

(46) can be written as

(48)

From Theorem 2 in Section V-B, the condition for the existence
of a prediction solution is , or equiva-
lently

(49)

Note that , and therefore, (49) can be
rewritten as

(50)

Replacing for from (38) and carrying out the matrix multi-
plications, (50) yields

(51)

Introducing

(52)

as the filtered version of the reference vector , we can ex-
press (51) as

(53)

Selecting the initial value of the Riccati matrix, without loss of
generality, as

(54)

and (53) reduces to

(55)

It is now clear that a prediction solution for exists if

(56)

Equation (56) is therefore the condition for optimality of
for the prediction solution.

D. Simplified Solution Due to

1) Filtering Case: Now, we show that with and
, the Riccati equation (14) is considerably simplified.

Applying the matrix inversion lemma to , it can be shown
that [15]

(57)

Therefore

for and for all . Thus, the Riccati recursion (14) reduces
to theLyapunovrecursion with .
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Partitioning the Riccati matrix in block matrices con-
formable with the block matrix structure of , (14) yields the
following simple update:

(58)

We can now summarize the filtering solution in the following
theorem.

Theorem 3: Consider the system described by (5)–(7), with
. If the optimality condition (40) is satisfied, the

-optimal filtering solution achieves , and the cen-
tral -optimal filter is given by

(59)

(60)

with and ,
where satisfies the Lyapunov recursion

(61)

Proof: The proof rfollows from the discussions above.
2) Prediction Case:Referring to (26), it is clear that for

and for , the coefficient will reduce to
. Therefore, we can summarize the prediction solution

as follows.
Theorem 4: Consider the system described by (5)–(7), with

. If the optimality conditions (40) and (56) are satis-
fied, and with as defined in (54), the -optimal prediction
solution achieves , and the central filter is given by

(62)

(63)

with , where satisfies the Lyapunov recur-
sion (61).

Proof: The proof follows from the discussions above.

VI. I MPORTANT REMARKS

We start by the statement of the main idea in EBAF algorithm.
At a given time , use the available information on

a) measurement history for ;
b) control history for ;
c) reference signal history for ;
d) the model of the secondary path and the estimate of its

initial condition;
e) the predetermined length of the adaptive FIR filter to pro-

duce the best estimate of the actual output of the primary
path .

The key premise is that if we can accurately estimate, then
we can generate the inputs that cancel it. The objective

of the EBAF algorithm is to make match the optimal esti-
mate of (see Fig. 3). For the adaptive filtering problem in
Fig. 1, however, we only have direct access to the weight vector
of the adaptive FIR filter. Because of this practical constraint,
the EBAF algorithm adapts the weight vector in the adaptive
FIR filter according to the estimate of the optimal weight vector
given by (59) or (62) (for the filtering, or prediction solutions,
respectively). Note that . The error anal-
ysis for this adaptive algorithm is discussed in Section VIII.
Now, we can highlight main features of this algorithm as fol-
lows:

1) The estimation-based adaptive filtering (EBAF) algo-
rithm yields a solution that only requires one Riccati
recursion. The recursion propagatesforward in time and
does not require any information about the future of the
system or the reference signal (thus allowing the resulting
adaptive algorithm to be real-time implementable). This
has come at the expense of restricting the controller to an
FIR structure in advance.

2) With , is the
simplified Riccati equation, which considerably reduces
the computational complexity involved in propagating the
Riccati matrix. Furthermore, this Riccati update always
generates a non-negative definite, as long as is se-
lected to be positive definite [see (61)].

3) In general, the solution to an filtering problem re-
quires verification of the fact that and are of
the same inertia at each step [see (13)]. In a similar way,
the prediction solution requires that all sub-matrices of

and have the same inertia for all [see (18)].
This can be a computationally expensive task. Moreover,
it may lend to a breakdown in the solution if the condition
is not met at some time. Our formulation of the problem
eliminates the need for such checks, as well as the poten-
tial breakdown of the solution, by providing a definitive
answer to the feasibility and optimality of .

4) When for
all [i.e., the output of the FIR filter directly cancels

in Fig. 1], then the filtering/prediction results we
have derived reduce to the simple normalized-LMS/LMS
algorithms in [22], as expected.

5) As mentioned earlier, there is no need to verify the solu-
tions at each time step; therefore, the computational com-
plexity of the estimation-based approach is (pri-
marily for calculating ), where

. Here, is the length of the FIR filter, and
is the order of the secondary path. The special structure
of , however, reduces the computational complexity to

, i.e., cubic in the order of the secondary
path and linear in the length of the FIR filter [see (58)].
This is often a substantial reduction in the computation
since . Note that the computational complexity
for FxLMS is quadratic in and linear in .

VII. I MPLEMENTATION SCHEME FOREBAF ALGORITHM

Three sets of variables are used to describe the implementa-
tion scheme.
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1) Best Available Estimate of a Variable:Referring to (16)
and (19) and noting the fact that ,
we can define as the estimate of the weight vector
and as the secondary path state estimate in the ap-
proximate model of the primary path.

2) Actual Value of a Variable:Referring to Fig. 1, we define
as the actual input to the secondary

path, as the actual output of the secondary path, and
as the actual output of the primary path. Note that
and are not directly measurable and that at each

iteration, the weight vector in the adaptive FIR filter is set
to .

3) Adaptive Algorithm’s Internal Copy of a Variable:Recall
that in (4), we used to construct the derived mea-
surement . Since is not directly available, the
adaptive algorithm needs to generate an internal copy of
this variable. This internal copy [referred to as ]
is constructed by applying (the actual control signal)
to a model of the secondary path inside the adaptive algo-
rithm. The initial condition for this model is . In
other words, the derived measurement is constructed as
follows:

(64)

(65)

(66)

Given the identified model for the secondary path and its
input , the adaptive algorithm’s copy
of will be exact if the actual initial condition of the
secondary path is known. Obviously, one cannot expect to
have the exact knowledge of the actual initial condition
of the secondary path. In the next section, however, we
show that when the secondary path is linear and stable, the
contribution of the initial condition to its output decreases
to zero as increases. Therefore, the internal copy of
will converge to the actual value of over time.

Now, we can outline the implementation algorithm as fol-
lows.

1) Start with and as the initial guess for
the state vector in the approximate model of the primary
path. In addition. assume that , and

. The initial value for the Riccati matrix
is , which is chosen to be block diagonal. The role of

is similar to the learning rate in LMS-based adaptive
algorithms (see Section V-C.2).

2) If (finite horizon) do the following:

a) Form the control signal

(67)

to be applied to the secondary path. Note that ap-
plying to the secondary path produces

(68)

at the output of the secondary path. This in turn
leads to the following error signal measured at time

:

(69)

which is available to the adaptive algorithm to per-
form the state update at time.

b) Propagate the state estimate and the internal copy
of the state of the secondary path as follows:

(70)

where is the error sensor measurement
at time given by (69), and

(see Theorem 3). Note that
for the prediction-based EBAF algorithm, we only
need to replace with .

c) Update the Riccati matrix using the Lyapunov
recursion

(71)

will be used in (70) to update the state esti-
mate.

3) Go to 2.

VIII. E RRORANALYSIS

In Section VII, we pointed out that the proposed implementa-
tion scheme can deviate from an -optimal solution for two
main reasons: 1) the error in the initial condition of the sec-
ondary path that can cause to be different from and
2) the additional error in the cancellation of due to the fact
that we cannot directly set to be [or ]. All we
can do is to set the weight vector in the adaptive FIR filter to be

.
Here, we will discuss both errors in detail.

A. Effect of Initial Condition

As our earlier discussions indicate, the secondary path in
Fig. 1 is assumed to be linear. For a linear system, the output at
any given time can be decomposed into two components: the
zero-input component, which is associated with the portion of
the output solely due to the initial condition of the system, and
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the zero-state component, which is the portion of the output
solely due to the input to the system.

For a stable system, the zero-input component of the response
will decay to zero for large. Therefore, any difference between

and (which with a known input to the secondary
path can only be due to the unknown initial condition) will go to
zero as grows. In other words, exact knowledge of the initial
condition of the secondary path does not affect the performance
of the proposed EBAF algorithm for sufficiently large.

B. Effect of Practical Limitation in Setting to
( )

As pointed out earlier, the physical setting of the adaptive
control problem in Fig. 1 only allows for the weight vector in
the adaptive FIR filter to be adjusted to . In other words,
the state of the secondary path cannot be set to a desired value at
each step. Instead, evolves based on its initial condition and
the control input that we provide. Assume that is the
actual state of the secondary path at time. The actual output
of the secondary path is then

(72)

which leads to the following cancellation error:

(73)
For the prediction solution of Theorem 4, if we add the zero
quantity to the right-hand side of (73) and taking
the norm of both sides, we can write

Therefore

(74)

where and is defined in (5). Note that
the first term on the right-hand side of (74) is the prediction
error energy gain [see (12)]. Therefore, the energy gain of the
cancellation error with the prediction-based EBAF exceeds the
error energy gain of the optimal prediction solution by the
second term on the right-hand side of (74). It can be shown
that when the primary inputs are persistently exciting [see
(45)], the dynamics for the state estimation error

are internally stable, which implies that the second term on the
right-hand side of (74) is bounded for all and in the limit
when .3

When for all , an implementation of the filtering
solution that utilizes the most recent measurement is fea-
sible. In this case, the filtering solution in (16) and (17) can be
written as follows:

(75)

and

(76)

(77)

where the weight vector update in the adaptive FIR filter follows
(75). With a derivation identical to the one for prediction solu-
tion, it can be shown that the performance bound in this case is

(78)

An argument similar to the prediction case shows that the second
term on the right-hand side has a finite gain as well.

IX. RELATIONSHIP TO THENORMALIZED-FxLMS/FxLMS
ALGORITHMS

In this section, we will first show that as , the gain
vector in the prediction-based EBAF algorithm converges to the
gain vector in the classical FxLMS algorithm. Thus, FxLMS is
an approximation to the steady-state EBAF. The error terms in
the two algorithms are shown to be different [compare (84) and
(2)]. Therefore, it is expected that the prediction-based EBAF
demonstrate superior transient performance compared with the
FxLMS algorithm. Simulation results in the next section agree
with this expectation. The fact that the gain vectors asymptot-
ically coincide agrees with the fact that the derivation of the
FxLMS algorithm relies on the assumption that the adaptive
filter and the secondary path are interchangeable, which can
only be true in the steady state. Similar results are shown for
the connection between the filtering-based EBAF and the nor-
malized FxLMS adaptive algorithms.

For the discussion in this section, the secondary path is as-
sumed, for simplicity, to be LTI, i.e., . Note

3Green and Limebeer [19] show that if the exogenous disturbance is assumed
to be a zero mean white noise process with unit intensity and independent of
the initial condition of the system� , then the terminal state estimation error
variance satisfies

E(� � �̂ )(� � �̂ ) � P :
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that for the LTI system, in (47) reduces to . The Riccati
matrix in (48) can then be rewritten as

(79)

Equation (79) will be used in establishing the proper connec-
tions between the filtered/predicted solutions of Section V and
the conventional normalized-FxLMS/FxLMS algorithms.

A. Prediction Solution and Its Connection to the FxLMS
Algorithm

To study the asymptotic behavior of the state estimate update,
note that for an stable secondary path as .
Therefore, using (79)

as (80)

which for

results in

as (81)

Selecting as in (54) and noting the fact that
(Theorem 4), it is easy to see that as

(82)

and therefore, the state estimate update in Theorem 4 becomes

(83)

Thus, we have the following update for the weight vector

(84)

Note that [see (66)], and hence, the
difference between the limiting update rule of (84) (i.e., the pre-
diction EBAF algorithm) and the classical FxLMS algorithm
of (2) will be the error term used by these algorithms. More
specifically, in the FxLMS algorithm is replaced with the
following modifiederror [using (65)]:

(85)

Note that if is directly measurable, then
will be the modified error.

The condition for optimality of in the prediction case
[see (56)] can also be simplified for stable LTI secondary path as

. Rewriting the optimality condition for the prediction
solution [see (56)] as

(86)

for a stable secondary path, as , and hence

as (87)

is the limiting condition for the optimality of in the pre-
diction case. This is essentially a filtered version of the well-
known LMS bound [22].

B. Filtering Solution and its Connection to the
Normalized-FxLMS

In the filtered case, the gain vector is
. In Section IX-A, we computed the limiting value for

the quantity in (82). In a similar way, it can be shown
that with , as

(88)

and hence, the coefficient for the state estimate update in the
filtering case becomes

as (89)
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Fig. 5. Schematic diagram of 1-D air duct.

Thus, the update rule for the weight vector in the filtering EBAF
algorithm would be

(90)

which is similar to the normalized-FxLMS algorithm [see (3)]
in which the error signal is replaced with a modified error signal
described by (85).

X. EXPERIMENTAL DATA AND SIMULATION RESULTS

This section examines the performance of the proposed
EBAF algorithm for the active noise cancellation (ANC)
problem in a one-dimensional (1-D) acoustic duct. The al-
gorithm, however, is applicable for adaptive filter design in
general, and the selection of the examples in this section are for
pedagogical reasons. The application of the EBAF algorithm to
a multichannel vibration isolation problem [15] and an adaptive
equalization problem [24] are other instances of its successful
application.

Fig. 5 shows the schematic diagram of the 1-D air duct that
is used in our experiments. The control objective is to atten-
uate (cancel in the ideal case) the disturbance introduced into
the duct bySpeaker #1(primary noise source) at the position
of Microphone #2(error sensor) by the control signal gener-
ated bySpeaker #2(secondary source). Microphone #1 can be
used to provide the reference signal for the adaptation algorithm.
Clearly, Microphone #1 measurements are affected by both pri-
mary and secondary sources, and hence, if these measurements
are used as the reference signal, the problem, which is com-
monly known as feedback contamination, has to be addressed.

We have used a dSPACE DS1102 DSP controller board
(which includes TI’s C31 DSP processor with 60 MHz clock
rate and 128k of 32-bit RAM) and its Matlab 5 interface for
real-time implementation of the algorithm. A state-space model
(of order 10) is identified for this 1-D acoustic system. Note
that of four identified transfer functions, only the transfer
function from Speaker #2 to Microphone #2 (i.e., the secondary
path) is required by the estimation-based adaptive algorithm.
In this section, we will first provide experimental data that
validate a corresponding simulation result. We then present
more sophisticated simulations to study various aspects of the
EBAF algorithm.

Fig. 6 shows the experimental data in a typical noise cancella-
tion scenario, along with corresponding plots from a simulation
that is designed to mimic that experiment. Here, we show the
reading of Microphone#2 (i.e., the cancellation error) when an
adaptive FIR filter of length 4 is used for noise cancellation. We
have used a bandlimited white noise (noise power ) as
measurement noise in our simulations. The sampling frequency

Fig. 6. Validation of simulation results against experimental data for the noise
cancellation problem with a single-tone primary disturbance at 150 Hz.

Fig. 7. Performance comparison in the presence of feedback contamination
when the primary source is a single tone at 150 Hz.

is 1000 Hz for both experiment and simulation. The primary
source is a sinusoidal tone at 150 Hz, which is also available
to the adaptation algorithm as the reference signal. We have se-
lected , , and
to initialize the Riccati matrix in (14). Our experiment starts
with adaptive controller off, and about 3 s later, the controller
is turned on. The transient response of the adaptive FIR filter
lasts for approximately s. There is a reduction of 65 times
in the magnitude of the error. The results from a corresponding
Matlab simulation (with the same filter length and similar open
loop error at 150 Hz) are also shown in Fig. 6. The transient be-
havior and the steady-state response in the simulation agree with
the experimental data, thus assuring the validity of the setup for
the simulations presented in this section.

In Fig. 7, we study the effect of feedback contamination (i.e.,
the contamination of the reference signal with the output of the
adaptive FIR filter through some feedback path) when the pri-
mary source is a single tone. In [2], the subject of feedback con-
tamination is discussed in detail, where relevant references to
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Fig. 8. Performance comparison in the presence of feedback contamination
when the primary source is a bandlimited white noise.

the conventional solutions to this problem are also listed. Here,
however, we do not intend to solve this problem. Instead, we
will show that the proposed EBAF algorithm maintains superior
performance [compared with FxLMS and normalized-FxLMS
(NFxLMS) algorithms] when such a problem occurs and no ad-
ditional information is furnished. It is worth mentioning that the
EBAF algorithm provides a convenient framework in which the
problem of feedback contamination can be addressed. This so-
lution is discussed in [15]. Fig. 7 contains a typical response to
feedback contamination for EBAF, FxLMS, and NFxLMS al-
gorithms. For the first 5 s, the input to Speaker#2 is grounded
[i.e., for ]. Switching the controller on results
in large transient behavior in the case of FxLMS and NFxLMS,
whereas for the EBAF algorithm, the transient behavior does
not display the undesirable overshoot. We have tested many dif-
ferent operation scenarios (with various filter lengths, and adap-
tation rates), and this observation holds true in all cases tested.
For the next 15 s, the primary source is directly available to all
adaptive algorithms, and the steady-state performance is virtu-
ally the same. From on, we use the output of Micro-
phone#1 (which is contaminated by the output of the FIR filter)
as the reference signal. Once again, Fig. 7 shows a typical ob-
servation. Note that in the case of FxLMS and NFxLMS, the
adaptation rate must be kept small enough to avoid unstable be-
havior when the switch to contaminated reference signal takes
place. The superior robustness of the EBAF algorithm allows
for a faster convergence in the face of this feedback contami-
nation. For the results in Fig. 7, the length of the adaptive FIR
filter (for all three algorithms) is 24. For the EBAF algorithm,

, , and .
For FxLMS and NFxLMS algorithms, the adaptation rates are

and , respectively.
Fig. 8 considers the effect of feedback contamination in a wide

band noise cancellation process. As in Fig. 7, the controller is off
for the first 5 s. For s, the controller has full access to
the reference signal, whereas at s, the reference signal is
switched to the measurements of the Microphone#1 (hence, con-
taminated with the feedback from Speaker#2). For the results in

Fig. 9. Closed-loop transfer function based on the steady-state performance
of the EBAF and (N)FxLMS algorithms in the noise cancellation problem of
Fig. 8.

Fig. 8, the length of the adaptive FIR filter is 32. For the EBAF
algorithm, , , and

. For FxLMS and NFxLMS algorithms, the adapta-
tion ratesare and , respectively.TheFxLMS algorithm
becomes unstable for faster adaptation rates, hence forcing slow
convergence (i.e., lower control bandwidth). For NFxLMS, the
normalization of the adaptation rate by the norm of the reference
vector (a vector of length 32 in this case) prevents unstable be-
havior.The response of the algorithm under feedbackcontamina-
tion is, however, still slower than EBAF algorithm. Furthermore,
the oscillations in the cancellation error due to the switching be-
tweenmodesofoperationaresignificantlyhigherwhencompared
twith the oscillations in the EBAF case.

Fig. 9 shows a closed-loop performance comparison for
wideband noise cancellation. The EBAF algorithm outperforms
FxLMS and normalized-FxLMS adaptive algorithms, even
though the same level of information is made available to all
three adaptation schemes. For the result presented here, the
length of the FIR filter (for all three approaches) is 32, and the
bandlimited white noise that is used as the primary source is
available as the reference signal. Since the frequency response
is calculated based on the steady-state data, the adaptation
rate of the algorithms is not relevant. Measurement noise for
all three simulations is a bandlimited white noise with power

, as before.

XI. CONCLUSION

We have approached the adaptive control problem from an
estimation point of view. More specifically, we have shown that
for a common formulation of the adaptive control problem, an
equivalent estimation interpretation exists. We have then con-
structed a standard estimation problem that corresponds
to the original adaptive control problem and have justified our
choice of estimation criterion. We have also derived the-op-
timal filtering/prediction solutions and proved that the optimal
energy gain is unity. We have then simplified the filtering/pre-
diction solutions and explained how these solutions form the
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foundation for an estimation-based adaptive filtering (EBAF)
algorithm. Meanwhile, we have justified why the real-time im-
plementation of EBAF algorithm is feasible.

We have outlined an implementation scheme for the new al-
gorithm and have derived a corresponding performance bound.
We have shown that the classical FxLMS (normalized-FxLMS)
adaptive algorithms are approximations to the limiting behavior
of the proposed EBAF algorithm. We have shown that the EBAF
algorithm displays improved performance when compared with
commonly used FxLMS and normalized-FxLMS algorithms.
We have also verified our simulations by conducting a noise
cancellation experiment and showing that the experimental data
reasonably match a corresponding simulation.

The systematic nature of the proposed EBAF algorithm can
serve as the first step toward methodical optimization of now pre-
determined parameters of the FIR filter (such as filter length or
adaptation rate). Furthermore, the analysis of the various aspects
of the algorithm directly benefits from the advances in robust es-
timation theory. Finally, more efficient implementation schemes
can further reduce computational complexity of the algorithm.
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