164 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001

Estimation-Based Synthesis &f,,-Optimal
Adaptive FIR Filters for Filtered-LMS Problems

Bijan SayyarrodsayiMember, IEEEJonathan P. How, Babak Hassibi, and Alain Carrier

Abstract—This paper presents a systematic synthesis procedure the outcome of such efforts. These algorithms employ the same
for Ho.-optimal adaptive FIR filters in the context of an active adaptation criterion as the LMS algorithm, i.e., they use the
noise cancellation (ANC) problem. An estimation interpretation of instantaneous squared error to estimate the mean-square error

the adaptive control problem is introduced first. Based on this in- .
terpretation, an H,,, estimation problem is formulated, and its fi- [1]) and often assume slow adaptation to allow for the necessary

nite horizon prediction (filtering) solution is discussed. The solu- linear operations in their derivation (see [2, Chs. 2 and 3],
tion minimizes the maximum energy gain from the disturbances to  for instance). As [7] points out: “Many of the algorithms and

the predicted (filtered) estimation error and serves as the adapta- approaches used are of an ad hoc nature; the tools are gathered
tion criterion for the weight vector in the adaptive FIR filter. We from a wide range of fields: and good systematic approaches

refer to this adaptation scheme as estimation-based adaptive fil- . . . g
tering (EBAF). We show that the steady-state gain vector in the '€ still lacking.” Introducing a systematic procedure for the

EBAF algorithm approaches that of the classical (normalized) fil- Synthesis of adaptive filters is one of the main goals of this
tered-X LMS algorithm. The error terms, however, are shown to paper.

be different. Thus, these classical algorithms can be considered to  Parallel to the efforts on the practical application of the LMS-
be approximations of our algorithm. based adaptive schemes, there has been a concerted effort to an-

We examine the performance of the proposed EBAF algorithm - . .
(both experimentally and in simulation) in an active noise cancella- alyze these algorithms (see [8]-[14], for instantéys the dis-

tion problem of a one-dimensional (1-D) acoustic duct for both nar-  cussions in the above-mentioned references indicate, the anal-
rowband and broadband cases. Comparisons to the results from ysis of an LMS-based adaptive algorithm often relies on sim-
a conventio_nal fiItered-LMS_(l_:xLMS) algorithm show faster con- plifying assumptions (such as slow convergence of the adap-
vergence without compromising steady-state performance and/or e filter, negligible contribution of the nonlinear/time-varying
robustness of the algorithm to feedback contamination of the ref- .
erence signal. c_omponent of 5|gnals) an(_j generally addresses only one par-
ticular aspect of its behavior. Narendra and Annaswamy [16]
explain why this has been the case:.“adaptive systems are
special classes of nonlinear systemsgeneral methods for the
analysis and synthesis of nonlinear systems do not exist since
|. INTRODUCTION conditions for their stability can be established only on a system

MS [1] has been the centerpiece of a wide variety &ylszﬁem basis.” introd f K for th thesi
adaptive filtering algorithms for almost four decades. N this paper, we introduce a new framework for thé syntnesis

and analysis of adaptive FIR filters for problems containing both

The straightforward derivation, and the simplicity of its im=""" q d th. Wh th tion bet
plementation (especially at a time when computational pow%P”mary and secondary path. Yvhereas the connection between

was a significant limitation) encouraged experiments withstimation problems and adaptive filtering problems devoid of a

the algorithm in a diverse range of applications (see [1] aﬁ&zcondary pathis well recogr_wized (see, e.g., [22]), "?t_his papet,
[2], for instance). In some applications, however, the simp e establish such a connection for problems containing a sec-

implementation of LMS algorithm was found inadequate, an(awdary path. In effect, we will show that an estimation inter-

many attempts were made to overcome its shortcomings pretation of the “nonlinear” adaptive control problem leads to a

rich body of literature reflects the innovative solutions thagarefully constructed “linear” estimation problem. The predic-

have proved successful in practice. Commonly used algorithA (filtering) solution to this estimation problem then serves
such as normalized LMS, correlation LMS [3], leaky LMS [4] as the basis for an adaptation scheme for the weight vector of

variable-step-size LMS [5], and filtered-LMS (FXLMS) [6] arethe.adaptlve FIR filter. Systemqnc gnaly&s of the p_roposed al
gorithm can also be addressed in this framework using the anal-
Manuscript received August 19, 1999; revised September 20, 2000. This wygis tools that are well developed in robust estimation.
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Physical Plant

turbances and imperfect system models. Further work in robi geeees
control and estimation (see [20] and [21] and references there & H Frimery Paih k) /LV"-““)
produced straightforward solutions that allowed in depth stu

+

of the properties of the robust controllers/estimators. Of CIUCH .. = e(k)
importance for the work in this paper is the result in [22], Wherz(k)E  Adaptive FIR Filver 7
the H,,-optimality of the LMS algorithm was established. Not¢ 27!
that despite a long history of successful applications, priortot H Secondary
work in [22], the LMS algorithm was regarded as an approx (R
mate solution to the least-squares minimization problem. T + uim -
result in [22] proved that the LMS algorithm is indeed an exa J A
solution to a minmax estimation problem and revealed a func (Updm Weight Vectos P prenemeoeee :
mental connection between an adaptive control algorithm (t !
LMS in this case) and a robust estimation problem. [Tplm_n]

Inspired by the analysis in [22], in this paper, we introduce & | Aerithm |
estimation interpretation of a general adaptive filtering proble
(Fig. 1) and develop a systematic procedure for the synthesis Digital Control System

adaptive FIR filters based on this interpretation. The results |9if 1
this paper demonstrate that the proposed estimation-based adgp—'
tive filtering (EBAF) algorithm is a systematifl.-based so-
lution to the problem for which filtered-LMS algorithms havendex), such that the cancellation ereffi;) — (%) is small in
been developed in the past. In particular, it will be shown thabme appropriate measure. Note #ig@t) andy(k) are outputs
the steady-state gain vector in the EBAF algorithm convergetthe primary pathP(z) and the secondary paff{z), respec-

to the gain vector in the classical filtered-X LMS (normalizedively. Moreover

filtered-X LMS) adaptive algorithm when the prediction (fil- n(k) input to the primary path;

tering) solution to the equivalent estimation problem is used.z(k) properly selected reference signal with a nonzero cor-

General block diagram for an active noise cancellation (ANC) problem.

The error term, however, is modified. Simulation results in this relation with the primary input;
paper show that the Riccati-based gain vector in the EBAF algo-,, (%) control signal applied to the secondary path [generated
rithm leads to an improved transient behavior compared with its asu(k) 2 [w(k) 2k — 1) - a(k — )W (k)]

classical LMS-based counterparts. Improved steady-state peré( k)
formance of the new EBAF algorithm can be associated with
the modification to the error term in the classical LMS-bas

measuredresidual error available to the adaptation
scheme.

. . E‘IQOte that in a typical practice;(k) is obtained via some mea-
adaptive algorithms. surement of the primary input. The quality of this measurement

The EBAF approach is applicable (due to its systematic il impact the correlation between the reference signal and the

th.re.z totr?oth FIR antlj IR aq(:j:lptlv?hf|ltle:r”393|gn, Itzuttfr:)r S'mibrimary input. Similar to the conventional development of the
plicity, thiS paper only considers the case. FUrtnermorg, \;s algorithm, however, this paper assumes perfect correla-
both the single and multichannel cases can be handled in S, between the two

framework. We, however, will focus on the single channel SC€-The ExLMS solution to this is shown in Fig. 2, where perfect
nario in this paper. Experimental results are included to validag '

_ . . . Gyrelation between the primary disturbangg) and the ref-
the proposed adaptive algorithm. Matlab simulations are usg!%nce signak(k) is assumed [1], [2]. Minimizing thinstan-

to examine various aspects of the algorithm. Comparisons w, eoussquared error?(k) as an approximation to the mean-

?erll\%?r;tr’evgslzss:g\'ﬁge303\\//:gg%?:lssghaepgg?ngﬁgggmrgl g(')esquare error, FXLMS follows the LMS update criterion (i.e., to
: : : . cursivel in th i i irecti
plexity of the proposed EBAF algorithm (see Section V) an%écurswey adapt in the negative gradient direction)

show that it grows linearly with the length of the adaptive filter. n
W(k+1)=W(k) - §V62(/€)

Il. BACKGROUND e(k) =d(k) — y(k) = d(k) — S(k) & u(k)

This section introduces the context in which the new estighere
mation-based adaptive filtering (EBAF) algorithm will be pre- , adaptation rate;
sented. It defines the adaptive filtering problem of interest andg(k) impulse response of the secondary path;
describes the terminology that is used in this paper. We also out« @” convolution.

line a conventional solution to the problem based on the FXLM%suming slow adaptation, the FXLMS algorithm tteaprox-

algorithm. The discussion of key concepts of the EBAF alggyatesthe instantaneous gradient in the weight vector update
rithm and the mathematical formulation of the algorithm are lef;,

to Sections Il and IV, respectively.

Referring to Fig. 1, the objective in this adaptive filtering 210 , , ,
problem is to adjust the weight vector in the adaptive FIR filter ¥ ¢ (k)= —2[z'(k)2’(k = 1) - 2'(k = N)]" e(k)
W(k) = [wo(k)wi(k) -+ wy(k)]T (k is the discrete time £ =21’ (k)e(k) Q)
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Pri Path
z(k) Primary Path d(k) rimary Paf

(Unknown)
o) -
e(k)
\ An FIR Filter l——lTC"W of
Sec. Path
Adaptive FIR Sy ath (D=
Filter w(k) S(2) w06 etk
A Copy Of
(known})
Secondary Path
A LMS
) Algorithm Fig. 3. Pictorial representation of the estimation interpretation of the adaptive

control problem. Primary path is replaced by its approximate model.
Fig. 2. Standard implementation of FXLMS algorithm.
steps in anestimation interpretatiorof the adaptive control

wherex' (k) £ S(k) @ »(k) represents a filtered version of theproblem:
reference signal that is available to the LMS adaptation [hence,1) Introduce an approximate model for the primary path

the name (normalized) filtered-X LMS]. This yields the fol- based on the architecture of the adaptive path fidi
lowing adaptation criterion for the FXLMS algorithm: toy(k) (as shown in Fig. 3). There is aptimalvalue for
the weight vector in the approximate model’s FIR filter
W(k+1) = W(k) + ph'(k)e(k). 2 for which the modeling error is the smallest. This optimal

. . weight vector, however, is not known. State-space models
In practice, however, only an approximate model of the 5.6 ysed for both FIR filter and the secondary path.

secondary p_at_h (o_btained v_ia some identifica_tion schem_e) isz) In the approximate model for the primary path, use the
known, and it is this approximate model that is used to filter " 5\ 5jlable information to formulate an estimation problem

the reference signal. that recursively estimates this optimal weight vector.

A closely related adaptive algorithm is the one in which the 3) Adijust the weight vector of the adaptive FIR filter to the
adaptation rate is normalized with the estimate of the power of * past available estimate of the optimal weight vector.

the reference vector, i.e., Before formalizing this estimation-based approach, we take
R (k) a closer look at the signals (i.e., information) involved in Fig. 1.
Wk +1) = W(k) + uy———omsms ke ()R (k) e(k) () Note thate(k) = d(k) — y(k) + Vin(k), where
e(k)  available measurement;
wherex indicates complex conjugate. This algorithm is known V), (k) exogenous disturbance that captures the effect of

as the normalized-FxLMS algorithm. For further discussion on measurement noise, modeling error, and the initial
the derivation and analysis of the FXLMS algorithm see [2] and condition uncertainty in error measurements;
[14]. y(k)  output of the secondary path;
d(k)  output of the primary path.
lll. EBAF ALGORITHM—MAIN CONCEPT Note that unlikez(k), the signals,(k) andd(k) are not directly

The principal goal of this section is to introduce the undepjeasurable. Withi(k) fully known, however, the assumption

lying concepts of the new EBAF algorithm. For the developra known initial condition for the secondgry path Iea_ds to the
ments in this section, we assume perfect correlation betweBfRct knowledge of(k). \i\/e Iater”r.el_a.x this assumption and
n(k) andz(k) in Fig. 1 [i.e..z(k) = n(k) for all k]. This is the consider the effect of an “inexact initial _condmon in the per-
same condition under which the FXLMS algorithm was devefPrmance of the_ adaptive filter (see Sectlon V.”I)' we can how
oped. We assume that the dynamics of the secondary pathg];@duge thederivedmeasured quantity that will be used in the
known (e.g. by system identification). No explicit model for th&Stimation process

primary path is needed.

As stated before, the objective in the adaptive filtering
problem of Fig. 1 is to generate a control signdk) such
that the output of the secondary pait¥) is “close” to the
output of the primary patk(%). To achieve this goal, for the
given reference signat(k), the series connection of the FIR Fig. 4 shows a block diagram representation of the
filter and the secondary path must constitute an appropriaeproximate model to the primary path. We assume a
model for the unknown primary path. In other words, with thetate space modelA,(%), Bs(k), Cs(k), Ds(k)] for the
adaptive FIR filter properly adjusted, the path frartk) to secondary path. Note that both primary and secondary
d(k) must be equivalent to the path franfk) to y(k). Based paths are assumed stable. We treat the weight vector
on this observation, in Fig. 3, the structure of the path fromV (k) = [wo(k)wi(k) - - wn (k)] as the state vector
2(k) to y(k) is used to model the primary path. The modelingapturing the trivial dynamic$V (£ + 1) = W (k) that we
error is included to account for the imperfect cancellation. Treessume for the FIR filter. Witlo (%) the state variable for the
above-mentioned observation forms the basis for the followirsgcondary pattg” = (WT'(k) ©T(k)) is then the state vector

m(k) 2 e(k) + y(k) = d(k) + Vi (k). @)

IV. PROBLEM FORMULATION
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pursuing anH- filtering solution may yield undesirable perfor-
mance; b) regardless of the choice gy, the recursiveH- fil-
tering solution does not simplify to the same extent asHhge
solution considered below. This can be of practical importance
when the real-time computational power is limited. We there-
Replica of the FIR Filter Replica of the Secondary Path fore do not pursue th&, solution in this paper.

Fig. 4. Block diagram for the approximate model of the primary path. B H.. Optimal Estimation

) To avoid difficulties associated with thE, estimation, we
for the overall system. The state space representation of @ sider a minmax formulation of the estimation problem in
system is then this section. This was first done in an adaptive filtering con-
Wk 4 1) TN+ DX (N+1) 0 Wk A textin [22]_. Here, the main objective is to limit the Worst-cgs_e_
= N = FE,  energy gain from the measurement disturbance and the initial
Ok +1) By(k)h(k) A (k) 1L O(F) condition uncertainty to the error in a causal (or strictly causal)
_ oy _ANT estimate of(%). More specifically, we are interested in the fol-
whereh(k) = [e(k)(k = 1) --- a(k — V)" captures the lowing two cases. Lek(k|k) = F¢(m(0), ---, m(k)) denote
an estimate ok(k) given observationsn(¢) for timei = 0
up to and including timé = k, and lets(k) 2 S5(klk—1) =

effect of the reference input(-). For this system, thderived
measured output defined in (4) is

. W (k) Fp(m(0), - -+, m(k—1)) denote an estimate efk) givenm(:)
m(k) = [Ds(k)h* (k) Cs(k)] { ok) } + Vi (k) for ime ¢ = 0 up to and including = & — 1. Note thats(k|k)
A ands(k) are known as filtering and prediction estimates(@f),

respectively. Two estimation errors can now be defined: the fil-

We also define a linear combination of the states as the desiFgExed error

quantity to be estimated es = 8(klk) — s(k) 9)
W(k)T . i
o) = [L1 e Lol { @((k))} Ap= @ and the predicted error
ep 1 = 8(k) — s(k). (20)

For simplicity, the single-channel problem is considered here, final ti he obiective of the filteri bl
ie., m(k) € RIXL s(k) € RIXL, ok) € RNx1 and Given a final time)/, the objective of the filtering problem can

W(k) € ROHDXL Extension to the multichannel case i€ formalized as finding(k|k) such that fodlo > 0
straightforward and is discussed in [15]. There are several alter-

M
natives for selectind.; and, thus, the variable to be estimated Ze} wCf. k
s(k). The end goal of the estimation-based approach, howeversup k=0

< 2
is to set the weight vector in the adaptive FIR filter such tha¥,., Zo . . A M =7
the output of the secondary pati(f) in Fig. 3] best matches (o — Eo)*ly (E0 — Zo) + ZV,*n(k)Vm(/f)

d(k). Therefore, we picks(k) = d(k), i.e., L, = Hy. Any k=0 (11)

estimation algorithm can now be used to generate an estimate

. . ; e or a given scalaty > 0. Similarly, the objective of the predic-
of the de.swed quantitg(k). Two main estimation approachesﬁon problem is to finds(k) .t
are considered next.

M

A. H, Optimal Estimation ZC*,k@p,k

Here, stochastic interpretation of the estimation problem isSU‘I;0 k=0 — < 42

ossible. Assuming th&, (the initial condition for the s my = - B
iF;1 Fig. 4) ande(-)gare ge(ro mean uncorrelated randgrsr:evlzri- (B0 = Z0) 15 (50 — Z0) + szl(k)vm(k)
ables with known covariance matrices F=0 (12)
= _ ‘ I, 0 for_ a given scalary > 0. The_qu.estion _of optimality of the so-
E |:Vrn k)} [E6 VnU)]= [ 0 Qkékj:| (8) Iution can be answered by finding tigimumvalue among all

feasibleys. Note that for thé{,, optimal estimation, there is no

A A sy : statistical assumption regarding the measurement disturbance.
k\k)y=F(m(0), --- k)), which is the causal linear least- . X

s(klk) (m(0), - -, m(k)) Therefore, the modeling error block (see Fig. 3) can be treated

as a component of the measurement disturbance. For this reason,

in Fig. 4, the “modeling error” block is eliminated.

mean-squares estimate €fk), is given by the Kalman filter
recursions [23].

There are two primary difficulties with th&s optimal solu-
tion: a) TheH, solution is optimal only if the stochastic assump-
tions are valid. If the external disturbance is not Gaussian (for
instance when there is a considerable modeling error that shouléror the remainder of this paper, we consider the case where
be treated as a component of the measurement disturbance), ther= H;.. Note that this is the same assumption used in [22].

V. H_,-OPTIMAL SOLUTION
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Referring to Fig. 4, this means thatk) = d(k). To discuss  Note that the condition in (18) is equivalent to
the solution, we draw from [23] the solutions to thesubop-
timal finite-horizon filtering problem of (11) and the prediction
problem of (12). Finally, we find the optimal value gfand
show howy = ,,,; simplifies the solutions.

(I -~ ?PL;Ly) >0, for k=0,---, M  (23)
and hencep, in (22) is well defined P, can also be defined as

Pl =P —~y72L5Ly, for k=0,---, M (24
A. ~-Suboptimal Finite Horizon Filtering Solution K ke T Rk T (24)

Theorem 1 [23]: Consider the state space representation Which proves useful in rewriting the prediction coefficiéty,
the block diagram of Fig. 4, which is described by (5)—(7). A0 (21), as follows. First, note that

level«y H, filter that achieves (11) exists if, and only if, the . . -1 . -1
matrices Rl (1+ HiPoHy) =B (B + BB HY
) (25)
Ry = {IP 02 } and hence, replacing fd?,jl from (24)
0 —v°I
and Ky =F, (P7t =y 2LiLy + H{H,) " Hi.  (26)
Rop=|2 O |4 |8 P, [Hp Ly] (13) : ,
ek 0 —2, Ly | TFLR Theorems 1 and 2 (see Sections V-A and B) provide the form

. . ) of the filtering and prediction estimators, respectively. The fol-
(here,p andq are used to indicate the correct dimensions) haY&Ning section investigates the optimal value-ofor both of

the_ same inert_iafor. all 0 = k < M,whereRy = 1lo > 0 heqe solutions and outlines the simplifications that follow.
satisfies the Riccati recursion

C. Optimal Value ofy

The optimal value ofy for the filtering solution will be dis-
S . cussed first. The discussion of the optimal prediction solution
Ky o= (FPu[H Lp)R_3. (15) utilizes the results in the filtering case. The optimality discus-
sions that follow are extensions to the results in [22] in which
H, optimality of the LMS algorithm fory = 1 was derived.

s = = 1) Filtering Case:
a1 =FEn + Kros kY —HiZr), Z9=0 16 . L .
ht =k Fok (m( ) b k) 0 (16) a) vopr < 1: We first show that for the filtering solution,
$(klk) = LaZx + (LiPuHE) Rige . (m(k) - HkEk) (17) 7Yept < 1. Using (11), we can always pick(k|k) to be simply
m(k). With this choice

Poy =FP Uy — Kp R kK}j & (14)
where

If this is the case, then the centdl, estimator is given by

[1p

with K 5 = (FyPoH) Ry , andRy, x = I, + Hy P Hj. X
Brot: See 23 o r * $(k|k) — s(k) = Vin(k), forall k @7

B. ~-Suboptimal Finite Horizon Prediction Solution and (11) reduces to
M

Theorem 2 [23]: For the system described by (5)—(7), the .
levely H.. filter that achieves (12) exists if, and only i, all > Vn(k) Vi (k)

: - sup k=0
leading submatrices of Vi € L2, Do - 1 ) =
o [=2, 0 (Z0—E0) T (E0—Z0)+D_ Vi (k) Vin(k)
Rk = 0 I k=0
! (28)
and which can never exceed 1 (i.ex,x < 1). We are therefore

2
RP, = {_7 I 0 } + {Lk} P.[L: Hf] (18) guaranteed &easiblesolution for theH ., estimation problem
7 0 1q Hi in (11) whenv is chosen to be 1. Note that it is possible to di-

have the same inertia for @ll< & < M. Note thatP, is updated rectly demonstrate the feasibility of= 1. Using simple matrix

according to (14). If this is the case, then one possible lgvelManipulation, we can show that fdy, = H; and fory = 1,
H... filter is given by Ry and R, ; have the same inertia for &il

b) vopt = 1: To show thaty,,, is indeed 1, we must con-

Sha1 =G+ K & (m(k) - HkEk) , Zo=0 (19) structan admiss.ible sequence of disturbgncgs and a valid initial
. N condition for which~y could be made arbitrarily close to 1 re-
8(k) = La.Zy, (20) gardless of the filtering solution chosen. The necessary and suf-

K,

(1) ficient conditions for the optimality of,,, = 1 are developed
p

- - —1
=B P (14 oD ) f optimality Ofi: .
in the course of constructing this admissible sequence of distur-

Po=(I- fy*?PkLZLk)_l P, (22) bances. X o
Assume thaEl = (W& ©OF) is the best estimate for the
Proof: See [23]. initial condition of the system in the approximate model of the

2By the inertia of a Hermitian matrix, we mean the number of its positiveprimary Pﬁth _(368 Fi@!-_4)- Moreover, assume m@ﬁs indeed
negative, and zero eigenvalues. the actual initial condition for the secondary path in Fig. 4. The
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actual initial condition for the weight vector of the FIR filter inthen
this approximate model i8/,. Then

" m(k) — HyZ, =0, for k=1,2. (34)
m(0) = [D:(0)p*(0)  C5(0)] [@ﬂ +Vm(0) (29) Note that when (34) holds, and wifh, = H;, (17) reduces to
HiZ0=[D.000) .0 ] 5] (30) S(klE) = LiE = i (35)
wherem(0) is the (derived) measurement at tirae= 0. Now, and hence
Ifwe set e, = 3(K[k) = s(k) = 3(klk) = [m(k) = Vin(B)]
Vi (0) = D, (0)h*(0) (WO - WO) = Ky (0) (WO - WO> = HiE—[m(k) = Vo (k)] = [HkEk - m(k)} +Vn(k)
(31) =V(k) for k=1,2. (36)

thenm(0) — HyZo = 0, and the estimate of the weight vector
will not change. More specifically, (16) and (17) reduce to th€ontinuing this process, we can defikig (k), for0 < & < M,

following simple updates: as seen in (37), shown at the bottom of the page, such that
N - . - Vi (k), Yk is an admissible disturbance. In this case, (11) re-
E1 = Fo=o, and 5(0[0) = LoZo (32)  guces to (38), shown at the bottom of the page. From (37), note
which, givenLy = Hy, generates the estimation error that
~ M
ef.0 =5(0|0) — s(0) = Lo=o — Lo=Zo Z K5 ()Cy(k) = AL AL AMAM = || AvAp]2 (39)

= D, (0)h*(0) (WO . Wo) —V,(0). (33 k=0

Repeating a similar argumentat= 1 and 2, it is easy to see ;nd hence, the ratio in (38) can be made arbitrarily close to one

that if we pick

V(1) = [Do(L)* (1) + Co1)BLOR* 0] (Wo - Wo) w18l = oo (40)
210,(1) (Wo _ Wo) Equation (40) will be referred to as tieendition for optimality
. . of v = 1 for the filtering solution. Equation (40) can now be
Vin(2) = [Ds(2)07(2) + Cs(2)B5(1)A" (1) used to derive necessary and sufficient conditions for optimality
+C5(2)A:(1)B;(0)h™(0)] (Wo — Wo) of v = 1. First, note that @ecessary conditiofor (40) is
éICy(2) (Wo — Wo) J\}iinoo ||AM||2 — O (41)
Ky (0) D,(0) 0 0 0 0 h(0)
Ky (1) C5(1)B,(0) D;(1) 0 0 0 h(1)
Ky (M) D,(M)] Lh(M)
M
> V(b)) Vi (k)
sup k=0
=0 R R M
(Zo — Z0)* 115 (E0 — Eo) + > _ Vi (k)* Vi (k)
k=0
M
(Wo — Wo)* Z’C{;(k)lcv(k)] (Wo — Wo)
__sup k=0
= M (38)
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or equivalently Note thatLy, = [Ds(k)h*(k) C.(k)], and therefore, (49) can be
M rewritten as
. * h(k)D:(k
A}linookzzoh (R(k) = oo 42 2 pwr k) Os(k)]Pk[ (C)*(Z)( )} > 0. (50)

The h(k) that satisfies the condition in (42) is referred toeas Replacing forP, from (38) and carrying out the matrix multi-
citing [22]. Several sufficient conditions can now be developegjications, (50) yields

Since
k—1 *
|AMAM|2 2 Tmin(An) [[Am]l2 (43) S h(k)D3 (k) + Zh(k —1-)B;(HYLCr(k)
_ L Jj=0
onesufficient conditioris that e (k)
k—1
min(AM) > €6, YM, and ¢>0. 44 N N ok N v

Tun(Ba0) > ¢ ‘ @ | rDw e 1 B |
For LTI systems, the sufficient condition (44) is equivalent to 7=0 ke
the system having no zeros on the unit circle. Another sufficient Ve (k)
condition is thath(k)s bepersistently excitingi.e., (51)

Introducing

>0 (45) -

1 M
A}im Omin lM Zh(k)h*(k)
k=0 (k) = Db (k) + > Co(k)W, Bu()R* (k — 1 — 5) (52)
which holds for most reasonable systems. j=0

2) Prediction Case:The optimal value fory cannot be less , .
. L . . as the filtered version of the reference vediok), we can ex-
than one in the prediction case. In the previous section, WE s (51) as
showed that despite using all available measurements up to gndS

including timek, the sequence of the admissible disturbances - % h (k)
Viu(k) = K (K)(Wo — Wo) for k=0, -+, M [whereK(k) 7 (A7) CllWLIID | gy | >0 (59)

is given by (37)] prevented the filtering solution from achievin . . . . L
+ < 1. The prediction solution that uses only the measureme%tglecung the initial value of the Riccati matrix, without loss of
up to timek (not includingk itself) cannot improve over the fil- generality, as

tering solution, and therefore, the energy gaiis at least one. pl 0
Next, we show that if the initial conditioR, is chosen appro- o= 0 af (54)
priately (i.e., if it is small enough), them,,, = 1 can be guar-
anteed. Referring to the Lyapunov recursion of (61), the Ricc&fid (53) reduces to
matrix at timek can be written as 72 _ Mh/*(k)h/(k) _ aCS(k)\I/ﬁ\I/flkC:(k) > 0. (55)
k—1 k—1 ¥ . L . . :
P = (H Fj> jo8 (H Fj> It is now clear that a prediction solution fer= 1 exists if
j= j= 1 — aCy (k)UK UrkC* (k)
AT (56)
I 0 h* (k)W (k)
Iy = B.()Hr*(5) A.() | (46) ) ) - _ )
\J J \J Equation (56) is therefore the condition for optimality,gf, =
Defining 1 for the prediction solution.
W = A (j)As(j —1)--- As(0) (47) D. Simplified Solution Due tg = 1

1) Filtering Case: Now, we show that withH; = L, and
~ = 1, the Riccati equation (14) is considerably simplified.
1 0 Applying the matrix inversion lemma t&. , it can be shown

k—1
— p that [15
Pe= | v B b -1- ) 0 il
=0

(46) can be written as

L[5, o H, -
I 0 * Re,k - |:0 I - _Hk Pk [Hk Hk] (57)

k—1
o | SO BL (e (k—1— ) wh | - (48) Therefore
i=0 Ky Re kK5,

From Theorem 2 in Section V-B, the condition for the existence y e et [ | Hi .
of a prediction solution i§/ — v2P,L;Li) > 0, or equiva- = (Fube[Hy HP) R, H, PpEy ) =0
lently

for v = 1 and for all%. Thus, the Riccati recursion (14) reduces
(v? — LiP.L}) > 0. (49) totheLyapunovecursionP,+1 = Fy P Iy with Py = I1p > 0.
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Partitioning the Riccati matrix?, in block matrices con-
formable with the block matrix structure &%, (14) yields the
following simple update:

(P11 =Pk, Pro=1Ilo
Pi2 i1 = Pro i As(k) + Pry, wh(k) B (K),
Po o=1I12 ¢
Poo k1 = Bo(k)h(k)* Py, 1h(k) B (k)
+A, (k)P h(Ek)B; (k)
+B.(E)R*(k)Pro, AL (k)
L +A, (k) Pao, kAL (),

(58)

Py g =1l 0.
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of the EBAF algorithm is to makg(k) match the optimal esti-
mate ofd(%) (see Fig. 3). For the adaptive filtering problem in
Fig. 1, however, we only have direct access to the weight vector
of the adaptive FIR filter. Because of this practical constraint,
the EBAF algorithm adapts the weight vector in the adaptive
FIR filter according to the estimate of the optimal weight vector
given by (59) or (62) (for the filtering, or prediction solutions,
respectively). Note thai = (W2 (k) 6T (k)). The error anal-
ysis for this adaptive algorithm is discussed in Section VIII.
Now, we can highlight main features of this algorithm as fol-
lows:

We can now summarize the filtering solution in the following 1) The estimation-based adaptive filtering (EBAF) algo-

theorem.

Theorem 3: Consider the system described by (5)—(7), with
L, = H;. If the optimality condition (40) is satisfied, the

H_-optimal filtering solution achieves,,,; = 1, and the cen-
tral H..-optimal filter is given by

[1]>

w1 = FuZy + K i (m(/f) - Hkék) , Z0=0

S(klI) = LiEx + (LPLH}) Ry (m(k) =

with Ky = (Fx Py H};) Ry  andRye x = I, + Hy Do H,
where P, satisfies the Lyapunov recursion

P = BWPF;, Py=1I,. (61)

Proof: The proof rfollows from the discussions above.

2) Prediction Case:Referring to (26), it is clear that for

v = 1 and forL; = Hj, the coefficient, ;. will reduce to

P H}. Therefore, we can summarize the prediction solution

as follows.

Theorem 4: Consider the system described by (5)—(7), with
L; = Hy. If the optimality conditions (40) and (56) are satis-

fied, and withF, as defined in (54), thél .. -optimal prediction
solution achieves,,; = 1, and the central filter is given by

ék+1 IFkék + Ky 1 (m(k) - Hkék> s éo =0 (62)
3(k) = L5k (63)

with K, 1 = I'. P H;};, whereP;, satisfies the Lyapunov recur-

sion (61).
Proof: The proof follows from the discussions above.

VI. | MPORTANT REMARKS

We start by the statement of the main idea in EBAF algorithm.

At a given timek, use the available information on
a) measurement historys) for 0 < ¢ < k;
b) control historyu(é) for 0 < ¢ < k;
c) reference signal history(¢) for 0 < < k;

d) the model of the secondary path and the estimate of its

initial condition;

rithm yields a solution that only requires one Riccati
recursion. The recursion propagafeswvard in time and
does not require any information about the future of the
system or the reference signal (thus allowing the resulting
adaptive algorithm to be real-time implementable). This
has come at the expense of restricting the controller to an
FIR structure in advance.
With Kf,kRe,kK;k = 0, Pk_|_1 = FkPkF;f is the
simplified Riccati equation, which considerably reduces
the computational complexity involved in propagating the
Riccati matrix. Furthermore, this Riccati update always
generates a hon-negative definitg, as long ad? is se-
lected to be positive definite [see (61)].
3) In general, the solution to aH, filtering problem re-
quires verification of the fact thak, and R, ; are of
the same inertia at each step [see (13)]. In a similar way,
the prediction solution requires that all sub-matrices of
Ry and R! , have the same inertia for alf [see (18)].
This can be a computationally expensive task. Moreover,
it may lend to a breakdown in the solution if the condition
is not met at some time. Our formulation of the problem
eliminates the need for such checks, as well as the poten-
tial breakdown of the solution, by providing a definitive
answer to the feasibility and optimality ef= 1.
4) When[A(k), Bs(k), Cs(k), Ds(k)] = [0, 0, 0, I] for
all % [i.e., the output of the FIR filter directly cancels
d(k) in Fig. 1], then the filtering/prediction results we
have derived reduce to the simple normalized-LMS/LMS
algorithms in [22], as expected.
As mentioned earlier, there is no need to verify the solu-
tions at each time step; therefore, the computational com-
plexity of the estimation-based approachién?) (pri-
marily for calculatingFy, P F;;), wheren = (N + 1) +
N,. Here,(N + 1) is the length of the FIR filter, and/
is the order of the secondary path. The special structure
of Fy, however, reduces the computational complexity to
O(N2 + N, N), i.e., cubic in the order of the secondary
path and linear in the length of the FIR filter [see (58)].
This is often a substantial reduction in the computation
sinceN, < N. Note that the computational complexity
for FXLMS is quadratic inV; and linear inV.

2)

5)

e) the predetermined length of the adaptive FIR filter to pro-

duce the best estimate of the actual output of the primary

pathd(k).
The key premise is that if we can accurately estindfe, then

VII. | MPLEMENTATION SCHEME FOREBAF ALGORITHM

Three sets of variables are used to describe the implementa-

we can generate the inputgk) that cancel it. The objective tion scheme.
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1) Best Available Estimate of a Variabl&eferring to (16) at the output of the secondary path. This in turn
and (19) and noting the fact thaf = (WT (k)01 (k)), leads to the following error signal measured at time
we can definéV (k) as the estimate of the weight vector k:
and© (k) as the secondary path state estimate in the ap-
proximate model of the primary path. e(k) = d(k) — y(k) + Vi (k) (69)

2) ActuaAIVaIue Oj a VanableReferrm_g to Fig. 1, we define which is available to the adaptive algorithm to per-
u(k) = h*(k)W (k) as the actual input to the secondary form the state update at tinie
path,y(k) as the actual output of the secondary path, and b) Propagate the state estimate and the internal copy
d(k) as the actual output of the primary path. Note that of the state of the secondary path as follows:

d(k) andy(k) are not directly measurable and thatateach
iteration, the weight vector in the adaptive FIR filter is set [W(/f + 1)}

to W (k). Ok +1)

3) Adaptive Algorithm’s Internal Copy of a VariablRecall Oropy(k + 1)
copy

that in (4), we used,(%) to construct the derived mea-

surementn(k). Sincey(k) is not directly available, the [Fre + K7 10— Co(B)]] Ky 1Cy(k) [W(/f)}
adaptive algorithm needs to generate an internal copy of — ’ ’ é(k)
this variable. This internal copy [referred to@s,,, (k)] [B,(k)h* (k) 0] Ay (k) o 1
is constructed by applying( k) (the actual control signal) cory
to a model of the secondary path inside the adaptive algo- [ (K¢ 1] ]
rithm. The initial condition for this model i®.,,,(0). In + e(k) (70)
other words, the derived measurement is constructed as 0
follows:
where e(k) is the error sensor measurement
at time £ given by (69), andK;, = FiFy
Ocopy(k +1) = As(B)Ocopy (k) + Bs(R)u(k)  (64) H; (I + HyP.H;)™* (see Theorem 3). Note that
Yeopy(k) = Cs(k)Ocopy(k) + Ds(k)u(k)  (65) for tget predlicti;?-basi(rj] E{BAF algolr[i)trgln, we only
N ) need to replacé s 5 wi p k= DL HJ.
mik) = e(k) + Yeopy (F)- (66) c) Update the Riccati matri®; using the Lyapunov
Given the identified model for the secondary path and its recursion
inputw(k) = h* (k)W (k), the adaptive algorithm’s copy P Pio gq1
of y(k) will be exact if the actual initial condition of the [Pf& w1 o2, k+1:|
secondary path is known. Obviously, one cannot expect to 7 0
have the exact knowledge of the actual initial condition = {Bs(k)h*(k) As(k)}
of the secondary path. In the next section, however, we «
show that when the secondary path is linear and stable, the . { {:11 Pl“} { ! . 0 (71)
contribution of the initial condition to its output decreases Py Prx] | Bs()h™ (k) As(k)
to zero as increases. Therefore, the internal copy 0¥) Py, will be used in (70) to update the state esti-
will converge to the actual value gf %) over time. mate.
Now, we can outline the implementation algorithm as fol- 3) Go to 2.
lows.
1) Startwithi¥’(0) = 0and®(0) = 0 as the initial guess for VIIl. ERRORANALYSIS
the state vector in the approximate model of the primary |, section VI, we pointed out that the proposed implementa-
path. In add|¥on. assume th@t,p, (0) = 0, and/(0) = o scheme can deviate from &h,,-optimal solution for two
[#(0)0 --- 0. The initial value for the Riccati matrix main reasons: 1) the error in the initial condition of the sec-
is Py, which is chosen to be block diagonal. The role ofqary path that can causg,,, to be different fromy(k) and
Fy is similar to the learning rate in LMS-based adaptiv) e additional error in the cancellationdif:) due to the fact
algorithms (see Section V-C.2). _ that we cannot directly set(k) to bes(k|k) [or 5(k)]. All we
2) If 0 < k < M (finite horizon) do the following: can do is to set the weight vector in the adaptive FIR filter to be
a) Form the control signal W(k).

Here, we will discuss both errors in detail.
w(k) = h* (k)W (k) (67) A. Effect of Initial Condition
_As our earlier discussions indicate, the secondary path in
ig. 1 is assumed to be linear. For a linear system, the output at
any given time can be decomposed into two components: the
zero-input componentvhich is associated with the portion of
y(k) = C(k)O(k) + D (k)u(k) (68) the output solely due to the initial condition of the system, and

to be applied to the secondary path. Note that a
plying (k) to the secondary path produces
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the zero-state componenivhich is the portion of the output are internally stable, which implies that the second term on the
solely due to the input to the system. right-hand side of (74) is bounded for @f and in the limit

For a stable system, the zero-input component of the respomdeenM — 0.3
will decay to zero for largé. Therefore, any difference between WhenD; (k) = 0 for all k, an implementation of the filtering
Yeopy (k) @andy(k) (which with a known input to the secondarysolution that utilizes the most recent measuremefit) is fea-
path can only be due to the unknown initial condition) will go taible. In this case, the filtering solution in (16) and (17) can be
zero ask grows. In other words, exact knowledge of the initialvritten as follows:
condition of the secondary path does not affect the performance

L = L (0 — B
of the proposed EBAF algorithm for sufficiently large Sxiv = Zx+ D Hy (1, + Hy P Hy) (m(k) = Hkuk) (75)
B. Effect of Practical Limitation in Setting(k) to 5(k|k) and
(5(k)) Srrt = P (76)

As pointed out earlier, the physical setting of the adaptive
control problem in Fig. 1 only allows for the weight vector in

the adaptive FIR filter to be adjusted ¥ (k). In other words, \here the weight vector update in the adaptive FIR filter follows
the state of the secondary path cannot be set to a desired valye g \yih a derivation identical to the one for prediction solu-

each step. Instead), evolves based on its initial condition andtion, it can be shown that the performance bound in this case is
the control input:(k) that we provide. Assume théx(k) is the

actual state of the secondary path at tim&he actual output lld(k) — y(R)l
of the secondary path is then

3(k|k) = LiZ (77)

~

M
E5l5 o + Y Vi (k) Vin(k)
y(k) = Dy (k)I* ()W (k) + O, (k)O (k) (72) =0

[d(k) — S(k|F)]l

M
ESIG Eo + Y Vi ()Y (k)
k=0

which leads to the following cancellation error: =

A(k)—y (k) = (k)= (D ()R (k)W () + C5 (k)O(R) ) . ™
73 A
. | | (73) 1C,(k) (O (kIR — ©(R))]|

For the prediction solution of Theorem 4, if we add the zero + i . (78)
quantity+C, (k)©(k) to the right-hand side of (73) and taking ZHI-1E Ve (W (e
the norm of both sides, we can write oto S0t kz_o (k)Y (F)
(k) — y(B)|| = ||d(k) — (Ds(B)R* (K)W (k) + C5(k)©(k))  Anargumentsimilar to the prediction case shows that the second

+ Cs(k)@(k)ll term on the right-hand side has a finite gain as well.

= |I(d(k) - Df(k)h ()W (k) — C,(k)O(R)) IX. RELATIONSHIP TO THE NORMALIZED-FXLMS/FXLMS

+ Cs(k)(O(k) — ©(k)||- ALGORITHMS
Therefore In this section, we will first show that as — <o, the gain

A 1 vector in the prediction-based EBAF algorithm converges to the

dCk) — y(R)l| gain vector in the classical FXLMS algorithm. Thus, FXLMS is

an approximation to the steady-state EBAF. The error terms in
the two algorithms are shown to be different [compare (84) and
(2)]. Therefore, it is expected that the prediction-based EBAF
= demonstrlate srL]Jperior tr?nsient pe:formar?ce compared with the
N " FXLMS algorithm. Simulation results in the next section agree
=otlo o + Z Vi (k) Vo (K with this expectation. The fact that the gain vectors asymptot-
=0 ically coincide agrees with the fact that the derivation of the
||Os(k)(@(1\l;) — Ol (74) FXLMS algorithm relies on the assumption that the adaptive
- . filter and the secondary path are interchangeable, which can
Solly S0 + va(k)vm(k) only be true in the steady state. Similar results are shown for
k=0 the connection between the filtering-based EBAF and the nor-

whereZ, = (2, — Z0) andZy is defined in (5). Note that Mmalized FXLMS adaptive algorithms. _

the first term on the right-hand side of (74) is the prediction For the discussion in this section, the secondary path is as-
error energy gain [see (12)]. Therefore, the energy gain of thémed, for simplicity, to be LTI, i.e[As, Bs, C, D;]. Note
cancellation errpr with the pre@chon—bgsgd EBAF. exceeds theGreen and Limebeer [19] show that if the exogenous disturbance is assumed
error energy gain of thél ., optimal prediction solution by the to be a zero mean white noise process with unit intensity and independent of
second term on the right-hand side of (74). It can be showhg initial condition of the systery, then the terminal state estimation error
that when the primary inputs(k) are persistently exciting [seevar'ame satisfies

(45)], the dynamics for the state estimation elegk) — O(k) E(Zk —E0)(Ek — Ex)" < P

M
E515 20 + > Vi (k)W (k)
k=0

[d(k) = 3B
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that for the LTI systemW* in (47) reduces toi*. The Riccati and therefore, the state estimate update in Theorem 4 becomes
matrix P in (48) can then be rewritten as n R
[W(k+1)}_ [ I 0} {W(k)}

I 0 Ok +1) B (k) A, || Ok)
S wma1 g W
~ TEANT 4B (k- )b (k)
1 01" iz
o ki:lAngh*(k “1ogy ar| o (09 - (m(k) = DI (R ()~ C.6(k)) . (83)
=0

Thus, we have the following update for the weight vector
Equation (79) will be used in establishing the proper connec- . .

tions between the filtered/predicted solutions of Section V and Wk + 1) = W(k) + ph’ (k)

the conventional normalized-FXLMS/FXLMS algorithms. . (m(k) — Dsh*(k)W(k) — CS@(k)) . (84)

A. Prediction Solution and Its Connection to the FXLMS  Note thatm(k) = e(k) + y..py (k) [s€€ (66)], and hence, the
Algorithm difference between the limiting update rule of (84) (i.e., the pre-

To study the asymptotic behavior of the state estimate upddfi€tion EBAF algorithm) and the classical FXLMS algorithm
note that for an stable secondary path — 0 ask — oc. ©f (2) will be the error term used by these algorithms. More
Therefore, using (79) ' specifically,e(k) in the FXLMS algorithm is replaced with the

following modifiederror [using (65)]:

I 0 . .
P, — k-1 i . . e(k) + Yeopy (k) — Dsh* (K)W (k) — CsO(F)
Y AB(k—-1-j) 0 = (k) + CyOuopy (k) — C,O(k). (85)
§j=0
I 01" Note that ify(k) is directly measurable, thea(k) + y(k) —
kol D,h* (KW (k) — C,6(k)] will be the modified error.
i " P ask — oo (80 s ) "
Z AB.h*(k—1-3) 0 — oo (80) The condition for optimality ofy = 1 in the prediction case
J=0 [see (56)] can also be simplified for stable LTI secondary path as
which for k — oo. Rewriting the optimality condition for the prediction
solution [see (56)] as
P11(0) P12(0)} wh
Py = [ 1— aC, A AR Cx
P 0 P 0 5475478 K
2(0) P (0) A Y0 (86)
results in
for a stable secondary path} — 0 ask — oo, and hence
I
— <t ask—oo (87)
Be= \N" AiBh(k—1-j) VTSI
/=0 . is the limiting condition for the optimality of = 1 in the pre-

k1 I diction case. This is essentially a filtered version of the well-
- P11(0) N AIB (k1 j) ask — co. (81) known LMS bound [22].

B. Filtering Solution and its Connection to the
SelectingP;;(0) = ul as in (54) and noting the fact thatNormalized-FXLMS

K, 1 = Fy P Hj, (Theorem 4), itis easy to see thatias- oo In the filtered case, the gain vectorh§; , = Fj, P, H; (I +
_ H, P H}). In Section IX-A, we computed the limiting value for
k 1 the quantityl;, P, H;; in (82). In a similar way, it can be shown
Kp,k_ﬁi ZAJBGh*(k_J) thatwithPll(O) =ul,asK — oo
-0 (I + HiPH7) — (L4 ™ ()W (k) (88)

k—1 *
Dh* (k) + Z C,AIBh (k—1— j)) and hence, the coefficient for the state estimate update in the

=0 filtering case becomes

- k
1 7’ )
k e S OIIC] AIB R (k — )k (k)
— M Z AéBSh*(/{J _ J) h/(kﬁ) (82) 1+ /Jh/ ( ! < Jz:

_j=0 aslﬂi — Q. (89)
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Cancellation Error Transient Behavior
! P Micophone #1 Ve Micophone #2 : : : :
Speaker #2 ) )

Speaker #1

Steady-State Behavior

e(k)-Simulation

Fig. 5. Schematic diagram of 1-D air duct.

Thus, the update rule for the weight vector in the filtering EBAF
algorithm would be

(k)
L+ pl (R ()

: (m(k) — Db (kYW (k) — Csé(k)) (90)

Wk+1)=W(k)+u

e(k)-Experiment

which is similar to the normalized-FxLMS algorithm [see (3)] s : b o
in which the error signal is replaced with a modified error signa 08, s : %% e s sm - % 5w
described by (85) Time {sec) Time (sec) Time (sec)
Fig. 6. Validation of simulation results against experimental data for the noise
X. EXPERIMENTAL DATA AND SIMULATION RESULTS cancellation problem with a single-tone primary disturbance at 150 Hz.

This section examines the performance of the propose™ No Feedback Contarination With Feedback Gontamination
EBAF algorithm for the active noise cancellation (ANC) R : —
problem in a one-dimensional (1-D) acoustic duct. The al _ *°
gorithm, however, is applicable for adaptive filter design in“_oz
general, and the selection of the examples in this section are f _'1 R
pedagogical reasons. The application of the EBAF algorithmt ¢ 2 ¢ & 8 1
a multichannel vibration isolation problem [15] and an adaptive
equalization problem [24] are other instances of its successf
application.

Fig. 5 shows the schematic diagram of the 1-D air duct the
is used in our experiments. The control objective is to atten
uate (cancel in the ideal case) the disturbance introduced in 1
the duct bySpeaker #Xprimary noise source) at the position os
of Microphone #2(error sensor) by the control signal gener-£ o
ated bySpeaker #4secondary source). Microphone #1 can be -os e BRI
used to provide the reference signal for the adaptation algorithr ~ -t;———"—~—+——,
Clearly, Microphone #1 measurements are affected by both pr. Time (se0) Time {sec)
mary and secondary sources, and hence, if these measuremsgts. performance comparison in the presence of feedback contamination
are used as the reference signal, the problem, which is comien the primary source is a single tone at 150 Hz.
monly known as feedback contamination, has to be addressed.

We have used a dSPACE DS1102 DSP controller boarsi1000 Hz for both experiment and simulation. The primary
(which includes TI's C31 DSP processor with 60 MHz cloclsource is a sinusoidal tone at 150 Hz, which is also available
rate and 128k of 32-bit RAM) and its Matlab 5 interface foto the adaptation algorithm as the reference signal. We have se-
real-time implementation of the algorithm. A state-space modettedP;; o = 0.0514x4, Pi2,0 = 0, andFPaz ¢ = 0.00519x 10
(of order 10) is identified for this 1-D acoustic system. Not& initialize the Riccati matrix in (14). Our experiment starts
that of four identified transfer functions, only the transfewith adaptive controller off, and about 3 s later, the controller
function from Speaker #2 to Microphone #2 (i.e., the secondasyturned on. The transient response of the adaptive FIR filter
path) is required by the estimation-based adaptive algorithlasts for approximatel9.05 s. There is a reduction of 65 times
In this section, we will first provide experimental data thaih the magnitude of the error. The results from a corresponding
validate a corresponding simulation result. We then preseviaitlab simulation (with the same filter length and similar open
more sophisticated simulations to study various aspects of thep error at 150 Hz) are also shown in Fig. 6. The transient be-
EBAF algorithm. havior and the steady-state response in the simulation agree with

Fig. 6 shows the experimental data in a typical noise cancelthe experimental data, thus assuring the validity of the setup for
tion scenario, along with corresponding plots from a simulatidhe simulations presented in this section.
that is designed to mimic that experiment. Here, we show theln Fig. 7, we study the effect of feedback contamination (i.e.,
reading of Microphone#2 (i.e., the cancellation error) when dhe contamination of the reference signal with the output of the
adaptive FIR filter of length 4 is used for noise cancellation. Wedaptive FIR filter through some feedback path) when the pri-
have used a bandlimited white noise (noise powe?.008) as mary source is a single tone. In [2], the subject of feedback con-
measurement noise in our simulations. The sampling frequeriaynination is discussed in detail, where relevant references to

e(k)

-0.5

-1
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Cancellation Error ~ Band-Limited-White-Noise Primary Source Transfer Function from Speaker#1 to Microphone#2
: T T T T T T T 10 — T —
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Fig. 8. Performance comparison in the presence of feedback contaminaffi@ 9. Closed-loop transfer function based on the steady-state performance
when the primary source is a bandlimited white noise. of the EBAF and (N)FXLMS algorlthms in the noise cancellation problem of

Fig. 8.

the conventional solutions to this problem are also listed. Hei_elg 8, the length of the adaptive FIR filter is 32. For the EBAF
however, we do not intend to solve this problem. Instead, V&?g(.)ri{hm Piio = 0.0555y_32 Prro = 0 005’_,10 10, and
’ s - . X=352 s - . X 10>

will show that the proposed EBAF algorithm maintains superi > 0 = 0. For FXLMS and NFXLMS algorithms, the adapta-
pNegoliT/laSncel [cqtr;:paredhwnh Fxrll_ MS agld normallzed-ngM on rates are.0005 ando0.1, respectively. The FXLMS algorithm
(NFx ) algorithms] when such a problem occurs and no a ecomes unstable for faster adaptation rates, hence forcing slow

g'gZ?zal Ilnfo_rtrrr:atlon |§gurn|shed. It IS w:)frth mentl?(n_mg Lha:]ttr;] onvergence (i.e., lower control bandwidth). For NFXLMS, the
algorithm provides a convenient framework In WhiCh tg., ., 5 iz ation of the adaptation rate by the norm of the reference

ﬁjrtci)grl]eirsn doi:;iigzﬁﬁﬁ ?fg]taé?énit?gng?]sbg g/%?ész:gb(;rnhsi \Zéétor (a vector of length 32 in this case) prevents unstable be-
feedback contamination for EBAF, FXLMS, and NFXLMS al vior. The response of the algorithm under feedback contamina-

ith For the first 5 s. the inbut to Speaker#? i dti nis, however, still slower than EBAF algorithm. Furthermore,
gonthms. For the Tirst 5 S, In€ INput 1o Speakers e 1S groundgg, qijiations in the cancellation error due to the switching be-
[i.e.,u(k) = 0for k < 5]. Switching the controller on results

in large fransient behavior in the case of FxLMS and NFxLM weenmodes of operationare significantly higherwhencompared

. . . with the oscillations in the EBAF case.
whereas for the EBAF algorithm, the transient behavior doeSFig. 9 shows a closed-loop performance comparison for

not display th_e undesmble oyershqot. W_e have tested many Wfaeband noise cancellation. The EBAF algorithm outperforms
ferent operation scenarios (with various filter lengths, and ad (LMS and normalized-FXLMS adaptive algorithms, even
tation rates), and this observation holds true in all cases tes ugh the same level of information is made avaiIabI’e to all
Forthg next 15 s, the primary source is directly avaiIabI(_a to.%ﬁree adaptation schemes. For the result presented here, the
adapiive algorithms, and the steady-state performance_ls V'rl%ﬁgth of the FIR filter (for all three approaches) is 32, and the
ally the same. F_ronk - 2(.) on, we use the output of M|cr_o- andlimited white noise that is used as the primary source is
phone#1 (which is contaminated by the output of the FIR filte ailable as the reference signal. Since the frequency response

as thi. refe'r\ler][cet?g:r?al.tr? nce aga]lnlé FI_IgMS7 ShgvﬁFaEﬁ'scatlh? ‘calculated based on the steady-state data, the adaptation
servation. Note that in the case of X an X ' te of the algorithms is not relevant. Measurement noise for

ada'ptatlon rate mugt be kept smal!enough to avoid u.nstable ff three simulations is a bandlimited white noise with power
havior when the switch to contaminated reference signal tak(?a
place. The superior robustness of the EBAF algorithm allows
for a faster convergence in the face of this feedback contami-
nation. For the results in Fig. 7, the length of the adaptive FIR
filter (for all three algorithms) is 24. For the EBAF algorithm, We have approached the adaptive control problem from an
Pi1,0 = 0.005124x24, P22,0 = 0.000510x10, andP12,0 = 0.  estimation point of view. More specifically, we have shown that
For FXLMS and NFxXLMS algorithms, the adaptation rates afer a common formulation of the adaptive control problem, an
0.005 and0.025, respectively. equivalent estimation interpretation exists. We have then con-
Fig. 8 considers the effect of feedback contamination in awidé&ucted a standard/.,, estimation problem that corresponds
band noise cancellation process. As in Fig. 7, the controller is &df the original adaptive control problem and have justified our
forthefirst5s. Fob < ¢t < 40s, the controller has full access tochoice of estimation criterion. We have also derivedihg-op-
the reference signal, whereag at 40 s, the reference signal istimal filtering/prediction solutions and proved that the optimal
switched to the measurements of the Microphone#1 (hence, cenergy gain is unity. We have then simplified the filtering/pre-
taminated with the feedback from Speaker#2). For the resultgdittion solutions and explained how these solutions form the

08, as before.

XIl. CONCLUSION
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foundation for an estimation-based adaptive filtering (EBAF)[18] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space solu-

algorithm. Meanwhile, we have justified why the real-time im-
plementation of EBAF algorithm is feasible. [19
We have outlined an implementation scheme for the new al-
gorithm and have derived a corresponding performance boun&!
We have shown that the classical FXLMS (normalized-FXLMS),1,

adaptive algorithms are approximations to the limiting behavior
of the proposed EBAF algorithm. We have shown that the EBAH22]
algorithm displays improved performance when compared withy3)
commonly used FXLMS and normalized-FxLMS algorithms.
We have also verified our simulations by conducting a noisé?*!
cancellation experiment and showing that the experimental data

tions to standard{, andH . control problems,IEEE Trans. Automat.
Contr, vol. 34, pp. 831-847, Aug. 1989.
] M. Green and D. Limebeekjnear Robust Control Englewood Cliffs,
NJ: Prentice-Hall, 1995.
P. Khargonekar and K. Nagpal, “Filtering and smoothing if&n set-
ting,” IEEE Trans. Automat. Confwol. 36, pp. 151-166, 1991.
Y. Shaked and Y. Theodor,H ..-optimal estimation: A tutorial,” in
Proc. IEEE Conf. Decision Confwol. 2, Dec. 1992.
B. Hassibi, A. Sayed, and T. KailathH'.. optimality of the LMS algo-
rithm,” IEEE Trans. Signal Processingol. 44, pp. 267-280, Feb. 1996.
B. Hassibi, A. Sayed, and T. Kailath, “Indefinite quadratic estimation
and control,” inSIAM Studies Appl. Math1998.
A. Tehrani, B. Sayyarrodsari, B. Hassibi, J. How, and J. Cioffi, “Estima-
tion-based synthesis df ..-optimal adaptive equalizers over wireless
channels,” inProc. Globecomvol. 1a, 1999, pp. 457—-461.

reasonably match a corresponding simulation.
The systematic nature of the proposed EBAF algorithm can
serve as thefirst step toward methodical optimization of now pre-

determined parameters of the FIR filter (such as filter length

adaptation rate). Furthermore, the analysis of the various aspe
of the algorithm directly benefits from the advances in robust e
timation theory. Finally, more efficientimplementation scheme
can further reduce computational complexity of the algorithm.

(1]
(2]
(3]

(4]

(5]

(6]

(71
(8]
(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

Bijan Sayyarrodsari (M'00) received the B.Sc.

' degree from Sharif University of Technology,
Tehran, Iran, in 1990. He received the M.Sc. and
Ph.D. degrees from Stanford University, Stanford,
CA, in 1996 and 1999, respectively.

He is now a Research Scientist with Pavilion Tech-
nologies, Inc., Austin, TX. His research interests in-
clude robust adaptive control and estimation and hy-

1 brid system control and modeling with the emphasis

g on their application in process industry and financial
systems.

Dr. Sayyarrodsari is a Member of SIAM.

REFERENCES

B. Widrow and S. StearnfAdaptive Signal Processing Englewood
Cliffs, NJ: Prentice-Hall, 1985.

S. Kuo and D. MorganAdaptive Noise Control SystemsNew York:
Wiley, 1996.

T. Shan and T. Kailath, “Adaptive algorithms with an automatic gai
control feature,lEEE Trans. Circuits Systvol. 35, pp. 122-127, Jan.
1988.

R. Gitlin, H. Meadors, and S. Weinstein, “The tap-leakage algorithm: A

Jonathan P. Howreceived the B.A.Sc. degree in en-
gineering science (aerospace option) from the Uni-
versity of Toronto, Toronto, ON, Canada, in 1987 and
the S.M. and Ph.D. degrees in aeronautics and as-
tronautics from the Massachusetts Institute of Tech-

algorithm for the stable operation of a digitally implemented, fractione
adaptive space equalizeBell Syst. Tech. Jvol. 61, pp. 1817-1839,
Oct. 1982.

R. Harris, D. Chabries, and F. Bishop, “A variable step adaptive filte
algorithm,” IEEE Trans. Acoust., Speech, Signal Processing.
ASSP-34, pp. 309-316, Apr. 1986.

nology (MIT), Cambridge, in 1990 and 1993, respec-
tively.

He is currently an Associate Professor with the De-
partment of Aeronautics and Astronautics, MIT. He
studied for two years at MIT as a Postdoctoral Asso-
ciate in charge of the design and analysis of robust

D. Morgan, “An analysis of multiple correlation cancellation loops withcontrollers for the Middeck Active Control Experiment (MACE), which flew
a filter in the auxiliary path,IEEE Trans. Acoust., Speech, Signal Pro-on-board the Space Shuttle Endeavour in March 1995. Prior to joining MIT in

cessingvol. ASSP-28, pp. 454-467, Aug. 1980.
K. Astrom and B. WittenmarkAdaptive Contral
dison-Wesley, 1989.

Reading, MA: Ad-

2000, he worked for five years as an Assistant Professor with the Department
of Aeronautics and Astronautics, Stanford University, Stanford, CA. His cur-
rent research focuses on various aspects of spacecraft navigation and control,

B. Widrow, “Adaptive filters I: Fundamentals,” Electron. Labs., Stanfordncluding GPS sensing for formation-flying vehicles, theoretical analysis and

Univ., Stanford, CA, 1966.

synthesis of robust, hybrid, and adaptive controllers, and modeling and experi-

J. Glover, “Adaptive noise cancellation applied to sinusoidal interfefmental control of vibrations in flexible systems.

ences,1IEEE Trans. Acoust., Speech, Signal Processingj ASSP-25,
pp. 484-491, Dec. 1977.

B. W. M. Dentino and J. McCool, “Adaptive filtering in frequency do-
main,” Proc. IEEE vol. 66, pp. 1658-1659, Dec. 1978.

S. Elliott, I. Stothers, and P. Nelson, “A multiple error LMS algorithm
and its application to the active control of sound and vibration,
IEEE Trans. Acoust., Speech, Signal Processirad. ASSP-35, pp.
1423-1434, Oct. 1987.

N. Bershad and O. Macchi, “Adaptive recovery of a chirped sinusoid i
noise— Part 2: Performance of the LMS algorithisEE Trans. Signal
Processingvol. 39, pp. 595-602, Mar. 1991.

P. Feintuch, N. Bershad, and A. Lo, “A frequency domain model fc
filtered LMS algorithm-stability analysis, design, and elemination of th
training mode,1EEE Trans. Signal Processingol. 41, pp. 1518-1531,
Apr. 1993.

E. Bjarnason, “Analysis of the filtered-X LMS algorithmEZEE Trans.
Speech Audio Processingpl. 3, pp. 504-514, Nov. 1995.

Dr. How is a Senior Member of AIAA and is active in the IEEE and ION.

Babak Hassibiwas born in Tehran, Iran, in 1967.
He received the B.S. degree from the University of
Tehran in 1989 and the M.S. and Ph.D. degrees from
Stanford University, Stanford, CA, in 1993 and 1996,
respectively, all in electrical engineering.

From October 1996 to October 1998, he was
a Research Associate with the Information Sys-
tems Laboratory, Stanford University, and since
November 1998, he has been Member of Technical
Staff at Bell Laboratories, Murray Hill, NJ. Starting
January 2001, he will be an Assistant Professor of

electrical engineering at the California Institute of Technology, Pasadena. He
has also held short-term appointments at Ricoh California Research Center,
the Indian Institute of Science, and Linkdping University, Linkdping, Sweden.

B. Sayyar-Rodsari, “Estimation-based adaptive filtering and controlHis research interests include wireless communications, robust estimation and

Ph.D. dissertation, Stanford Univ., Stanford, CA, 1999.
K. Narendra and A. Annaswan§table Adaptive SystemsEnglewood
Cliffs, NJ: Prentice-Hall, 1989.

control, adaptive signal processing and linear algebra. He is the coauthor of
the bookslindefinite Quadratic Estimation and Control: A Unified Approach
to H? and H= Theories(New York: SIAM, 1999) andLinear Estimation

G. Zames, “Feedback optimal sensitivity: Model preference transform@znglewood Cliffs, NJ: Prentice-Hall, 2000). He was also the recipient of the

tion, multiplicative seminorms and approximate inversé&SEE Trans.
Automat. Contr.vol. AC-26, pp. 301-320, 1981.

1999 O. Hugo Schuck best paper award of the American Automatic Control
Council.



178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 1, JANUARY 2001

Alain Carrier received the Ph.D. degree in aeronautics and astronautics from
Stanford University, Stanford, CA, in 1990.

Since then, he has been working for the Lockheed Martin Advanced Tech-
nology Center, Palo Alto, CA, leading applied research and optical-precision
instrumentation design, modeling, and control. He lead the development of sev-
eral actively controlled electromechanical systems from concept to hardware
demonstration, including actively controlled segmented optics, secondary and
fast steering mirrors for astronomical telescopes, zero-G slew suspensions for
space structures, active and passive vibration isolators, smart actuators, and a
latch mechanism actuated by Shape Memory Alloy springs for which he owns
a patent. He is the author of the Principal Gain Tracking (PGT), which is a
novel testing and system identification technique for high-modal-density lightly
damped structures. He currently leads the development of the pointing control
system for HIRDLS (an earth observing radiometer) and the development and
experimental demonstration of adaptive control techniques for vibration iso-
lation. His research interests are in isolation, control, and passive damping of
broadband and periodic mechanical vibrations for optical instruments; subarc-
second optical pointing and beam control for earth observing, laser communica-
tion, and astronomical instruments; actuators and sensors for structural control;
dynamics modeling of space structures and instruments; attitude control, sta-
tionkeeping, slews and orbital maneuvers of spacecrafts, and “sciencecrafts.”



