Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 25, 1985 | Published
Journal Article Open

Distinct forebrain and cerebellar isozymes of type II Ca^(2+)/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction


Forebrain and cerebellar Type II Ca2+/calmodulin-dependent protein kinases have different subunit compositions. The forebrain holoenzyme, characterized in our laboratory, is a 650-kDa holoenzyme composed of 50-kDa alpha-subunits and 60-kDa beta-subunits assembled in approximately a 3:1 ratio (Bennett, M. K., Erondu, N. E., and Kennedy, M. B. (1983) J. Biol. Chem. 258, 12735-12744). The cerebellar isozyme is a 500-kDa holoenzyme composed of alpha-subunits and beta-subunits assembled in almost the converse ratio, approximately four beta-subunits for each alpha-subunit. When compared by tryptic peptide mapping and by immunochemical techniques, the beta-subunits from the two brain regions are indistinguishable and the alpha-subunits appear closely related. The specific activities, substrate specificities, and catalytic constants of the cerebellar and forebrain isozymes are similar, suggesting that the alpha- and beta-subunits contain similar catalytic sites. However, two differences in the properties of the isozymes may result in functional differences between them in vivo. First, the apparent affinity of the cerebellar kinase for Ca2+/calmodulin is 2-fold higher than that of the forebrain kinase. Second, the two isozymes appear to associate differently with subcellular structures. Approximately 85% of the cerebellar kinase and 50% of the forebrain kinase remain in the particulate fraction after homogenization under standard conditions. However, they are present in different amounts in postsynaptic density fractions. Postsynaptic densities prepared from forebrain contain the forebrain isozyme. Immunochemical measurements show that it comprises approximately 16% of their total protein. In contrast, postsynaptic densities prepared from cerebellum contain the cerebellar isozyme, but it comprises only approximately 1-2% of their total protein. Thus, the alpha-subunit may play a role in anchoring Type II Ca2+/calmodulin-dependent protein kinase to postsynaptic densities.

Additional Information

c1985 by The American Society of Biological Chemists, Inc. (Received for publication, October 1, 1984). This investigation was supported in part by National Institutes of Health Grants NS 17660, 1T32 GM07616 and by the Pugh Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. We thank James Soha for the gift of MAP2, Ngozi Erondu and Mark Bennett for helpful discussion, and C. Oto and L. Rodriquez for help in preparing the tnanuscript.

Attached Files

Published - 9039.full.pdf


Files (2.4 MB)
Name Size Download all
2.4 MB Preview Download

Additional details

August 19, 2023
August 19, 2023