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Shear bands and cracking of metallic glass plates in bending
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The thickness dependence of yielding and fracture of metallic glass plates subjected to bending is
considered in terms of the shear band processes responsible for these properties. We argue that the
shear band spacing~and length! scales with the thickness of the plate because of strain relaxation in
the vicinity of the shear band at the surface. This is consistent with recent measurements of shear
band spacing versus sample size. We also argue that the shear displacements in the shear band scale
with the shear band length and plate thickness, thus causing cracks to be initiated in thicker plates
at smaller bending strains. This leads to fracture bending strains that decrease markedly with
increasing plate thickness, consistent with recent experiments. These results suggest that amorphous
metals in the form of foams might have superior ductility and toughness. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1582555#
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INTRODUCTION

It is commonly observed that thin ribbons or wires
amorphous metals can be bent plastically without break
while thick plates of the same materials fracture almost
mediately on bending. Many reports can be found in
literature of thin wires or foils of amorphous metals havi
good ductility in bending.1–8 Katuyaet al.9 and Inoueet al.10

found that significant bend ductility could be achieved on
if the sample dimension was below a critical value, sugge
ing a size effect for bend ductility.

The observation that thin wires of metallic glasses c
be bent plastically while thick plates, without surface crac
cannot, is not expected for elastic, perfectly plastic mater
subjected to bending, as this mode of deformation, un
tension, is inherently stable. Thus, metallic glasses, w
compressive deformation properties showing elastic, p
fectly plastic behavior, might be expected to deform stably
bending, regardless of the plate thickness. Yet thick plate
metallic glasses invariably fracture in bending while thin r
bons deform extensively. We wish to understand this sam
size effect, as it could be of importance in the developm
of ductile metallic glass alloys.

In the present article, we attempt to rationalize the
observations by considering the deformation of thin plates
metallic glasses subjected to pure bending. We focus
attention on the plastic zones that develop at the surface
plates subjected to bending and on the shear bands in t
plastic zones. We argue that the effect of plate thickness
the deformation and fracture properties of metallic glasse
bending can be understood in terms of the shear bands
develop during plastic flow and the transformation of tho

a!Electronic mail: nix@stanford.edu
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shear bands into cracks. This analysis attempts to explain
observation that the shear band spacing scales with the th
ness of the plate being bent. We do so by noting that
operation of a single shear band at the surface leads to
loading in the vicinity of that shear band, causing other sh
bands to be excluded from that vicinity and leading to
shear band spacing that increases with increasing plate th
ness. The shear offsets associated with each shear band
also scale with the length of the shear band, thus increa
with plate thickness. Therefore, because the shear band
more widely spaced in thicker plates, and the shear offs
are larger, crack initiation in the shear bands is expecte
occur more readily in thicker plates. The cracks, so initiat
can also grow more quickly in thicker plates. When th
reach a critical length they propagate in an unstable man
and cause fracture to occur. Thus the bend ductility is p
dicted to decrease with increasing plate thickness becaus
shear band spacings and shear offsets are larger in th
plates, leading to crack formation and propagation and fr
ture.

EXPERIMENTAL OBSERVATIONS

We have recently studied the effect of sample size
both the shear band spacing and the bend ductility of am
phous plates, ribbons and wires. Figure 1~a!, is a scanning
electron microscopy~SEM! micrograph of shear bands in
0.5 mm thick plate, machined from a cast sample of Vitre
106, bent over a mandrel with a radius of 1 mm. The sh
displacements associated with the shear bands are easily
ible and secondary shear bands are also observed. The
offsets associated with shear bands are not cracks. Fi
1~b! shows another, slightly thicker, plate of Vitreloy 10
bent over a mandrel with a radius of 1 mm. Here, one of
shear bands appears to be developing as a crack.
© 2003 American Institute of Physics
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We have also shown that the plastic strain to fracture
metallic glass wires and foils increases with decreas
sample dimension. By bending wires or strips of differe
thicknesses around mandrels of different radii and noting
surface strain at which failure occurs, we found that
strain to fracture increases markedly as the wire diam
drops below about 1 mm. Figure 2 shows that the fract
strain varies approximately inversely with the square of
sample dimension.

We have also noted that the shear band spacing on
surface of the bent wires and plates scales linearly with
sample dimension, as shown in Fig. 3. There, the shear b
spacing is observed to be about one tenth of the sam
thickness over a wide range of sample sizes. This, too, i
important sample size effect which, we believe, leads to

FIG. 1. ~a! SEM micrograph showing shear bands in a 0.5 mm thick m
spun ribbon of Vitreloy 106, bent over a mandrel with a radius of 1 mm. T
shear displacements associated with the shear bands are easily visib
secondary shear bands are also observed. The shear bands on the
side of the sample extend farther into the sample than do those on
compression side. Conneret al.11 ~b! SEM micrograph showing shear band
in a 0.58 mm thick melt-spun ribbon of Vitreloy 106, bent over a mand
with a radius of 1 mm. Some of the shear bands on the tension side o
sample appear to have developed as cracks. Conneret al.11
Downloaded 12 Jan 2006 to 131.215.240.9. Redistribution subject to AIP
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strong effect of sample size on bend ductility. All of the
experimental findings will be described in more detail in
forthcoming paper.11

ELASTIC PERFECTLY PLASTIC BENDING ANALYSIS

Consider a metallic glass plate of thickness 2h, deformed
in plane strain bending to a curvaturek, as shown in Fig. 4.
For convenience we will call the curvature shown as po
tive; the coordinate system will be fixed to the middle of t
plate, as shown. With this notation, the strain in the pl
may be expressed as

«xx5k~y2y0!, ~1!

-
e
and
sion
he

l
he

FIG. 2. Bending fracture strain vs sample dimension for various meta
glasses. The fracture strain increases dramatically with decreasing sa
size below a thickness of about 1 mm and varies approximately inver
with the square of the sample dimension. Conneret al.11

FIG. 3. Shear band spacing as a function of sample size~plate thickness or
wire diameter! at the point of fracture for various metallic glasses and V
reloy 106. The shear band spacing is shown to scale linearly with the sa
size. Conneret al.11
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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where y0 is the position of the neutral plane for bendin
Before yielding starts, the neutral plane resides in the mid
of the plate, soy050. It remains at that place for the case
symmetric bending, where yielding occurs equally on the to
and bottom faces of the plate, but it moves duringnonsym-
metric bending, as discussed below.

Plastic yielding will commence at the surfaces of t
plate, where the stresses are highest, when the stress
reaches the yield stresssy . This corresponds to a yield strai
given by

«y5
~12n!

2m
sy , ~2!

and a yield curvature given by

ky5
~12n!

2m

sy

h
, ~3!

wherem is the elastic shear modulus andn is Poisson’s ratio
for the glass. In the present treatment we consider two
ferent models for yielding of the plate in bending. In o
model we assume that yielding occurs equally at the top
bottom surfaces of the plate. We call this the case ofsymmet-
ric bending. In another model we assume that yielding o
curs only on the tension side of the plate; the surface s
jected to compression is assumed to deform elastically
bending. We call this the case ofnonsymmetric bending. Al-
though large tension/compression yielding asymmetries h
not been reported for metallic glasses, normal stress eff
on yielding suggest that the yield strength in tension mi
be slightly smaller than that for compression.12–14Also, the
shear bands in Fig. 1 show some evidence of a tens
compression asymmetry; the shear bands on the tension
of the sample extend farther into the sample than do thos
the compression side. In the development that follows,
relations describing each of these two models are develo
in parallel.

Symmetric Bending

When the imposed curvature and moment exceeds
for yielding, plastic zones are expected to develop at the
and bottom surfaces of the plate. Using the model of
elastic, perfectly plastic solid, we may estimate the size
these plastic zones by noting the stress distributions show
Fig. 5. Using the stress distribution in the elastic part of
plate

FIG. 4. Plane strain bending of a plate.
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sxx~y!5
2m

~12n!
ky, ~4!

as illustrated in Fig. 5, the moment~per unit width! for bend-
ing to an arbitrary curvaturek may be expressed as

M52E
0

h

sxxydy,

M52E
0

h2s 2m

~12n!
ky2dy12E

h2s

h

syydy,

M5
2

3

2m

~12n!
k~h2s!31sy~2hs2s2!. ~5!

The plastic zone sizes may be found by setting the bendin
stress in Eq.~4! equal tosy at y5h2s, such that

s5h2
~12n!

2m

sy

k
5hS 12

ky

k D . ~6!

Substituting Eq.~6! into Eq.~5! leads to the following expres
sion for the bending moment:

M5
M y

2 F32S ky

k D 2G , ~7!

where

M y5
2

3

2m

~12n!
kyh

35
2

3
syh

2 ~8!

is the yielding moment. We note that the moment describ
by Eq. ~7! increases monotonically with increasing curv
ture,

FIG. 5. Stress distribution insymmetricandnonsymmetric bending.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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indicating that elastic/plastic bending of the kind conside
here is a stable form of deformation. If cracking processes
not occur, bending deformation should be perfectly stabl

Nonsymmetric Bending

We also considernonsymmetric bending, wherein yield-
ing occurs in tension but not compression. Figure 5 sho
the stress distribution in the plate for this kind of bendin
For nonsymmetric bending, the linear stress distribution in
the elastic part of the bending plate can be found by req
ing the total in-plane force acting in the plate to be zero. T
result is

s~y!5syF12
4h~h2s2y!

~2h2s!2 G . ~9!

The position of the neutral planey0 can be found by requir-
ing the stress there to be zero,s(y5y0)50. The result is

y052
s2

4h
. ~10!

In analogy with Eq.~6!, we may find the size of the plasti
zone in terms of the imposed curvature by requiring
strain distribution in the plate to be given by«(y)5k(y
2y0). Using Eqs.~2!, ~3!, and~10!, we can then write

s52hS 12Aky

k D . ~11!

Inserting this relation into Eq.~9! and using Eq.~3!, we find
the stress distribution in the elastic part of the plate to be

s~y!5
2m

~12n!
kFhS 12Aky

k D 2

1yG , ~12!

as illustrated in Fig.~5!. Finally, the bending moment can b
expressed as

M5E
2h

h2s

s~y!~y2y0!dy1E
h2s

h

sy~y2y0!dy ~13!

which, with Eqs.~10!–~13!, becomes

M5M yS 322Aky

k D , ~14!

in analogy with Eq.~7! for the case ofsymmetric bending.
We again note that the moment increases monotonically w
increasing curvature, as expected, so that the deformatio
inherently stable if cracking processes do not occur.

SHEAR BAND PLASTICITY

The analyses described above are based on the mod
an elastic, perfectly plastic solid. Although metallic glass
deformed in compression nominally exhibit this kind of la
on the microscopic scale plasticity is quite different. Plas
deformation in metallic glasses is highly localized in she
bands. In the present treatment we will assume that the e
tic, perfectly plastic law can be used toestimatethe lengths
of the shear bands at a given point in the bending proc
Figure 6 shows how we might envision this highly localiz
plastic process. Shear bands are assumed to exist on inc
Downloaded 12 Jan 2006 to 131.215.240.9. Redistribution subject to AIP
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shear planes and to extend to the depth of the plastic zons,
as shown in the figure. The spacing of the shear bandsl can
be estimated by assuming that each of the shear bands is
a Mode II surface crack of lengtha5sA2. The shear offset
in the band at the surface relaxes the strain in the vicinity
the shear band and this establishes the shear band spa
We imagine that because of the local strain relaxation,
other shear band cannot be created close to an existing
This effect would cause the shear bands to be spaced ac
ing to their lengths.

The shear displacement discontinuity for a Mode
crack of length 2a, subjected to a remote shear stresst and
with a uniform shear resistancety acting on the crack faces
may be expressed as

Du5
~122n!

m
~t2ty!Aa22x2. ~15!

We now apply this to the shear bands. We taket to be the
shear stress acting on the shear band at the top surface o
plate. This is approximated as the shear stress that would
there if the plate were bending in an elastic manner. We a
takety to be the shear yield stress,a5sA2 to be the length
of the shear band, andx to be measured along the shear ba
from the surface. The maximum shear offset, which occur
x50, is then approximately

Dumax5
~122n!

m
~t2ty!a. ~16!

Taking t5sxx(y5h)/2 ~for elastic bending! and ty5sy/2,
and using Hooke’s law, we may write

Dumax5
~122n!

~12n!
@«xx~y5h!2«y#a. ~17!

FIG. 6. Shear bands in a bent plate.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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If the shear offsets are assumed to elastically unload the
terial on either side of the shear bands, then the shear b
will be spaced apart in direct proportion to the shear offs
Thus the shear band spacingl cannot be smaller than

l5
Dumax

A2«xx~y5h!
. ~18!

Taking this to be the average shear band spacing and u
Eq. ~17! anda5sA2, we find

l5
~122n!

~12n! S 12
«y

«xx~y5h! D s. ~19!

This may be expressed in terms of the curvatures as

l5
~122n!

~12n! S 12
ky

k D s, ~symmetric bending!, ~20!

where we have used Eq.~1! and

l5S 122n

12n D S 2
k

ky
S 12Aky

k D
112

k

ky
S 12Aky

k D D s,

~nonsymmetric bending!, ~21!

where we have used Eqs.~1!–~3! and Eq.~12!. But since the
plastic zone sizes depends on the imposed curvature and
plate thickness, through Eq.~6! ~for symmetric bending! and
Eq. ~11! ~for nonsymmetric bending!, we have

l5
~122n!

~12n! S 12
ky

k D 2

h, ~symmetric bending!, ~22!

and

l52hS 122n

12n D S 2
k

ky
S 12Aky

k D 2

112
k

ky
S 12Aky

k D D ,

~nonsymmetric bending!. ~23!

These relations show that the shear band spacing in ben
is expected to scale with the thickness of the plate, 2h. Figure
3 shows that this kind of relation is very well obeyed f
various metallic glasses. In order to compare the obser
shear band spacings with the predictions of Eqs.~22! and
~23!, we need to determine the curvatures at which yield
and fracture occurs. Below we develop a model to estim
the sample size dependence of the shear band spacin
Vitreloy I at the point of fracture in bending.

CRACK INITIATION AND GROWTH IN THE SHEAR
BAND

The analysis above suggests that as shear bands fo
the surfaces of the plate during bending, the mean spa
increases. Fork5ky , for example, the shear band spacing
predicted by Eqs.~22! and ~23! to be to zero; the spacin
increases with increasing curvature beyond the point
yielding. We imagine that some shear bands extend du
Downloaded 12 Jan 2006 to 131.215.240.9. Redistribution subject to AIP
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bending while others do not, such that the mean spacin
the bands increases during the bending process. As the s
band structure coarsens with increased bending, the s
offsets in each shear band increase dramatically and cr
are eventually nucleated in the bands. Here we assume
when the shear offset in the band exceeds a critical va
Du* , the shear band is transformed into a mixed mode cr
~Modes I and II!. Setting the maximum shear offset given b
Eq. ~17! equal toDu* and expressing the strains in terms
the corresponding curvatures allows one to determine
critical curvaturek i , at which a crack begins to initiate~sub-
script i for initiate! in the shear band. The results are

k i5ky1
a

2 S 11A11
4ky

a D , ~symmetric bending!

~24!

and

k i5kyS 11A a

4ky
D 2

, ~nonsymmetric bending!, ~25!

where

a5
~12n!

~122n!

Du*

A2h2
. ~26!

As the curvature increases beyondk i the cracks increase in
length as the displacement offsets in the shear bands ex
the critical value along the shear bands. Figure 7 show
mixed mode crack that might grow by this process. Equat
~15! for the shear displacement distribution in a shear ba
may be expressed in terms of the strains at the top surfac
the plate as follows:

Du5
~122n!

~12n!
@«xx~y5h!2«y#Aa22x2, ~27!

where Hooke’s law has been used.
For the case ofsymmetric bending, Eq. ~27! together

with Eq. ~1! leads directly to

Du5
~122n!

~12n!
~k2ky!hAa22x2. ~28!

Using a5sA2 andx5cA2, as illustrated in Fig. 5, and Eq
~6!, we find

Du5A2
~122n!

~12n!
~k2ky!h2AS 12

ky

k
D 2

2S c

h
D 2

,

~symmetric bending!. ~29!

FIG. 7. Mixed mode crack of half lengthx in a shear band.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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A corresponding expression for the case ofnonsymmetric
bendingcan be found by starting with Eq.~27!, using Eq.~9!
and Hooke’s law to find

«xx~y5h!2«y5«y

4hs

~2h2s!2
. ~30!

With Eq. ~11! for s, we obtain,

Du52
~122n!

~12n!
«y

k

ky
S 12Aky

k
DAa22x2. ~31!

Again usinga5sA2 and x5cA2, as illustrated in Fig. 5,
and Eq.~11!, we find

Du54A2
~122n!

~12n!
kyh

2S k

ky

2A k

ky
D

3AS 12
ky

k
D 2

2S c

2h
D 2

~nonsymmetric bending!. ~32!

Equations~29! and ~32! give the shear displacements in th
shear bands as a function of the loading and the perpend
lar distancec from the surface. By settingDu in Eqs. ~29!
and ~32! equal toDu* we can determine the length of th
stable mixed mode crack forming in the shear band, for
cases ofsymmetricandnonsymmetricbending, respectively
The results are

c5hAS k2ky

k
D 2

2S a

k2ky
D 2

,

~symmetric bending!, ~33!

and

c52h!S 12Aky

k
D 2

2S a

4ky

k

ky
S 12Aky

k
D D

2

,

~nonsymmetric bending!, ~34!

where againa is given by Eq.~26!. Settingc50 in these
equations and solving fork i gives Eq.~24! for symmetric
bendingand Eq.~25! for nonsymmetric bending, as expected

UNSTABLE CRACK GROWTH AND FRACTURE

We may now ask whether the mixed mode crack form
in the shear band will propagate in an unstable manner.
easy to show that the crack extension force for crack ex
sion perpendicular to the free surface~as shown in Fig. 7! is
greater than the crack extension force for extension in
plane of the shear band. Thus, we will assume that unst
crack growth and fracture occurs when the stress inten
factor KI for a Mode I surface crack perpendicular to t
surface exceeds the fracture toughness of the glassKI c

. If the
Downloaded 12 Jan 2006 to 131.215.240.9. Redistribution subject to AIP
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cracks in the shear bands are sufficiently far apart, the st
intensity factor for the case of plate bending may be
pressed as15

KI5
3M

2h2
ApcF1.1221.39S c

2hD17.3S c

2hD 2

213S c

2hD 3

114S c

2hD 4G , ~35!

whereM is the applied moment~per unit width!, as described
above. Using Eq.~7! for the momentM and Eq.~8!, the
stress intensity factor may be expressed as

KI5F 2m

~12n!
h

ky
3

k2
1

3

2
syS 12

ky
2

k2D GApc*

3F1.122
1.39

2 S c

hD1
7.3

4 S c

hD 2

2
13

8 S c

hD 3

1
14

16S c

hD 4G ,
~symmetric bending!, ~36!

for symmetric bending, and, using Eqs.~14! and ~8!, the
stress intensity factor fornonsymmetric bendingis

KI5syApcS 322Aky

k D * S 1.122
1.39

2 S c

hD1
7.3

4 S c

hD 2

2
13

8 S c

hD 3

1
14

16S c

hD 4D ,

~nonsymmetric bending!. ~37!

Inserting Eq.~33! into Eq. ~36! for symmetric bending, and
Eq. ~34! into Eq. ~37! for nonsymmetric bending, gives ex-
pressions for the Mode I stress intensity factor as a func
of the bending curvature. Solving

KI5KI c
~38!

for the curvature gives the critical curvature for unstab
crack growth or fracture,k f . The progression of curvature
in bending must be such that the curvature needed to c
fracture is greater than that needed to initiate cracking in
shear band and that, in turn, must be greater than that ne
to cause yielding:k f.k i.ky .

EFFECT OF PLATE THICKNESS ON FRACTURE

To study the effect of plate thickness on the fractu
properties of metallic glass plates in bending, we calcul
the stress intensity factors for shear band cracks in plate
different thickness and for different amounts of bending. It
convenient to use the strain on the surface of the plat«
5«xx(y5h) as a measure of bending in place of the curv
ture. With this replacement the stress intensity factor can
expressed as

KI5H 2m

~12n!
«yF3

2
2

1

2 S «y

« D 2G JApc* F1.122
1.39

2 S c

hD
1

7.3

4 S c

hD 2

2
13

8 S c

hD 3

1
14

16S c

hD 4G , ~39!
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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for symmetic bending, where the crack length is

c5hAF12S «y

« D G2

2S ha

«2«y
D 2

. ~40!

Equation~39! can be used provided the strain at the surfa
of the plate exceeds that needed to initiate cracks

« i5«y1
ah

2 S 11A11
4«y

ah D . ~41!

For the case ofnonsymmetic bendingthe stress intensity fac
tor is

KI5F 2m

~12n!
«yS 32

4

S 12A2«y

«
21D D GApc*

3F1.122
1.39

2 S c

hD1
7.3

4 S c

hD 2

2
13

8 S c

hD 3

1
14

16S c

hD 4G , ~42!

where the crack length is

c52hAS 12A«y

« D 2

2S ah

4«y

«

«y
2A «

«y

D 2

. ~43!

Equation~42! is valid if the strain at the surface of the pla
is greater than the critical strain needed for the initiation
cracks

« i5«yS 11Aah

4«y
D 2

. ~44!

FIG. 8. Stress intensity factors for surface cracks in Vitreloy as a functio
bending strain for different plate thicknesses, for the case ofsymmetric
bending. The maximum bending strain is the strain at the surface of
plate. The fracture toughness ofKI c

520 MPaAm is shown as a horizonta
line in the figure. Intersection of the curves with the fracture toughn
indicates the surface bending strain at fracture.
Downloaded 12 Jan 2006 to 131.215.240.9. Redistribution subject to AIP
e

f

Figure 8 shows a plot of the stress intensity factor for sh
band cracks as a function of bending strain for plates
different thickness, for the case ofsymmetric bending, using
the elastic and plastic properties of Vitreloy I~shown in
Table I! for purposes of analysis. The fracture toughness
Vitreloy I is also shown in the diagram as a horizontal lin
The intersection of the curves with the fracture toughn
indicates the bending strain at fracture. The figure shows
dramatic effect of plate thickness on the fracture strain.

The predicted bending strain at fracture is shown in F
9 as a function of plate thickness for bothsymmetricand
nonsymmetric bending. The dramatic effect of plate thick
ness is again observed. Above a plate thickness of ab
1000mm51 mm, the plastic fracture strain~total strain mi-
nus the elastic strain! is about 1%.

We showed in Fig. 3 that the shear band spacing
various metallic glasses subjected to bending depends
early on the sample size. A relationship of that kind is
natural part of the present analysis. We showed in Eqs.~22!
and ~23! that the shear band spacing scales with the p
thickness. To examine this relation more closely we can c
culate the shear band spacing at the point of fracture u
the computed fracture strains~or corresponding curvatures!
and Eqs.~22! and~23!. Figure 10 shows the results of thes
calculations. There we see that the shear band spacing a

TABLE I. Mechanical properties of vitreloy I and model parameters.

Quantity Symbol Value

Young’s modulus E 97 GPa
Shear modulus m 35.7 GPa
Poisson’s ratio n 0.36
Yield strength sy 1.9 GPa
Yield strain «y 0.017
Critical shear offset Du* 10 mm
Fracture toughness KIc 20 Mpa m1/2

f

e

s

FIG. 9. Calculated fracture bending strain vs plate thickness for Vitrelo
for both symmetricand nonsymmetric bendingfor two different values of
the critical shear displacement,Du*, 3 mm, and 10mm. A fracture tough-
ness ofKI c

520 MPaAm was used for these calculations. Above a pla
thickness of about 1000mm51 mm the plastic fracture strain~total strain
minus the elastic strain! is about 1%. These results are similar to the expe
mental results shown in Fig. 2.
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point of fracture is predicted to increase significantly w
plate thickness, for bothsymmetricandnonsymmetricbend-
ing, in qualitative agreement with experiment.

DISCUSSION

In the present analysis we have tried to rationalize
observation that the shear band spacing in metallic g
plates subjected to bending scales with plate thickness
the related observation that the bend ductility increases
matically with decreasing plate thickness. We have sugge
that shear bands transform into surface cracks on ben
and ultimately lead to fracture. Because the shear band s
ing and length is naturally predicted to scale with plate thi
ness, it follows that the shear offsets in the shear bands
scales with plate thickness. On the assumption that cr
nucleation and extension in the shear bands requires a cr
shear displacement and that a critical crack length is need
unstable fracture, it follows that the bend ductility decrea
sharply with increasing plate thickness, as observed exp
mentally.

These sample size effects on bend ductility suggest
amorphous metals in the form of densely packed wires
foils, which are subjected to bending on loading, might ha
much greater ductility and toughness than monolithic am
phous metals. If the thicknesses of such microstructural
tures are kept well below 1 mm, the shear offsets in the sh
bands might be insufficient to initiate cracks. These id
suggest that foam microstructures might be particularly
tractive for controlling fracture in metallic glasses. The stru
tural elements comprising foam microstructures are natur
subjected to bending strains. If the elements or members
sufficiently thin, then they will exhibit substantial bend du
tility and the entire structure will behave in a tough, duct
manner.

There are a number of deficiencies in the present mo
that should be pointed out. The predictions do not follow

FIG. 10. Calculated shear band spacing vs plate thickness at the po
fracture for Vitreloy I for bothsymmetricandnonsymmetic bendingfor two
different values of the critical shear displacement,Du*, 3 mm, and 10mm.
A fracture toughness ofKI c

520 MPaAm was used for these calculation
The shear band spacing at the point of fracture is observed to increase
increasing plate thickness; the relationship is similar to the experime
results shown in Fig. 3.
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experimental results very closely, especially for thick plat
At very large plate thicknesses, the shear band spacin
predicted to approach a constant value. This is caused by
assumption that the shear band spacing scales with the
of the plastic zones, which do not continue to grow in s
with plate thickness at large plate thicknesses because
ture intervenes. The entire treatment is also only approxim
in several places. First, the assumption that the shear b
extend to the depth of the plastic zone calculated using
continuum theory of an elastic, perfectly plastic solid is,
course, an approximation. Also, the estimates of the sh
offsets in the shear bands are based on the stresses and
tic strains at the very surface of the plate; the bending st
gradient is not taken into account in these estimates. Fin
our treatment of stable crack growth in the shear bands
lowing crack initiation ignores the stress redistribution th
accompanies crack formation. This is probably the weak
point in the present analysis.

In spite of these obvious weaknesses, the present an
sis does give a credible account of the effects of sample
on the bend ductility of metallic glass plates and it also d
scribes the observed effects of sample size on shear b
spacing. Perhaps more detailed analyses of these prob
will lead to an even better picture of these phenomena,
ultimately, to a predictive model of deformation and fractu
of thin sections of metallic glasses subjected to bending.
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