of 8
Measurement of time-dependent
CP
asymmetries in
B
0
!
D



and
B
0
!
D



decays
B. Aubert,
1
R. Barate,
1
D. Boutigny,
1
F. Couderc,
1
Y. Karyotakis,
1
J. P. Lees,
1
V. Poireau,
1
V. Tisserand,
1
A. Zghiche,
1
E. Grauges,
2
A. Palano,
3
M. Pappagallo,
3
J. C. Chen,
4
N. D. Qi,
4
G. Rong,
4
P. Wang,
4
Y. S. Zhu,
4
G. Eigen,
5
I. Ofte,
5
B. Stugu,
5
G. S. Abrams,
6
M. Battaglia,
6
D. S. Best,
6
D. N. Brown,
6
J. Button-Shafer,
6
R. N. Cahn,
6
E. Charles,
6
C. T. Day,
6
M. S. Gill,
6
A. V. Gritsan,
6,
*
Y. Groysman,
6
R. G. Jacobsen,
6
J. A. Kadyk,
6
L. T. Kerth,
6
Yu. G. Kolomensky,
6
G. Kukartsev,
6
G. Lynch,
6
L. M. Mir,
6
P. J. Oddone,
6
T. J. Orimoto,
6
M. Pripstein,
6
N. A. Roe,
6
M. T. Ronan,
6
W. A. Wenzel,
6
M. Barrett,
7
K. E. Ford,
7
T. J. Harrison,
7
A. J. Hart,
7
C. M. Hawkes,
7
S. E. Morgan,
7
A. T. Watson,
7
M. Fritsch,
8
K. Goetzen,
8
T. Held,
8
H. Koch,
8
B. Lewandowski,
8
M. Pelizaeus,
8
K. Peters,
8
T. Schroeder,
8
M. Steinke,
8
J. T. Boyd,
9
J. P. Burke,
9
W. N. Cottingham,
9
D. Walker,
9
T. Cuhadar-Donszelmann,
10
B. G. Fulsom,
10
C. Hearty,
10
N. S. Knecht,
10
T. S. Mattison,
10
J. A. McKenna,
10
A. Khan,
11
P. Kyberd,
11
M. Saleem,
11
L. Teodorescu,
11
V. E. Blinov,
12
A. D. Bukin,
12
A. Buzykaev,
12
V. P. Druzhinin,
12
V. B. Golubev,
12
A. P. Onuchin,
12
S. I. Serednyakov,
12
Yu. I. Skovpen,
12
E. P. Solodov,
12
K. Yu Todyshev,
12
M. Bondioli,
13
M. Bruinsma,
13
M. Chao,
13
S. Curry,
13
I. Eschrich,
13
D. Kirkby,
13
A. J. Lankford,
13
P. Lund,
13
M. Mandelkern,
13
R. K. Mommsen,
13
W. Roethel,
13
D. P. Stoker,
13
S. Abachi,
14
C. Buchanan,
14
S. D. Foulkes,
15
J. W. Gary,
15
O. Long,
15
B. C. Shen,
15
K. Wang,
15
L. Zhang,
15
D. del Re,
16
H. K. Hadavand,
16
E. J. Hill,
16
H. P. Paar,
16
S. Rahatlou,
16
V. Sharma,
16
J. W. Berryhill,
17
C. Campagnari,
17
A. Cunha,
17
B. Dahmes,
17
T. M. Hong,
17
J. D. Richman,
17
T. W. Beck,
18
A. M. Eisner,
18
C. J. Flacco,
18
C. A. Heusch,
18
J. Kroseberg,
18
W. S. Lockman,
18
G. Nesom,
18
T. Schalk,
18
B. A. Schumm,
18
A. Seiden,
18
P. Spradlin,
18
D. C. Williams,
18
M. G. Wilson,
18
J. Albert,
19
E. Chen,
19
G. P. Dubois-Felsmann,
19
A. Dvoretskii,
19
D. G. Hitlin,
19
I. Narsky,
19
T. Piatenko,
19
F. C. Porter,
19
A. Ryd,
19
A. Samuel,
19
R. Andreassen,
20
G. Mancinelli,
20
B. T. Meadows,
20
M. D. Sokoloff,
20
F. Blanc,
21
P. C. Bloom,
21
S. Chen,
21
W. T. Ford,
21
J. F. Hirschauer,
21
A. Kreisel,
21
U. Nauenberg,
21
A. Olivas,
21
W. O. Ruddick,
21
J. G. Smith,
21
K. A. Ulmer,
21
S. R. Wagner,
21
J. Zhang,
21
A. Chen,
22
E. A. Eckhart,
22
A. Soffer,
22
W. H. Toki,
22
R. J. Wilson,
22
F. Winklmeier,
22
Q. Zeng,
22
D. D. Altenburg,
23
E. Feltresi,
23
A. Hauke,
23
H. Jasper,
23
B. Spaan,
23
T. Brandt,
24
V. Klose,
24
H. M. Lacker,
24
R. Nogowski,
24
A. Petzold,
24
J. Schubert,
24
K. R. Schubert,
24
R. Schwierz,
24
J. E. Sundermann,
24
A. Volk,
24
D. Bernard,
25
G. R. Bonneaud,
25
P. Grenier,
25,†
E. Latour,
25
Ch. Thiebaux,
25
M. Verderi,
25
D. J. Bard,
26
P. J. Clark,
26
W. Gradl,
26
F. Muheim,
26
S. Playfer,
26
Y. Xie,
26
M. Andreotti,
27
D. Bettoni,
27
C. Bozzi,
27
R. Calabrese,
27
G. Cibinetto,
27
E. Luppi,
27
M. Negrini,
27
L. Piemontese,
27
F. Anulli,
28
R. Baldini-Ferroli,
28
A. Calcaterra,
28
R. de Sangro,
28
G. Finocchiaro,
28
S. Pacetti,
28
P. Patteri,
28
I. M. Peruzzi,
28,‡
M. Piccolo,
28
A. Zallo,
28
A. Buzzo,
29
R. Capra,
29
R. Contri,
29
M. Lo Vetere,
29
M. M. Macri,
29
M. R. Monge,
29
S. Passaggio,
29
C. Patrignani,
29
E. Robutti,
29
A. Santroni,
29
S. Tosi,
29
G. Brandenburg,
30
K. S. Chaisanguanthum,
30
M. Morii,
30
J. Wu,
30
R. S. Dubitzky,
31
J. Marks,
31
S. Schenk,
31
U. Uwer,
31
W. Bhimji,
32
D. A. Bowerman,
32
P. D. Dauncey,
32
U. Egede,
32
R. L. Flack,
32
J. R. Gaillard,
32
J . A. Nash,
32
M. B. Nikolich,
32
W. Panduro Vazquez,
32
X. Chai,
33
M. J. Charles,
33
W. F. Mader,
33
U. Mallik,
33
V. Ziegler,
33
J. Cochran,
34
H. B. Crawley,
34
L. Dong,
34
V. Eyges,
34
W. T. Meyer,
34
S. Prell,
34
E. I. Rosenberg,
34
A. E. Rubin,
34
G. Schott,
35
N. Arnaud,
36
M. Davier,
36
G. Grosdidier,
36
A. Ho
̈
cker,
36
F. Le Diberder,
36
V. Lepeltier,
36
A. M. Lutz,
36
A. Oyanguren,
36
T. C. Petersen,
36
S. Pruvot,
36
S. Rodier,
36
P. Roudeau,
36
M. H. Schune,
36
A. Stocchi,
36
W. F. Wang,
36
G. Wormser,
36
C. H. Cheng,
37
D. J. Lange,
37
D. M. Wright,
37
C. A. Chavez,
38
I. J. Forster,
38
J. R. Fry,
38
E. Gabathuler,
38
R. Gamet,
38
K. A. George,
38
D. E. Hutchcroft,
38
D. J. Payne,
38
K. C. Schofield,
38
C. Touramanis,
38
A. J. Bevan,
39
F. Di Lodovico,
39
W. Menges,
39
R. Sacco,
39
C. L. Brown,
40
G. Cowan,
40
H. U. Flaecher,
40
D. A. Hopkins,
40
P. S. Jackson,
40
T. R. McMahon,
40
S. Ricciardi,
40
F. Salvatore,
40
D. N. Brown,
41
C. L. Davis,
41
J. Allison,
42
N. R. Barlow,
42
R. J. Barlow,
42
Y. M. Chia,
42
C. L. Edgar,
42
M. P. Kelly,
42
G. D. Lafferty,
42
M. T. Naisbit,
42
J. C. Williams,
42
J. I. Yi,
42
C. Chen,
43
W. D. Hulsbergen,
43
A. Jawahery,
43
D. Kovalskyi,
43
C. K. Lae,
43
D. A. Roberts,
43
G. Simi,
43
G. Blaylock,
44
C. Dallapiccola,
44
S. S. Hertzbach,
44
X. Li,
44
T. B. Moore,
44
S. Saremi,
44
H. Staengle,
44
S. Y. Willocq,
44
R. Cowan,
45
K. Koeneke,
45
G. Sciolla,
45
S. J. Sekula,
45
M. Spitznagel,
45
F. Taylor,
45
R. K. Yamamoto,
45
H. Kim,
46
P. M. Patel,
46
C. T. Potter,
46
S. H. Robertson,
46
A. Lazzaro,
47
V. Lombardo,
47
F. Palombo,
47
J. M. Bauer,
48
L. Cremaldi,
48
V. Eschenburg,
48
R. Godang,
48
R. Kroeger,
48
J. Reidy,
48
D. A. Sanders,
48
D. J. Summers,
48
H. W. Zhao,
48
S. Brunet,
49
D. Co
ˆ
te
́
,
49
M. Simard,
49
P. Taras,
49
F. B. Viaud,
49
H. Nicholson,
50
N. Cavallo,
51,
x
G. De Nardo,
51
F. Fabozzi,
51
C. Gatto,
51
L. Lista,
51
D. Monorchio,
51
D. Piccolo,
51
C. Sciacca,
51
M. Baak,
52
H. Bulten,
52
G. Raven,
52
H. L. Snoek,
52
C. P. Jessop,
53
J. M. LoSecco,
53
T. Allmendinger,
54
G. Benelli,
54
K. K. Gan,
54
K. Honscheid,
54
D. Hufnagel,
54
P. D. Jackson,
54
H. Kagan,
54
R. Kass,
54
T. Pulliam,
54
A. M. Rahimi,
54
R. Ter-Antonyan,
54
Q. K. Wong,
54
N. L. Blount,
55
J. Brau,
55
R. Frey,
55
O. Igonkina,
55
M. Lu,
55
R. Rahmat,
55
N. B. Sinev,
55
D. Strom,
55
J. Strube,
55
E. Torrence,
55
F. Galeazzi,
56
A. Gaz,
56
M. Margoni,
56
M. Morandin,
56
A. Pompili,
56
M. Posocco,
56
M. Rotondo,
56
F. Simonetto,
56
R. Stroili,
56
PHYSICAL REVIEW D
73,
111101(R) (2006)
RAPID COMMUNICATIONS
1550-7998
=
2006
=
73(11)
=
111101(8)
111101-1
©
2006 The American Physical Society
C. Voci,
56
M. Benayoun,
57
J. Chauveau,
57
P. David,
57
L. Del Buono,
57
Ch. de la Vaissie
`
re,
57
O. Hamon,
57
B. L. Hartfiel,
57
M. J. J. John,
57
Ph. Leruste,
57
J. Malcle
`
s,
57
J. Ocariz,
57
L. Roos,
57
G. Therin,
57
P. K. Behera,
58
L. Gladney,
58
J. Panetta,
58
M. Biasini,
59
R. Covarelli,
59
M. Pioppi,
59
C. Angelini,
60
G. Batignani,
60
S. Bettarini,
60
F. Bucci,
60
G. Calderini,
60
M. Carpinelli,
60
R. Cenci,
60
F. Forti,
60
M. A. Giorgi,
60
A. Lusiani,
60
G. Marchiori,
60
M. A. Mazur,
60
M. Morganti,
60
N. Neri,
60
E. Paoloni,
60
M. Rama,
60
G. Rizzo,
60
J. Walsh,
60
M. Haire,
61
D. Judd,
61
D. E. Wagoner,
61
J. Biesiada,
62
N. Danielson,
62
P. Elmer,
62
Y. P. Lau,
62
C. Lu,
62
J. Olsen,
62
A. J. S. Smith,
62
A. V. Telnov,
62
F. Bellini,
63
G. Cavoto,
63
A. D’Orazio,
63
E. Di Marco,
63
R. Faccini,
63
F. Ferrarotto,
63
F. Ferroni,
63
M. Gaspero,
63
L. Li Gioi,
63
M. A. Mazzoni,
63
S. Morganti,
63
G. Piredda,
63
F. Polci,
63
F. Safai Tehrani,
63
C. Voena,
63
H. Schro
̈
der,
64
R. Waldi,
64
T. Adye,
65
N. De Groot,
65
B. Franek,
65
E. O. Olaiya,
65
F. F. Wilson,
65
S. Emery,
66
A. Gaidot,
66
S. F. Ganzhur,
66
G. Hamel de Monchenault,
66
W. Kozanecki,
66
M. Legendre,
66
B. Mayer,
66
G. Vasseur,
66
Ch. Ye
`
che,
66
M. Zito,
66
W. Park,
67
M. V. Purohit,
67
A. W. Weidemann,
67
J. R. Wilson,
67
M. T. Allen,
68
D. Aston,
68
R. Bartoldus,
68
P. Bechtle,
68
N. Berger,
68
A. M. Boyarski,
68
R. Claus,
68
J. P. Coleman,
68
M. R. Convery,
68
M. Cristinziani,
68
J. C. Dingfelder,
68
D. Dong,
68
J. Dorfan,
68
D. Dujmic,
68
W. Dunwoodie,
68
R. C. Field,
68
T. Glanzman,
68
S. J. Gowdy,
68
V. Halyo,
68
C. Hast,
68
T. Hryn’ova,
68
W. R. Innes,
68
M. H. Kelsey,
68
P. Kim,
68
M. L. Kocian,
68
D. W. G. S. Leith,
68
J. Libby,
68
S. Luitz,
68
V. Luth,
68
H. L. Lynch,
68
D. B. MacFarlane,
68
H. Marsiske,
68
R. Messner,
68
D. R. Muller,
68
C. P. O’Grady,
68
V. E. Ozcan,
68
A. Perazzo,
68
M. Perl,
68
B. N. Ratcliff,
68
A. Roodman,
68
A. A. Salnikov,
68
R. H. Schindler,
68
J. Schwiening,
68
A. Snyder,
68
J. Stelzer,
68
D. Su,
68
M. K. Sullivan,
68
K. Suzuki,
68
S. K. Swain,
68
J. M. Thompson,
68
J. Va’vra,
68
N. van Bakel,
68
M. Weaver,
68
A. J. R. Weinstein,
68
W. J. Wisniewski,
68
M. Wittgen,
68
D. H. Wright,
68
A. K. Yarritu,
68
K. Yi,
68
C. C. Young,
68
P. R. Burchat,
69
A. J. Edwards,
69
S. A. Majewski,
69
B. A. Petersen,
69
C. Roat,
69
L. Wilden,
69
S. Ahmed,
70
M. S. Alam,
70
R. Bula,
70
J. A. Ernst,
70
V. Jain,
70
B. Pan,
70
M. A. Saeed,
70
F. R. Wappler,
70
S. B. Zain,
70
W. Bugg,
71
M. Krishnamurthy,
71
S. M. Spanier,
71
R. Eckmann,
72
J. L. Ritchie,
72
A. Satpathy,
72
R. F. Schwitters,
72
J. M. Izen,
73
I. Kitayama,
73
X. C. Lou,
73
S. Ye,
73
F. Bianchi,
74
M. Bona,
74
F. Gallo,
74
D. Gamba,
74
M. Bomben,
75
L. Bosisio,
75
C. Cartaro,
75
F. Cossutti,
75
G. Della Ricca,
75
S. Dittongo,
75
S. Grancagnolo,
75
L. Lanceri,
75
L. Vitale,
75
V. Azzolini,
76
F. Martinez-Vidal,
76
R. S. Panvini,
77,
k
Sw. Banerjee,
78
B. Bhuyan,
78
C. M. Brown,
78
D. Fortin,
78
K. Hamano,
78
R. Kowalewski,
78
I. M. Nugent,
78
J. M. Roney,
78
R. J. Sobie,
78
J. J. Back,
79
P. F. Harrison,
79
T. E. Latham,
79
G. B. Mohanty,
79
H. R. Band,
80
X. Chen,
80
B. Cheng,
80
S. Dasu,
80
M. Datta,
80
A. M. Eichenbaum,
80
K. T. Flood,
80
M. T. Graham,
80
J. J. Hollar,
80
J. R. Johnson,
80
P. E. Kutter,
80
H. Li,
80
R. Liu,
80
B. Mellado,
80
A. Mihalyi,
80
A. K. Mohapatra,
80
Y. Pan,
80
M. Pierini,
80
R. Prepost,
80
P. Tan,
80
S. L. Wu,
80
Z. Yu,
80
and H. Neal
81
(
B
A
B
AR
Collaboration)
1
Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
2
Universitat de Barcelona, Facultat Fisica Deptartament ECM, Avda Diagonal 647, 6a planta, E-08028 Barcelona, Spain
3
Universita
`
di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
4
Institute of High Energy Physics, Beijing 100039, China
5
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
6
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
7
University of Birmingham, Birmingham, B15 2TT, United Kingdom
8
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
9
University of Bristol, Bristol BS8 1TL, United Kingdom
10
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
11
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
12
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
13
University of California at Irvine, Irvine, California 92697, USA
14
University of California at Los Angeles, Los Angeles, California 90024, USA
15
University of California at Riverside, Riverside, California 92521, USA
16
University of California at San Diego, La Jolla, California 92093, USA
17
University of California at Santa Barbara, Santa Barbara, California 93106, USA
18
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
19
California Institute of Technology, Pasadena, California 91125, USA
20
University of Cincinnati, Cincinnati, Ohio 45221, USA
21
University of Colorado, Boulder, Colorado 80309, USA
22
Colorado State University, Fort Collins, Colorado 80523, USA
23
Universita
̈
t Dortmund, Institut fu
̈
r Physik, D-44221 Dortmund, Germany
24
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern-und Teilchenphysik, D-01062 Dresden, Germany
B. AUBERT
et al.
PHYSICAL REVIEW D
73,
111101(R) (2006)
RAPID COMMUNICATIONS
111101-2
25
Ecole Polytechnique, LLR, F-91128 Palaiseau, France
26
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
27
Universita
`
di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
28
Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy
29
Universita
`
di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
30
Harvard University, Cambridge, Massachusetts 02138, USA
31
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
32
Imperial College London, London, SW7 2AZ, United Kingdom
33
University of Iowa, Iowa City, Iowa 52242, USA
34
Iowa State University, Ames, Iowa 50011-3160, USA
35
Universita
̈
t Karlsruhe, Institut fu
̈
r Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
36
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN2P3-CNRS et Universite
́
Paris-Sud 11, Centre Scientifique d’Orsay,
B.P. 34, F-91898 ORSAY Cedex, France
37
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38
University of Liverpool, Liverpool L69 7ZE, United Kingdom
39
Queen Mary, University of London, E1 4NS, United Kingdom
40
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
41
University of Louisville, Louisville, Kentucky 40292, USA
42
University of Manchester, Manchester M13 9PL, United Kingdom
43
University of Maryland, College Park, Maryland 20742, USA
44
University of Massachusetts, Amherst, Massachusetts 01003, USA
45
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
47
Universita
`
di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
48
University of Mississippi, University, Mississippi 38677, USA
49
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
50
Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51
Universita
`
di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
52
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53
University of Notre Dame, Notre Dame, Indiana 46556, USA
54
Ohio State University, Columbus, Ohio 43210, USA
55
University of Oregon, Eugene, Oregon 97403, USA
56
Universita
`
di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
57
Universite
́
s Paris VI et VII, Laboratoire de Physique Nucle
́
aire et de Hautes Energies, F-75252 Paris, France
58
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59
Universita
`
di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
60
Universita
`
di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
61
Prairie View A&M University, Prairie View, Texas 77446, USA
62
Princeton University, Princeton, New Jersey 08544, USA
63
Universita
`
di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
64
Universita
̈
t Rostock, D-18051 Rostock, Germany
65
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
66
DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
67
University of South Carolina, Columbia, South Carolina 29208, USA
68
Stanford Linear Accelerator Center, Stanford, California 94309, USA
69
Stanford University, Stanford, California 94305-4060, USA
70
State University of New York, Albany, New York 12222, USA
71
University of Tennessee, Knoxville, Tennessee 37996, USA
72
University of Texas at Austin, Austin, Texas 78712, USA
73
University of Texas at Dallas, Richardson, Texas 75083, USA
74
Universita
`
di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
75
Universita
`
di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
76
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
77
Vanderbilt University, Nashville, Tennessee 37235, USA
*
Also with the Johns Hopkins University, Baltimore, MD 21218, USA.
x
Also with Universita
`
della Basilicata, Potenza, Italy.
Also with Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy.
Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France.
k
Deceased.
MEASUREMENT OF TIME-DEPENDENT
CP
...
PHYSICAL REVIEW D
73,
111101(R) (2006)
RAPID COMMUNICATIONS
111101-3
78
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
79
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
80
University of Wisconsin, Madison, Wisconsin 53706, USA
81
Yale University, New Haven, Connecticut 06511, USA
(Received 2 March 2006; published 2 June 2006)
We present updated results on time-dependent
CP
asymmetries in fully reconstructed
B
0
!
D



and
B
0
!
D



decays in approximately
232

10
6


4
S
!
B

B
events collected with the
BABAR
detector at the PEP-II asymmetric-energy
B
factory at SLAC. From a time-dependent maximum-
likelihood fit we obtain for the parameters related to the
CP
violation angle
2



:
a
D

0
:
010

0
:
023

0
:
007
,
c
D
lep

0
:
033

0
:
042

0
:
012
,
a
D



0
:
040

0
:
023

0
:
010
,
c
D


lep

0
:
049

0
:
042

0
:
015
,
a
D

0
:
024

0
:
031

0
:
009
,
c
D
lep

0
:
098

0
:
055

0
:
018
, where the first error is
statistical and the second is systematic. Using other measurements and theoretical assumptions, we
interpret the results in terms of the angles of the Cabibbo-Kobayashi-Maskawa unitarity triangle and find
j
sin

2



j
>
0
:
64

0
:
40

at 68% (90%) confidence level.
DOI:
10.1103/PhysRevD.73.111101
PACS numbers: 12.15.Hh, 11.30.Er, 13.25.Hw
In the standard model,
CP
violation in the weak inter-
actions between quarks manifests itself as a nonzero area
of the Cabibbo-Kobayashi-Maskawa (CKM) unitarity tri-
angle [1]. While the measurement of
sin2

is now quite
precise [2,3], the constraints on the other two angles of the
unitarity triangle,

and

, are still limited by statistical
and theoretical uncertainties.
This paper presents updates for the measurements of
CP
asymmetries in
B
0
!
D



decays [4], as reported in
Ref. [5], with a larger data sample (

2
:
6
), and in addition
includes the measurement of the
CP
asymmetry in the
decay mode
B
0
!
D



. We denote these decays as
B
0
!
D

h

, where
h

is a charged pion or

meson.
The time evolution of
B
0
!
D

h

decays is sensitive
to

because the CKM-favored decay amplitude

B
0
!
D

h
, which is proportional to the CKM matrix ele-
ments
V
cb
V

ud
, and the doubly CKM-suppressed decay
amplitude
B
0
!
D

h
, which is proportional to
V
cd
V

ub
, interfere due to
B
0

B
0
mixing. The relative
weak phase between these two amplitudes is

. With
B
0

B
0
mixing, the total weak phase difference between the
interfering amplitudes is
2



.
Neglecting the very small decay width difference be-
tween the two
B
0
mass eigenstates [6], the proper-time
distribution of the
B
0
!
D

h

decays is given by
f


;

t

e
j

t
j
=
4

1

S

sin


m
d

t


C
cos


m
d

t

;
(1)
where

is the
B
0
lifetime,

m
d
is the
B
0

B
0
mixing
frequency, and

t

t
rec
t
tag
is the time difference be-
tween the
B
0
!
D

h

decay (
B
rec
) and the decay of the
other
B
(
B
tag
) from the


4
S
!
B
0

B
0
decay. In this
equation the upper (lower) sign refers to the flavor of
B
tag
as
B
0
(

B
0
), while


1
(
1
) and


(
)
refer to the final state
D

h

(
D

h
). The sine term is
due to interference between direct decay and decay after
B
0

B
0
mixing. The cosine term arises from interference
between decay amplitudes with different weak and strong
phases (direct
CP
violation) or from
CP
violation in mix-
ing. The
S
and
C
asymmetry parameters can be expressed
as
S


2Im



1
j

j
2
and
C

1
r
2
1

r
2
;
(2)
where
r
j

j
1
=
j
j
and


q
p
A


B
0
!
D

h


A

B
0
!
D

h



r

1
e
i

2





:
(3)
Here
q
p
is a function of the elements of the mixing
Hamiltonian [6], and
is the relative strong phase between
the two contributing amplitudes. In the standard model,
CP
violation in mixing is negligible and thus
j
q
p
j
1
. In these
equations, the parameters
r
and
depend on the choice of
the final state. They will be indicated as
r
D
,
D
for the
B
0
!
D



mode,
r
D
,
D
for
B
0
!
D



, and
r
D


,
D


for
B
0
!
D



[7,8].
Interpreting the
S
parameters in terms of the angles of
the unitarity triangle requires knowledge of the corre-
sponding
r
parameters. The values of
r
are expected to
be small (
0
:
02
) and therefore cannot be extracted from
the measurement of
C
. They can be estimated, assuming
SU(3) symmetry and neglecting contributions from
W
-exchange diagrams, from the ratios of branching frac-
tions
B

B
0
!
D

s


=
B

B
0
!
D




and
B

B
0
!
D

s


=
B

B
0
!
D



[5,9,10].
This measurement is based on
232

10
6


4
S
!
B

B
decays, collected with the
BABAR
detector [11] at the PEP-
II asymmetric-energy
B
factory at SLAC. We use a
Monte Carlo simulation of the
BABAR
detector based on
GEANT4 [12] to validate the analysis procedure and to
estimate some of the backgrounds.
The event selection criteria are unchanged from our
previous publication [5], except for the application of a
kaon veto on the pion candidate in the decay modes
B. AUBERT
et al.
PHYSICAL REVIEW D
73,
111101(R) (2006)
RAPID COMMUNICATIONS
111101-4
D



to suppress
B
0
!
D

K

background events,
and for the addition of the decay mode
B
0
!
D


. The
D

is reconstructed through its decay to

D
0

, where the

D
0
decays into
K


,
K



0
,
K





,or
K
0
S



. The
D
is reconstructed through its decay into
K



or
K
0
S

. The


decay is reconstructed in the
final state



0
. For the
CP
analysis we require the



0
invariant mass (
m

0
) to be in the window
620
<m

0
<
920 MeV
=
c
2
. Exploiting the polarization of the

meson
from the decay
B
0
!
D


, we require the cosine of the


helicity angle
hel
, defined as the angle between the
charged pion and the
D
momentum in the


rest frame,
to satisfy
j
cos
hel
j
>
0
:
4
.
The beam-energy substituted mass,
m
ES

s=
4
p

2
B
q
,
and the difference between the
B
candidate’s measured
energy and the beam energy,

E
E

B


s
p
=
2

, are
used to identify the final sample, where
E

B
(
p

B
) is the
energy (momentum) of the
B
candidate in the nominal
e

e
center-of-mass frame, and

s
p
is the total center-of-
mass energy. The

E
signal region is defined as
j

E
j
<
3
, where the resolution
is mode dependent and ap-
proximately 20 MeV, as determined from data. Figure 1
shows the
m
ES
distribution for candidates with
m
ES
>
5
:
2 GeV
=c
2
in the

E
signal region. These candidates
satisfy the tagging and vertexing requirements, which are
described later. Each distribution is fit to the sum of an
Argus function [13], which accounts for the background
from random combinations of tracks (combinatorial back-
ground), and a Gaussian distribution with a fitted width of
about
2
:
5 MeV
=c
2
, which describes the signal and the
backgrounds that peak in the
m
ES
signal region (peaking
background). Signal yields and sample purities are deter-
mined in the
m
ES
signal region, with
m
ES
>
5
:
27 GeV
=
c
2
,
and are summarized in Table I. Backgrounds from
B
0
and
B

decays that peak in the
m
ES
signal region are estimated
using Monte Carlo events and are mostly due to charmed
final states. They are also reported in Table I.
For the
B
0
!
D



mode we consider additional
sources of background with the same final state
D




0
, where the



0
system is not produced through
the


resonance. Interfering sources of background can
introduce a dependence of the
D

parameters of Eq. (3) on
m

0
. The dependency has been studied using the distri-
bution of
m

0
.
The possible background contributions have been eval-
uated with a sample of 130 273
B
0
!
D



0
candi-
dates, on which the requirements on the

helicity and
on
m

0
have been removed. Three interfering components
are
considered:
B
0
!
D


(the
signal),
B
0
!
D

0

1450

with a pole mass of

1465

25

MeV
=
c
2
and a width of

400

60

MeV
=
c
2
[6] for the

0
, both
described with
P
-wave relativistic Breit-Wigner functions
[14,15],
and
a
nonresonant
component,
B
0
!
D




0

nr
. Contributions from the decay modes
B
0
!
D



(
D

!
D

0
) and
B
0
!

D

0

0
(

D

0
!
D


) are negligible due to the kinematic constraints
imposed on the

daughter particles. We perform a fit to
the binned
m

0
distribution to extract the amplitudes of
the three components, where for each bin the combinatorial
background has been subtracted, as estimated from the
corresponding
m
ES
distribution, and the number of peaking
background events has been estimated using fully simu-
lated Monte Carlo events. The result of the fit is shown in
Fig. 2. The fraction of
B
0
!
D

0

1450

and
B
0
!
D




0

nr
events in the mass window
620
<m

0
<
920 MeV
=
c
2
is found to be smaller than 0.02 at 90%
confidence level (C.L.)
)
2
Events / ( 0.0025 GeV/c
0
2000
4000
6000
)
2
Events / ( 0.0025 GeV/c
0
2000
4000
6000
π
D
B
0.3 %
±
Purity: 87.0
132
±
Yield: 15038
0
2000
4000
6000
0
2000
4000
6000
π
*
D
B
0.2 %
±
Purity: 93.2
123
±
Yield: 14002
)
2
(GeV/c
ES
m
5.2
5.22
5.24
5.26
5.28
5.3
0
1000
2000
3000
)
2
(GeV/c
ES
m
5.2
5.22
5.24
5.26
5.28
5.3
0
1000
2000
3000
ρ
D
B
0.4 %
±
Purity: 81.7
101
±
Yield: 8736
FIG. 1 (color online).
m
ES
distributions in the signal region for,
from top to bottom, the
B
!
D



,
B
!
D



, and
B
!
D



sample for the events that satisfy the tagging and vertex-
ing requirements described in the text, fit with the function
described in the text. The dashed lines indicate the sum of the
combinatorial and peaking background contributions.
TABLE I. Signal yields, sample purities
P
, and fractions of
peaking backgrounds,
f
peak
, for the selected samples for events
that satisfy the tagging and vertexing requirements described in
the text.
Decay mode
Yield
P

%

f
peak

%

B
0
B

B
!
D



15038

132 87
:
0

0
:
31
:
6

0
:
11
:
2

0
:
1
B
!
D



14002

123 93
:
2

0
:
21
:
0

0
:
11
:
1

0
:
1
B
!
D



8736

101 81
:
7

0
:
41
:
3

0
:
21
:
5

0
:
2
MEASUREMENT OF TIME-DEPENDENT
CP
...
PHYSICAL REVIEW D
73,
111101(R) (2006)
RAPID COMMUNICATIONS
111101-5