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ABSTRACT 

An approach to the kinetic theory of gas flows is developed which 

starts with Maxwell's original integral equations of transfer, rather than 

with the Maxwell-Boltzmann equation for the velocity distribution function 

itself. In this procedure the Maxwell-Boltzmann equation is satisfied in 

a certain average sense, rather than at every point. The advantage of 

this method is that relatively simple distribution functions are utilized 

which contain a small number of unknown functions to be determined by 

applying the conservation laws, plus several additional higher moments. 

For simplicity a "two- stream Maxwellian" is employed, which is a natural 

extension and generalization of Mott- Smith 1 s function for a normal shock, 

but differs from it in certain essential respects. As an illustration, the 

method is applied to linearized plane Couette flow and Rayleigh 1 s problem. 

Reasonable results are obtained for macroscopic quantities such as mean 

velocity and shear stress over the whole range of densities from free­

molecule flow to the Navier-Stokes regime. This technique is now being 

applied to some typical non-linear rarefied gas flows. 
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I. INTRODUCTION 

We are so accustomed to the universality and success of the 

Navier-Stokes stress- rate of strain relations and Fourier 1 s "law" of 

heat conduction for Newtonian liquids, and for gases at normal density, 

that the purely empirical character of these relations is often forgotten. 

The conditions of zero velocity "slip" and temperature "jump" at a solid 

surface are equally empirical. They were finally accepted only after 

the practical success of the no- slip condition had been demonstrated, and 

experimental investigations in liquids had shown that the velocity slip at 

a solid boundary must be extremely small, if not zero.* On the macro­

scopic level the coefficients of viscosity and heat conduction must be 

determined experimentally. Here one performs an exercise in circular 

logic: The Navier-Stokes relations and the no- slip boundary conditions 

are accepted as correct, so that the viscosity (for example) is regarded 

as a local property of the fluid, and no.t of the flow. Then analytical 

solutions based on these same empirical relations are utilized to obtain 

the viscosity from measurements of mass flow and pressure drop in a 

pipe flow, or from the measured torque on a rotating cylinder. The 

values of viscosity so determined are then utilized in all other flows. 

The justification for this procedure is purely operational. 

This same empirical procedure could also be followed for rarefied 

gas flows. The viscosity would then depend not only on the temperature of 

the gas, but also on the density and some characteristic length. For 

example, Jeans
2

a points out that for highly rarefied gas flow )-l- -v p c d, 

because the average path length traversed by the molecules between 

successive collisions is of the order of some relevant dimension of the 

apparatus, d, rather than the mean free path.** Historically, an alternative 

approach to highly rarefied gas flows was developed,based on the kinetic 

theory rather than macroscopic concepts. In this "free-molecule" flow 

regime collisions between particles in the gas are re garded as secondary 

compared with collisions between gas particles and the solid boundaries. 

* Goldstein
1 

has p; iven a short account of the interesting history 
of this question. \Supersc r ipts denote refer enc e s at t h e end of the text.) 

3 ** See also Liepmann and Roshko, Chapter 14. 



The probability that a mole cule emitt e d from a body surface has not 

collided with another molecule is r oughly proportional to e -rj)., where 

r is the distance trave r sed and ~ i s the m ean free path. Thus, if the 

mean free path is much l a rger than a characteristic body dimension 

(A > > R) few collisions · occur in the vicinity of the body. Of course 

2 

far from the body (r ;;- A ) colli s ions in the gas can never be neglected. 

But the sensible influence of the body is not expected to extend outward 

more than 10 - 20 times the r e l evant body din'lension. Therefore this 

approach should provide a g ood fir st approximation to the drag, heat 

transfer and flow field near the bo dy w hen A > > R , even though the basic 

question of a proper "matching " to the "far field" is ignored. 

At present there is no g ene r a l a g reement concerning the connectior 

between gas kinetics (A > > R) a nd gas dyna m ics as described by the 

Navier-Stokes equations. 
3 

Yet the kine tic theory ought to provide a 

framework that includes both of the s e limiting cases, and the transitional 

regime in between. The difficulties i n volved in constructing such a 

kinetic theory for liquids and d e nse gas e s are w ell known. However, f o r 

dilute, unionized, monatomic gas e s t h e s tatistical mechanical approach 

is greatly simplified, because the s e nsible rang e of intermolecular forc e s 

is orders of magnitude shorter than eithe r the averag e distance between 

molecules, or the mean free path. F or example, the average range of 
0 -8 

intermolecular forces is of the order of 3 A :t 3 x 10 em., and the 

duration of a representative collision is of the orde r of 10-12 seconds at 

room temperature. Both value s ar e virtually independent of gas density. 
-6 Now the mean free path in air at one atmosphere is about 5 x 10 em., 

and the average time interval ?:' f b e tween successive collisions is about 
-10 -4 ' 'V -2 ~ 'V -6 10 seconds . . At 10 atm, /\ = 5 x 10 em., and <.. f = 10 sec.; 

-1o .A 4 ~"' at 10 atm, = 5 x 10 em., or 500 meters, and "f = 1 second.* Thus, 

the duration of a collision is very short compared with the mean free time, 

and the probability of a ternary collision is negligibly small compared with 

the probability of a binary collision. By introducing a time average over 

an interval long compared with the duration of a collision, but short 

compared with the mean free time, Liouville 1 s equation for the 

* At this pressure the statistical fluctuation in density in a 
volume of 1 mm. 3 is still only 0. 1 per cent. 
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simultaneous probability density of all particles is reduced to the Maxwell­

Btolzmann equation for the single particle velocity distribution function 

(Section II). By this procedure statistical fluctuations (such as Brownian 

motion) are eliminated and a dissipative mechanism is introduced. 

In spite of this apparent generality of the Maxwell-Boltzmann 

equation for dilute gases, we approach the one-hundredth anniversary 

of Maxwell's fundamental paper 
4
awithout a kinetic theory of gas flows. 

In part, at least, such a deficiency must be attributed to the fact that 

the kinetic theory of gases has been dominated for over fifty years by the 

specialized approach of Chapman and Enskog, as expounded in the famous 
5 

treatise of Chapman and Cowling. This approach is concerned primarily 

with the transport properties of gases and gas mixtures for intermolecular 

force fields somewhat more realistic than Maxwell's simple inverse fifth 

power "law". A considerable amount of effort is devoted to the evaluation 

of the collision integral in the Maxwell-Boltzmann equation. Departures 

from the Navier-Stokes regime are studied by means of an expansion 

procedure that is by no means obvious, and is c e rtainly of little value 

in answering the basic question of the relation b e tween gas kinetics and 

gas dynamics. 

Maxwell himself was well aware of the fact that one is not particularly 

interested in the velocity distribution function itself, but in certain lower 

moments of this function. Accordingly he constructed4~ntegral equations of 

transfer of any quantity Q that is a function only of the components of the 

particle velocity. By taking Q to be successive ly the collisional invariants 

of mass, linear momentum and translational kine tic ene rgy of a particle, 

Maxwell obtained the usual gasdynamic conservation laws, independently of 

the form of the distribution function. By taking Q to be the cross-products 

of particle velocity, and the flux of kinetic e n e r g y, he derived relations for 

the stresses and heat flux for a special choice of the distribution function. 

Clearly this procedure amounts to satisfying the Maxwell-Boltzmann equation 

in a certain average sense, rather than point-by-point. In this respect 

Maxwell's approach is analogous to integral m e t hods in fluid mechanics, 

such as the Karman6 -Pohlhfl.use n method for boundary layer flows, and its 

d .f. · b T · 7 
recent mo 1 1cat1on y an1. 

Recently there have been encouraging signs of a return to Maxwell's 

transport integral method. However, Grad8 , and Gross 9 , et al, utilize 
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polynomials of the Chapman-Enskog type in the distribution function, which 

introduces an undesirable rigidity into the procedure. In the present 

1 eport we try to make a clean break with the Chapman-Enskog tradition. 

The distribution function is regarded merely as a convenient weighting 

function, and is expressed in t erms of a certain number of arbitrary, 

initially unknown functions of space and time. A sufficient number of 

Maxwell moments are taken to determine these functions. For simplicity 

the problem is formulated in terms of a "two- stream Maxwellian", which 

is a natural extension and generalization of Mott-Smith' s 10 approach for 

the normal shock wave, but differs from it in certain essential respects. 

Of course no integral method is "unique", and in fact, one of the purposes 

of this report is to stimulate discussion of other possible integral 

techniques for rarefied gas flows.* 

Because of its importance for all our later work the question of 

the range of validity and basic approximations underlying the Maxwell­

Boltzmann equation is reexamined in Section II. After a brief survey of 

methods of attack based on the Maxwell-Boltzm.ann equation itself 

(Section III. l),the present integral method is formulated and its 

connection with Mott-Smith1 s work indicated (Section III. 2). The 

important simplification introduc ed by Maxwell 1 s inverse fifth power law 

of force is discussed in Section III. 3, and the boundary conditions for the present 

method are treated in Section III. 4. As an illustration of the method, linearized 

plane Couette flow and Rayleigh's problem are analyzed in Sections IV and V. 

In later papers it is hoped to apply the present technique to non-linear 

aspects of rarefied gas flows, including dissipation and large temperature 

differences. 

* A paper by Max Krook
44 

has just appeared in which a series of 
Maxwellians modified by polynomials is employed. No examples of this 
method are available as yet. 



II. STATISTICAL MECHANICAL THEORY 

OF TRANSPORT PROCESSES IN GASES 

II. 1. Phase Space, Liouville's Equation and the Averaging Process 

5 

In classical mechanics the dynamical state of a system of N 

particles at any time t is represented by a single point in 6N-dimensional 

phase space containing the 3N momentum coordinates (pk)l' (pk)Z, ... , 

(pk)N, and the 3N configuration coordinates (qk)l , .•• , (qk)N, where 

k = 1, 2, 3. Actually it is more convenient to deal with a vector Pin 

momentum space, consisting of the N vectors P
1 

, P 2 , •.• , PN , and a 

vector Q in configuration space, composed of the vectors R 1 , ••. , RN 

specifying the positions of the centers of gravity of the particles. Now 

it is clear that a specification of the macroscopic properties p, T, u
1
, 

p . . , and q. of the system at a given time t certainly does not specify the 
lJ J 

dynamical state of the system. We are led to Gibb's conception of a 

statistical ensemble, consisting of many different dynamical states all 

corresponding to the same macroscopic state at a given time t, but all 

starting from different (and arbitrary) initial conditions. This ensemble 

is characterized by a probability density f(N) (P, Q; t), such that 

f{N) (P, Q; t) dP dQ is the probability of finding N distinct particles at 

time t in the region Rl --;.. R 1 + dR1 , R 2 ~ R 2 + dR2 , ••• , RN---+ RN + dRN , 

with momenta in the range P 1 ~ P 1 + dP1 , .•• , PN ~ PN + dPN • 

By analogy with ordinary gas dynamics, the "equa_tion of continuity" 

in phase space takes the form 

+ div ( f(N) V ) = 0 (1) 

where V is the "velocity vector" along the trajectory of the dynamical 
• • 

system in phase space, with components P, Q • According to Hamilton's 

equations* 

= and aH (2) 

* The Hamiltonian H represents the total energy of the system, 
including intermolecular and external forces . 

• 
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so that 

N 3 

div V = I I + = 0 (3) 

a= 1 k= 1 

In other words the volume occupied by a given swarm of points in phase 

space is unchanged along a trajectory. By Eq. (1) it follows that the 

probability density f(N) is also unchanged, or (Liouville's equation) 

af<N> 
N 

[ :: . 1/pn f(N) ] + I VR 
f(N) + (X + F ) 0' (4) = at a a. 

a= 1 
a 

where 

p = m R and X +F = p (5) 
a a. a. a. a a 

Here X denotes the external force acting on a particle a, and is assumed 
a. 

to depend only on the coordinates of a; F is the interparticle force 
a. 

exerted on particle a by all the other particles of the system. We consider 

only non-polar interparticle force fields, for which 

N 

Fa = L F a.(3 
(3= 1 
pia 

and 

In Lagrangian form 

and 

or 

f(N) (P, Q; t + s) = f(N) {P
0

, Q
0

; t) 

(d P d Q)t+s 

a (P, Q) 
a (P , Q ) 

0 0 

= (d p d Q)t -

= l 

d p d Q 
0 0 

(6) 

where P , Q are the values of P and Q at some arbitrary initial instant. 
0 0 

As in most statistical problems the probability density f(N) is 

utilized to obtain certain interesting averane properties of the system 

that can be identified with observable quantities. Kirkwood 
11 

points out 

that three distinct averaging processes are involved in the macroscopic 

measurement of a property ¢ (P, Q) not explicitly dependent on the time. 

The ensemble average is defined by the operation 



at time t. In order to smooth out microscopic fluctuations in particle 

distribution we define a time average as follows: 

t 

= (1/t) J ¢ (P; Q) ds 

0 

7 

( 7) 

(8) 

where 'L is a time interval that is long compared with the duration of a 

representative collision, but is still very short on the macroscopic time 

scale. (In Section II. 2 we show that ~ < < 7: < < t f') The "observed 

value" of ¢ is defined by the combined operation 

r: 
(¢)obs = [<¢>'t' ]e = (l/1:') JJJ ¢;>(P, Q) f(N) (P

0
, Q

0
; t) ds d P

0 
d Q

0
• (9) 

0 

If these averaging operations are commuted, one obtains 

~¢>e]'[' = JJ ¢(Po I Qo) r(N) (Po I Qo; t) d Pod Qo I (10) 

where the "time- smoothed11 probability density y(N) is given by 

7: 

r(N) (P
0

, Q
0

; t) = (1/'l') J f(N) (P
0

, Q
0

; t + s) ds (11) 

0 

According to Eq. (6). 

f( N) ( P
0 

, Q ; t) d P d Q = f( N) ( P , Q ; t + s) . d P d Q , 
0 0 0 

so that Eq. (9) 

[<¢rl ]e = JJ ¢ (P. Q) T(N) (P, Q; t) d P d Q (12) 

which is clearly identical with [<¢el] . 

The commutability of the ti~e and ensemble averaging processes 

is evidently closely connected with the reversibility of dynamical states 

expressed by Liouville's equation. At this stage there is no evidence of the 

dissipative mechanism required to describe macroscopic transport processes 

correctly. Such a mechanism is introduced only when one considers the 

time history of the 11 lower-order 11 probability densities, 

-ll) (2) (1) (2) 
f' (P1 , a 1 ; t) • T (P1 , a 1 , P 2 , a 2 ; t) etc., ·where T and T 

are generally sufficient to specify most of the interesting macroscopic 
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quantities in a gas. These functions are defined by the relations 

where the integration extends over the residual phase space of the other 

N•n particles, and 
7: 

(13) 

J f(n) (Pl, R 1, ••• , P , R ; t + e) ds • ( 14) 
n n 

0 

When the function ¢(P, Q) does not depend on all the coordinates 

in the 6N dimensional phase space, but only on a subset of n particles, then 

according to Eqs. (12), (13), and (14), the average value of ¢(P, Q) is 

given by 

¢obs p n' Rn)dPl dRl ... I dP n dR~ r(N) dP n+ 1 dRn+ r. dPNdR N 

For example, for a system of one component consisting of N particles 

the mass flux is given by 

.. J r<t> . p u = N Pl (P1, 0
1 

, t) d P 1 

( 15) 

In defining macroscopic quantities in a gas it is often necessary to 

perform still another averaging operation over a macroscopically small 

region in configuration space having a representative linear dimension 

large relative to the sensible rang e of interparticle forces, but small 

compared to the mean free path (Section II. 2). 

Our task now is to develop the equations governing the behavior of 

the sequence of particle distribution functions r(n) by starting from 

Liouville's equation [Eq. (4)] and the definitions given by Eqs. (13) and (14), 

utilizing essential information about the structure of the dynamical system. 

For a dilute gas this procedure leads to the Maxwell-Boltzmann equation 

for the important single-particle distribution function rP > • 
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II.Z.Review of Kirkwood's Derivation of the Maxwell-Boltzmann Equation 

from Liouville's Equation 

Suppose the dynamical system consists of N particles, where Nj 

is the number of particles of the /h species, and j = 1, 2, ••• , ~ • In 

deriving the basic equation for r< 1> from Liouville's Equation it is helpful 

to rewrite that equation as follows: 

af<N> 
+ [5_ \JR. f(N) + (Xi+ Fi) . 

at m . 
1 1 

\/pi f(N)] 

( 16) 
N 

[ + L \JR ( f(N) R ) + \lp a. 
a=l 

a. a. 
( f(N) pn ) ] = 0 

a~i 

By integrating Eq. (16) over the residual phase space of all particles 

except 11 i 11 , taking the time averag e specified by Eqs. (11) and (12), and 

making use of Eqs. (13) and (14), one obtains* 

ar( 1> 
i 
at + 

+ ~Jf[vRn 
ali 

..) 

I = N. 
J 

j= 1 

y 
.:: L 

j= 1 

\JR. r:P> + xi . \}p, r.< 1) 
1 1 

1 1 

( f(N) R ) 1- \Jp ( f(N) p ) JdP1 ••• dRN a. a. 
a. 

[ ~ !If Fji . \lp, f(N) (P, Q;t+ s) d PI d RN ds] 
1 

where K .. is the quantity in brackets. Here F .. represents the force 

( 1 7) 

Jl th J1 
between any particle of the j species and particle "i". The summation 

extends over all species, including the spe cies to which particle "i" 
• belongs, but of course excludes the particle "i" itself. By Green's 

* The extension of this procedure to T(Z) . ••• T(n) is straightforward. 
See also Reference 13. 
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theorem the integrals on th e l eft- hand s ide of Eq. (17) ar e conve rted into 

surface integ rals of velocity a n d accel e ration "curre nts" over the boundaries 

of phase space conta ining the d ynamic a l system. Presumably the boundaries 

can always be cho sen s o that t hese currents va nish. T h e n the left-hand side 

of Eq. ( 1 7) is identical w ith the l eft- hand s ide of the Max well-Boltzmann 

Equation, and the rig ht- han d side c ontains the e ffect of the interparticle 

forces (''collisions") on the distri bu t ion function. 

In order to extend the integrations over all of phase space we 

introduce the delta function, as follows : 

JJ (N) -v .-v = f ~pi. Ri I p 1 .•• 
/\J ~ ~ ,..._, 

RN ; t + s ) o (P. - Pi) o(R. - Ri) d P . d R. 
1 1 1 1 

But according to Eq. (6), 

,..J 

f( N) ( ~ ' Ri • p 1 . . . RN ; t + s) 

and 

R . 
1 

0 

t) 

= 
"V -v 

d Pi d Ri d P l • • • d RN 
0 0 0 0 

Also, the Lagrangian coordinates P . and R . ar e connected with the "local" 
1 1 

coordinates by the relations P. = P .
0

- ~ P . 
0 

and R. = R. - C:l.. Ri . 
1 1 1 1 1 

0 0 

By introducing all of thes e r elations on the right-hand side of Eq. (17) and 
"' ..v changing the variables of integra tion from P . , R. , P

1 
••• RN to P. 

"' 1 1 10 
Ri P

1 
RN , one obtains the following e xpression for K .i 

0 0 0 J 
T' 

Kji = (1/'l") JJJ 
0 

(N) "' -v 
F .. (t+s) • \Jp f (P. • R. 

J1 i 10 10 
t) 

In order to make any fur the r prog ress one must introduce 

simplifying approx1mations bas e d o n the prope rties of the dynamical system. 

For dilute gases the most important of these is the approximation of 

"molecular chaos". In 3-configu r ation space this approximation states that 

the probability of finding three or m ore particles in a region of linear 



11 

dimensions of the order of two or three times the sensible range of 

intermolecular forces is negligibly small compared to the probability of 

finding two particles in such a region. The validity of this approximation 

clearly depends on the fact that the time interval between two successive 

collisions of a particle is larger than the duration of a binary collision by 

at least several orders of magnitude (See Introduction.)*. According 

to the statement of molecular chaos the coordinates R. and R. of the interacting 
1 J 

particles "i" and "j" depend only on the "initial" coordinates and momenta 

of these particles R. , R . , P. , P . , and not on those of any other 
1 o Jo 1 o Jo 

particles in the system. Thus F .. = F 'i ( 1 R . - R. I ) also depends only on 
J1 J J 1 

these quantities, and (8/Bs)(.tlP. ) = F .. (R., R . ; t + s) • This last 
1 J1 1 J 

relation, which is usually called the binary collision approximation, 

evidently follows directly from the approximation of molecular chaos in 

3-configuration space. 

When the molecular chaos approximation is employed, all of t h e 

quantities except T(N) in the integ rand of Kji [Eq. (18)] depend only on 

R1 , Rj , Pi 1 P. • Now 
o o o Jo 

(N) . (2/N) -v ,.., (2) N IV 
f (P • Q ,t) = fi. (P. I R .• P .• R . • Pl ••• QN;t) fi. (Pl. , Ri , pj , R. ;t) I 

0 0 J 1 o 1o Jo Jo J o o o Jo 

where f\~/N) is the relative probability density in the residual phase space 

of the other N-2 particles, when the particles "i" and "j" have specified 

coordinates P. , R. 1 P . , R . in the 12-dimensional phase space of 
1 o 1o Jo Jo 

that pair. The integration of£. . <2/N) over this residual phase space can 
lJ 

now be carried out to give unity, and the expression for K.
1 

becomes 
~ J 

Kji = ~ Iff Fji . 
(2) 1'\.1 IV '\lp f.. (P. • R. • P. I R. ; t) 

i 1J 1
0 

1
0 J 0 J 0 

0 
~ N ~ 

o(Pi +~i-P1 )o{R. +tlR.-R. )d P . 
1 1 1 1 

0 0 0 

,. 
d R . 

1 
0 

( 19) 

* Actually Kirkwood
11

• 
12 

introduces a "cut-off" distance R such 
that F . . vanishes for all R > R . For neutral particles the interparti2le 

J1 0 

force field decays so rapidly w ith increasing separation distance that 
this limitation is not an essential one. For charged particles the 
situation is not quite so simple because of the long-range Coulomb forces. 
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With this last result for Kji the diffe rential equation forT?) Eq. (17) 

ls identical (except for the time averag es) with that found by Born and 

Green by a somewhat different approach [ Eq. (6. 1), page 7, Reference 13, 

Part I] • 

In velocity space the approximation of molecular chaos states that 

(ZO) 

i.e., the joint probability d e nsity of two interacting particles is equal to 

the product of the~ priori indepe ndent probabilities of the two particles 

considered separately. Evidently this statement is closely connected with 

the approximation of binary encounters. During such an encounter fij (Z) 

is unchanged, since no third particle intervenes. Each particle experie a c e r 

a certain finite change in mome ntum and then goes its separate way, with 

no ''memory" of the collision process itself. Thus after a collision, 

f
1
/ 2) = fi(l). f/ 2 ). But £

1
/ 2 ) is constant during the colli-;ion, so that 

Eq. (ZO) holds throughout the duration of the binary encounter. Clear l y 

this approximation plays a key role; without it the differential eq\lation for 

rf 1) involves f
1 

.< 2
), and one must deal with the sequence of equations for 

(Z) J (3) (3) . (4) 
fij in terms of fijk , fijk 1n terms of fijkl , etc. (See for example, 

Eq. (6. Z), page 7, Refer e nce 13, Part I.) 

Our list of approximations is completed by requiring that fi (1) and 

f.(l) do not vary appreciably ove r a distance of the order of the range of 
J 
interparticle forces, or in a time interval of the order of the duration of a 

representative collision. In othe r words this analysis cannot deal with 

bodies that are themselves of molecular size, but the linear dimensions of the 

objects involved can certainly be small compared with the mean free path. 
AJ 

By employing this approximation, one can replace o(R. + li R. - Ri) by 
-v -v 1 1 

o(R1 - Ri ), and R. by Ri in Eq. (19). By changing t'be variables of 
o Jo o 

N ~ ~ 

integration from Ri , R . to Ri and (R. ) = R . - R. , employing 
o Jo o 1j 0 Jo 1 o 

Eq. (ZO) and making use of the properties of the delta function one obtains 

(21) 

where 



0 

Carrying out the integration in Eq. 

[ 5( Pio +~pi - Pi)] 

(22), one obtains 

Il = 5(Pi + L\.Pi(t) - Pi) - 6 (Pi 
0 0 

- F) i 

tv 
whtre Pi'= Pi + ~Pi(7:') • 

0 

13 

de (22) 

(23) 

The final question to be decided is the magnitude of the time 

interval 'l'. Of course one would like to make this time interval long enough 

so that the value of Kji [Eq. (24)] is independent of Z: • That this question is 

not a trivial one can be seen by considering the limiting case 't' ~ oo. 

According to Poincar~' s theorem, for a system of particles confined to a 

finite region of phase space, in which the forces depend only on the spatial 

coordinates, a given initial state must recur at least once to any desired 

degree of accuracy, if one waits long enough. Thus there exist · Poincare 

cycle periods within which each orbit is traversed in the reverse sense, 

thereby cancelling its initial contribution to the integral Kji' Now for 

dilute gases the Poincare cycle periods are extremely long even on the 

macroscopic time scale. Therefore, this apparent paradox b~tween 

dynamic rever sibilit;y and thermodynamic or macroscopic irreversibility 

is resolved by choosing l" to be large relative to the duration of a 

representative collision, but short relative to the Poincare cycle period. 

In fact it seems to the present writer that the magnitude of 7.: 

is clearly dictated by the dynamical structure of the system, and 

particularly by the molecular chaos - binary enc:ounter approximation. 
' 

Suppose we consider a binary encounter between a "j" particle and an "i" 

particle in coordinates relative to the "i" particle (Figure 1). Suppose 

that Fji vanishes outside of a sphere of radius R = 2 - 3 a- , where o-o 0 0 

is the minimum energy distance. Let b equal the perpendicular distance 

between "i" and the initial trajectory of "j" before the encounter, and let 

= [ l m . 
J 

~] m. 
1 

(Z4) 



(pij)o 
is the scalar magnitude of the initial relative velocity and m .. 

lllij lJ 

is the usual reduced mass given by the relation 1/mij = 1/mi + 1/lllj • 

ZR 
i -v 0 

The durat on of a representative collision is T = ( ) / 
c Pij o mij 

14 

By referring to Figure 1 one sees that the regions of relative configuration 

space occupied by the particle 11 j 11 at a given initial instant can be classified 

as follows (Reference 12): 

Region I 

r + I R 2- b2 
0 

For particles lying in this region the sphere of radius R · is not 
0 

penetrated in the interval t', so that~ Pi = 0 and the integrand in Eq. (24) 

vanishes. 

Region 11 

< (piJ.)O 
< z = m . . r + I R 

2
- b

2 
0 

lJ 

For particles lying in this region, occupying a vo1ullle 

r bdbdc 
c 

, only partially completed collisions occur in the interval 7:'. 

Region Ill 

m .. 
I R z- bz 

0 

< < I R z- bz 
0 

z 

lJ (p . . ) 
i 1 . 1 lJ 0 These part c es, occupy1ng a vo ume m .. 

experience complete collisions in the interval r . lJ 

Region IV 

( 2 2 
- R - b 

0 

< z < I R 2- b2 
0 

For these particles, occupying a volume z I R 
2

- b
2 

0 
bdbde 

partially colllpleted collisions are completed, or ~ultiply periodic orbits 

lllay be traver sed in the interval r . 
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Now the contribution to I [ Eq. (24)] of the incomplete collisions 

and multiply periodic orbits can be made as small as desired by choosing 

'r > > 't' , because the contribution of the completed collisions is 
c 

proportional to l . Thus 

_ r r J ( p ij) 0 [ t N ] ( 1 ) ~ N , ( 2) N • 
Kji -))... mij o(Pi -Pi)-o(P

10 
-P1) fi (Pi

0
' Ri,t)fj (Pj

0
, R 1,t) 

d Pi d P . bdbdE. + 0 ( 7:' /1:) 
o Jo c 

(25) 

On the other hand, it seems clear (although Kirkwood does not say so) that 

in a gas r must be short compared with the average time between two 

successive collisions; otherwise, the molecular chaos-binary encounter 

approximation makes no sense. Thus l'c < < 7: < < t'f · 
By conservation of total linear momentum, 

N 

~Pi= - ~pj = -AP*; so that Pi' - Pi= Pi - (flP* + Pi) , 
0 

and P . = Pj' -~P*, where the prime denotes quantities evaluated after 
Jo 

collision. By utilizing the properties of the delta function and changing 

variables, Kij is evaluated as follows: 

tV tV J T J 
(Pi)o 

[ f. (1) (P. + .6F'*, t) £.(1) (P. -/:::,P*, K .. = Ri; Ri' t) 
J1 m . . 1 1 J J lJ 

0 0 (26) 

-f.(l)(P., R.; t) f.(l) (P. 
-v 

t)] b db de. d P. ' Ri ' 1 l 1 J J J 

Substituting this result for K .. into Eq. (17), and taking time averages of 
Jl 

both sides of the equation over the time interval 7;', one obtains 

t!(l)' f}l)' f!(l) f}l) ] for the bracket in the integrand of Eq. (Z6). 

If fi (l) and f/ 1) do not vary appreciably over this time interval, the bracket 

can be replaced by ~r.(l) r.P> )' - r.(l) r.P>J ; when miN. r.(l) is 
1 J 1 J 1 1 

replaced by f., Eq. 7) becomes identical wit the Maxwell-Boltzmann 
1 

integra-differential equation: 



a£. 
1 -ar- + 

~ 

where d§' j = dp/mj . 

2Jrr J (p . . ) [ J . lJ 0 f 1 £ • 1 _ f. f. 
m. . i J 1 J 

0 lJ 
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~ 

bdbdeds. , 
J 

To smnmarize, the Maxwe ll-Boltzmann equation for a dilute gas 

is derived from Liouville' s equation for an arbitrary dynamical system by 

utilizing the approximation of molecular chaos, or independent a priori 

probabilities, in both configuration and velocity s pace. The essential 

macroscopic dissipative mechanism is introduc e d by taking averages over 

a suitable time interval t , w hich elimina~es the contributions made by 

incomplete collisions and multiply p e riodic particle orbits. This time 

interval must be long compar e d with the duration of a representative 

collision, but short compared with the averag e time between two succe s s ive 

collisions of a particle. In addition we require that the single particle 

distribution function f. must not vary appreciably over a distance of the 
1 

order of the sensible rang e of inte rparticle forces, or in a time interval 

of the order of the duration of a r e pre s entative collision. 

Clearly these approximations are intimate ly related to the structure 

of the dynamical system, but there is no rig orous proof of their validity; 

they must be regarded as working h y pothe s e s to be subjected to the test 

of experience. Thes e approximations w ould b e quite inappropriate for 

liquids, for example. In that case the equation for f . (l) involves f .. ( 2 ) 

[ Eq. ( 19)] , and this equation must be supple mented \y the equati~~ for 

fi.( 2 ) in terms of f . . kP), etc. Kirkwood 1 ~ and Born13 and Green,break 
J lJ 

this ascending seque nc e by e m ploying the approximation 

f .. k(3) 
lJ 

f (I) f (2) 
k ij 

= 

f (2) 
ik 

) . ) I 

( 27) 

i.e., the relative probability of the occurrence of a third molecule in 

conjunction with two others is equal to the product of the relative probabilities 

of the occurrence of this same n-10lecule in conjunction with each of the others 

separately. It is remarkable that in spite of the basic differences between 

the two systems the statistical rn echanical treatment yields the same Navier­

Stokes relations between the stresses and rates of strain for liquids and for 

gases at normal densities. From this point of view one should not be sur­

prised to find that the behavior of rarefied gases is quite different, at least 

according to the kinetic theory (Sections III and IV). 



III. MAXWELL'S EQUATIONS OF TRANSFER 

AND THEIR APPROXIMATE SOLUTION 

III. 1. Previous Investigations of the Maxwell-Boltzmann Equation* 

17 

Because of the non-linear collision integral in the Maxwell­

Boltzmann equation [Eq. (27)] most investigators are forced to resort to 

various linearization procedures . The most famous of these is the 
5 

Chapman-Enekog method, in which f is expressed as a series expansion 

of the form** 

where f is the "local Maxwellian'~ and the small parameter E is of the 
0 

order of 1:/t . [Here t is a characteristic flow time; for steady flow 

C. "'A/L, where L is a characteristic length and A is the mean free path. ] 

The motivation for this scheme can be appreciated by writing Eq. (27) in 

non-dimensional form. A factor (c CJ 
2 

n)T appears on the right-hand 
0 

side, and this factor is proportional tot /7:'£ 1\J 1/e . When the Chapman-

Enskog series expansion for f is substituted into the Maxwell-Boltzmann 

equation, the terms in the collision integral containing f alone drop out, 
0 

by definition, and the leading terms contain f 1. Thus, in first approximation 

f is replaced by f
0 

on the lefl-hand side, and f 1 is determined eo as to 

satisfy the reduced equation. No proof of convergence has ever been given, 

and one strongly suspects that this method, which leads to the Navier-Stokes 

relatione for a monatomic gas, is applicable only when E. is "sufficiently 

small" compared with unity. 
....17 

At the opposite end of the scale Jaffe suggested that the 

distribution function for n e arly-free molecule flow could be represented 
2 

by a series of the form fF. -M. + (L/~)f 1 ~ 8(L/>.) f 2 + ... , where (L/,\) 

is now the small parameter. Wang Chang and Uhlenbeck have applied 

this method, which they call "Knudsen iteration", to the shear flow and 

* Excellent rey~ews of prevfgus work in this field have been 
given by Grossl4, Willis , and Grad , so that only some of the main 
points need to be discussed here. 

** For a pure gas fi = f . 
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heat transfer bc·tween two infinlt e , parallel plates. This geometry turns 

out to be an unfortunate choice for Jaffe 1 s method, because a linearization 

procedure of this type leads to distribution functions containing a term like 

cxp [- .!:_ - 1
-] where s is the particle velocity in the direction normal 

A Sy Y 

to the plates. In this case the mean velocity distribution contains a term 

like (L/>.) log (L/>.) (see References 14 and 15), and Jaff~ 1 s procedure is 
e 

clearly invalid. Szymanski 19 has applied a similar method to low Mach 

number flow over a sphere. Again no estimate of the range of validity of 

this method is available. 

In an effort to generalize the Chapman-Enskog procedure, 

Mott-Smith
20 

and Wang Chang
18 

and Uhlenbeck utilized series expansions 

of the form 

f == 
00 

[ 
n::O 

~ 

A (R, t; Q) ¢ (c) 
n n 

where 0 is the angle between c and some prescribed direction, and the 

¢ 1 s are suitable orthogononal polynomials, e. g., Sonine or Hermite. But 
n 

the slow convergence of such series expansions is only another indication 

of their inappropriateness for rarefied gas flow, where the discontinuity, 

or "two-sidedness" in the distribution function is essential. 

In order to circumvent some of the difficulties experienced with 

the non-linear collision integral, Max Krook
21

• 
22 

proposed that this 

integral, which is of the form ( Df/Dt) · ll , be replaced by the linear co . 

approximation [ - ( f - :eq. )l , where a is some characteristic time. 

This approximation amounts td the choice of a single characteristic time 

for all particle velocities. The resulting equation for f, called the "Krooked 

Boltzmann equation", or the "ersatz" equation, has been studied by 
21 

Bhatnager, Gross, and Krook . 

Gross 9, Jackson, and Ziering recognized some of the unsatisfactory 

features of the Krook equation and were well aware of the essential 

requirement of "two side dness" in the distribution function for rarefied 

gas flows. For steady plane Couelte flow they employed a distribution 

function of the form 

f:: f
0 

[ 1 .+ ¢ (s, y)] 1 where ¢ <s 1 y) ;:::. ¢+ for .S > 0 , 
y 



and 
+ + + + 

¢ (_s, y) = ¢- for 5 Y < o, with ¢- = a
0 

(y) s x + a 1-

[Here x and yare directions parallel and normal to the plates, 

They obtained approximate solutions by satisfying the boundary 

19 

(Y)Sx~y· 

respectively.] 

conditions 

exactly, and utilizing the first few full-range (Method A) or half-range 

(Method B) v~locity mon:}.ent equations obtained from the Krook equation to 
- - 23 determine a

0 
(y) and a 1 (y) . In a later paper Gross and Ziering studied 

plane Couette flow by applyirg this procedure to the linearized MaXl.'Vell-Bolt:zrnann 
24 

equation for f, and Gross and Jackson analyzed the linearized Rayleigh 

problem by the same method. This procedure comes closer to the spirit 

of Maxwell 1 s moment integral approach (Section III. 2), but is still 

unnecessarily restl'icted by the use of polynomials for ¢. A comparison 

between this method and the present scheme for plane Couette flow is given 

in Section V. 1. 

Recently Willis
15 

developed an iterative method primarily for 

nearly-free molecular flows, based upon a transformation of Eq. (27) into 

an integral equation. For steady flow in the absence of external forces 

Eq. (27) for a pure gas can be written as follows: 

...;. ~~ ---s . VR f = -f . D {f, R, s ) + p (f, R, s ) 
where 

and 

~ 

The superscript 11 1'' denotes the colliding particle and s is the vector 

particle velocity. This equation is integrated formally to give 

-+-
f (R + 

0 

-+ -+ 
g, s ) = 

+ -+ + 

f (i0 ,g) exp -{! ffi dR"} 
0 ~ 

R 

exp{ ~ ~ 
~ p D 

+ dR --:::;:- iT! lsi 
0 

dR"} , 
where f = f (R •S ) at R = R , and the integration is carried out along 

0 ~0 

(28) 

(29a) 

(29b) 

(30) 

straight lines parallel to .f . For nearly free-molecular flow the iteration 

is begun by evaluating D and P from the free-molecule distribution function. 

The first iteration is equivalent under certain conditions
15 

to the "first 
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collision" method, in which the only collisions considered are the first 

ones experienced by a particle as it leaves the body. 
25 

Willis utilizes 

Krock's model in applying his method to linearized plane Couette flow~ and 

to the flow over a sphere, disc, and two-dimensional strip. The results 

obtained are quite instructive, and it would be interesting to apply this 

promising method to the Boltzman equation itself rather than to Krook1 s 

equation, in order to clarify the role of the non-analytic behavior of "f" 

near$ = 0 in Krock's model. ( See Section V. 1. ) 

To summarize the situation, none of the methods proposed for 

attacking Eq. (27) directly appears to be generally satisfactory. In fact 

some of the so-called "improvements" on the Navier-Stokes relations 

only make matters worse. A thorough exploitation of the Maxwell 

integral equations of transfer would seem to be long overdue. 

III. 2. Maxwell's Equation of Transfer: Present Method 

Suppose that Q is any function of the velocity components of a 

particle, (momentum, energy, etc. ) and we want to obtain the general 

equation for the rate of transport Q. This equation can be derived from 

Eq. (27), or it can be obtained more directly by considering the various 

sources of change in the amount of Q contained in a fixed volume. For 

simplicity, consider a pure gas.* The total an10unt of Q per unit volume 

is given by 

~ ~ J -+ ·~ -+ -
n(R, t) •. Q (R, t) = Q( g ) f (R, § , t) d .§ (31) 

where Q is the mean value of Q. The rate of increase of this amount per 

unit time is a/at (n Q), and this quantity must be equal to the sum of three 

terms: (1) the net rate of change in total amount of Q per unit volume 

caused by the flux of particles across the bounding surface of the fixed 

volume; (2) the effect of external forces and curvature of the coordinate 

system on particle acceleration; (3) the effect of collisions. 

Now in vector notation the first effect is given by 

* There is no conceptual difficulty in extending this treatment 
to mixtures. 
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- vR . [ J f r Q d r ] . ... 
while the second is given by 

~ 

where Sl. is the local instantaneous angular velocity vector introduced 

by the curvature of the coordinate system."'* The number of collisions 

per particle per unit time is equal to 
~ + ~ 

V f 
1 

( s 
1

, R, t) b d b d E d .§ 

~ -
[Figure 1] where V =Is 1 - s I , and the number of particles per unit 

...;. - .. volume is f (.5, R, t) ds , so that the rate of change of total amount of Q 

from this source, ~Q, is given by 

~ Q = JJJJ (Q' _ Q) f £1 v d r d rl b d b dE. • (32) 

where Q 1 - Q is the change in Q experienced in a collision. Finally, the 

Maxwell integral equation of transfer is obtained as follows: 

(a/at) <Jfo~> + VR .[ Jf! o d!J = Jff;/m- <-~xs>}~~o dt+~o • (33) 

whereflQ is given by Eq. (32) . 

This transport equation has been applied in studies of the motion of 

electrons and ions
26

, and it was utilized by Maxwell4 band by Chapman5 in 

developing the Chapman-Enskog procedure ( Section III. 1 ) • However, it 

does not seem to have been employed in later fluid mechanical studies 

until the work of H. Grad
8

. In Grad 1 s thirteen-moment method the 

distribution function is a linear function of the stresses and heat fluxes, 

which are now regarded as separate dependent variables not explicitly 

related to p, u, T and their derivatives. Thua. in a rectangular Cartesian 

coordinate system, 

f =· f 
0 2p~ T 

c. c. -
1 J 

2 c 
5(R T 

where f is the local Maxwellian. By substituting this expression for f 
0 

into Eq. (33), and by taking Q to be equal successively to m, m .Si' 

~ ~ 

* The components of$ are independent'of R, but the unit vectors 
are not. 

** In a Cartesian coordinate system the second term inside the 
braces vanishes (Appendix A). 
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m( 52 /z>. ms i sj • and m si (_52 
/2). thirteen partial differential equations 

(including the conservation relations) are obtained for the thirteen 

independent moments p. \i. T. p .. and qi. Grad's method yields a 
lJ 

qualitatively correct transition from free-molecule flows to the Navier-Stokes 

regime when it is applied to relatively simple problems such as plane 
27 . 28 

Couette flow and Rayle1gh 1 s problem at low Mach number. But the 

expression for f does not have the bimodal character that is an essential 

feature of rarefied gas flows, and it is still quite restrictive in its use 

of polynomials in the particle velocity. This formulation introduces 

undesirable cross-couplings between the normal stresses and heat 

fluxes.* These deficiencies probably account for the unsatisfactory 

results obtained in the case of a normal shock wave
29

. 

In order to make any further progress it seems necessary to drop 

the search for "higher order" macroscopic equations such as Burnett's. 

Grad's, etc. An important advantage of Eq. (33) over Eq. (27) is just the 

fact that it permits a large amount of flexibility in the choice of f, which 
5 8 9 is obscured by the Chapman-Enskog • Grad • and Gross procedures. 

The distribution function can be expressed in terms of a number of 
+ 

arbitrary functions of R and t, selected in such a way that the boundary 

conditions of the problem are satisfied. Physical reasoning can be 

introduced at an early stage of the analysis. The essential non-linear 

character of the collision term can be preserved and questionable 

expansion and linearization procedures avoided, Of course the !'roper 

number of moments must be taken to insure that a complete set of first­

order partial differential equations is obtained for the undetermined 
-+ 

functions of Rand t, The number of these functions (or moments) employed 

will depend on the "level" of information or the degree of detail desired. 

The value of such an integral method depends upon the fact that for many 

problems the moments are not particularly sensitive to the assumed 

weighting function, provided only that certain lower-order moment equations 

are satisfied. 

The present approach was stimulated by Mott-Smith 1 s
10 

treatment 

of the normal shock wave. In that analysis he employs a distribution function 

that is the sum of two full-range Maxwellian terms, corresponding to the 

subsonic and supersonic streams "far" downstream and "far" upstream. 

* Paper by D. K. Ai to appear shortly. 
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The velocity and temperature functions appearing in these Maxwellians 

are taken as constants, and are therefore related by the usual Rankine­

Hugoniot conditions, but the number densities of these Maxwellians are 

initially undetermined. The number density distributions through the 

shock region are found by solving the transport equation [ Eq. (33)] with 

Q = ms 
2 

, or alternatively, with Q = ms; 
3

• As Mott-Smith points out, 
X X 

his analysis is designed especially for strong shocks, where the bimodal 

character of f is expected to predominate. One cannot expect this 

treatment to be valid for weak shocks, and in fact the recent experiments 

of Sherman
30 

and Talbot show that it is not. 

Mott-Smith1 s formulation must be modified and generalized in 

such a way that the following basic requirements are satisfied by the 

distribution function: (1) It must have the "two-sided" character that is an 

essential feature of rarefied gas flow; (2) It must be capable of providing a 

smooth transition from rarefied flows to the Navier-Stokes regime; (3) It 

should lead to the simplest possible set of differential equations and 

boundary conditions consistent with requirements ( 1) and (2). 

A simple distribution function that satisfies the requirement of 
11 two-sidedness 11 is suggested by the situation for free-molecule flow. In 

that limiting case the collision term in the Maxwell-Boltzmann equation is 

negligibly small, and in the absence of external forces the "characteristics" 

of Eq. (27) are very nearly straight lines, representing the paths of 

particles moving with unchanged velocity both toward and away from solid 

surfaces. The distribution function at a point P (Figure 2) is governed 

by the "line of sight" principle; the influence of the body at Pis confined 

to the conical surface formed by the limiting tangent rays drawn from P 

to the surface. Consider the simple case of diffuse reflection at the surface. 

For all outwardly directed particle velocity vectors lying within this cone 

(Figure 2) f is the Maxwellian corresponding to the velocity and temperature 

of the surface. For all other velocity vectors f is the free stream 

Maxwellian. A natural generalization of this distribution function is 

provided by the following representation: 
~ 

For s lying in Region I (Figure 2 

f = £
1 

= n
1 
("k, t) r. 1 _,. ]

3

/Z exp 

L 2n <R T 1 (R, t) J 
(34a) 
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In Region II (all other f 

+ [ 1 f = £2 = n 2(R, t) ..,. 
21r0\ T 

2
(R, t) ]

3/2 exp{- ( g - ~2->(;, t)2 } • 

2tR T 2 (R, t) 

+ .. ~· +~ .. ~ 

(34b} 

where n
1 

(R, t), n 2 (R, t), u
1 

(R, t), u 2 (R, t), T 1 (R, t), and T 2(R, t} are ten ... 
initially undetermined functions of R and t. In a sense, the functions 

n
2

, ~2• T 
2 

represent the "screening effect" on the oncoming stream of 
-+ 

the particles reflected from the surface, while the functions n 1 , u
1

, T 
1 

contain the effect of the "free stream" particles on those emanating from 

the surface. All macroscopic quantities of interest are uniquely determined 

by these arbitrary functions. 

Evidently a similar representation can be utilized for flows confin d 

between two solid surfaces. A simple example is provided by the problem 

of steady, plane Couette flow between two infinite, parallel plates in 

relative motion (Figure 3) . In that case f is given by the following 

representation, involving six undetermined functions: 

For Sy > 0, 
r_. ]2 z. 2 
lSx - u x

1 
( y) + S y + S z 

2(RT
1

(y) (35a) 
1 .f3/2 

f = fl = nl (y) [ l1T(RT 1 (y)J exp -

For .§ y < 0, 

f;::::. £2 (3Sb) 

where f 2 is a similar generalized Maxwellian containing the functions 

n 2(y), T 2 (y), ux
2 

(y). A simple example of a non- steady flow (Rayleigh's 

problem) is given in Sections IV. 3. and V. 2. 

One important difference between the present formulation and 

Mott-Smith1 s
10 

is that the distribution functions given by Eqs. (34)- (35) 

are discontinuous in the particle velocity, whereas Mott-Smith' s function 

is continuous. This discontinuous behavior is dictated by the requirements 

of "two-sidedness" and a non-vanishing shear stress, but it also turns out 

to be quite useful in satisfying the requirement of a smooth transition to the 

Navier-Stokes regime. Because of the success of the Chapman-Enskog 

procedure for t/'tf > > 1, one is accustomed to asspciating shear stress 

in this region with an anti- symmetric distribution function containing terms 
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like c
1 

cj. Yet, in the "simplified" kinetic theory derivation of transport 
Zb 

properties the shear stress is equated to the momentum flux carried by 

particles crossing a given plane from above with the mean velocity 

u + a A (au/By), minus the momentum flux carried by particles crossing 

from below, with the mean velocity u - aA (8u/8y). Clearly the present two­

stream Maxwellian model is fully capable of representing this situation, 
+ -+ + \ I provided the functions u 1 and u2 approach u - a/\ (au By), respectively, 

in the Navier-Stokes limit (Re/M ~ oo). In the two simple examples of 

plane Couette flow and Rayleigh's problem studied so far (Section IV), 

one finds that the solutions obtained do in fact join smoothly to the Navier­

Stokes solutions when b/ A > > 1, or when t/?:f > > 1. 

Of course these remarks apply equally well to the normal stresses, 
10 

so that (for example) Matt-Smith's treatment of the normal shock wave 

must be modified by taking a distribution function that is discontinuous at 

Sx = 0. 

The question naturally arises as to the minimum number of arbitrary 

functions that can be employed in this representation of the distribution 

function. The minimum number is imposed by the requirement that at 
4b 

least the conservation laws should be satisfied. As shown by Maxwell 

the ordinary gas dynamic conservation equations are obtained regardless 

off by taking Q in Eq. (33) to be the collisional invariants of mass, momentum, 

and energy, successively. If Q = m, the particle mass, then the right-hand 

side vanishes. By definition p = J m f d ""§ and p ~ = J m f-; d r I so that 

Eq. (33) yields the equation of continuity: 

Bp/ot + \jR. (p ;i) = 0 (36) 

When Q = m-; the right-hand side of Eq. (33) becomes J f-;: d_5' 1 

provided that the force is not a function of the particle velocity, because 

the vector momentum is not aUcc lc tl by curvature of the coordinate system. 

But L f F d 5 = n 't = .;;;; 1 , the vector force per unit volume. By recognizing 

that~= t + ti, where tis the intrinsic, or relative particle velocity, the 

second integral on the left-hand side of Eq. (33) is evaluated as follows: 

f mflidi = fm(~+~)(~+~)fdr =mf-cttdg+pti\r (37) 

But m J ~; f d"§ = - (), where cr- is the stress tensor. In this case, Eq. (33) 

becomes 



(8/at) (p ~> + () R . (p ~ ~ > = ;; + VR · ~, 
or 

-+- -+ ~ --
p (ati/at) + p!. '\JR u = .;;# + 'VR · o-

which is identical with the usual gas dynamic momentum equation. 

Similarly, by taking Q = m g 2 
/2, utilizing the kinetic theory 

definitions of the temperature and the heat flux vector, 

and 

(3/2) n k T = (3/2} p R T = m J(c
2 
/2) £ dJ , 

q = m c (c /2) f d S , 7 j+ 2 -+ 

and making use of the continuity equation [Eq. (36)] , one obtains the 

energy equation: 
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(38a) 

(38b) 

(39) 

(40) 

8 3 u
2 ~ ~ 3 u

2 
- _,. ~ ~ - -

P]t(-zRT+-z-)+pu. '\jR(-zRT+y)=-'\JR· q+VR· (<!u)+~. u ·. (
1 1) 

By utilizing the momentum equation [Eq. (38)] , the energy equation 

[ Eq. (41 >] is transformed to the following relation 

--+- -- -+-+ 
(8p/8t) + \jR . (p "ii) = - 2/3 (\jR. q) + 2/3 (cr. 'JR u} (42) 

where 

p=pRT 

We may also write 

cr=-p.!_+!., 

J +~ where ~is the identity tensor, and_! = - m ( ' c c -

e. g., in any locally orthogonal coordinate system 

P .. = - p + p .. 
11 11 

where 

and 

(43) 

(44a) 

(44b) 

(45a) 

(45b) 

(45c) 

Thus the minimum number of moments is equal to the number of 

collisional invariants. In an axially- symmetric or two-dimensional flow, 

for example, a minimum of four moments is required. Now the two-stream 

Maxwellian distribution function represented by Eqs. (34) and (35) contains 

eight undetermined functions in this case, so that a maximum of four of 

these functions can be chosen in advance. Of course one will generally 

utilize one or two moments in addition to the collisional invariants, and the 

moments corresponding to the stresses and heat fluxes are the logical 
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choices (Sections III. 3. and IV. ) • Evidently the approximation is 

systematically improved by taking additional moments in Eq. (33), but it 

is very difficult to make any useful statements in advance regarding the 

convergence of this process. Experience with this important question 

must be obtained by solving certain typical flow problems (Section IV. ) • 

III. 3. Collision Integral for Maxwell Particles 

Once the two- stream Maxwellian is selected as the particle velocity 

di atribution function, the collision integral appearing in 

Maxwell's integral transport equation [ Eqs. (32) and (33 ), Section III. 2.] 

can be evaluated for any arbitrary law of force between the particles. At 

this stage of the analysis it seems desirable to select the simplest inter­

particle force field that contains the main short-range features of the 

binary collision "model" [section II. 2]. This approach will be particularly 

useful for non- linear problems, where we want to preserve the essential 

non-linear character of the collision integral. More sophisticated inter­

particle potentials can be employed later if a more refined description of 

real gas flows is found to be desirable. 

Maxwell 1 s famous inverse fifth-power force law provides just the 

simplification required, because with the proper choice of variables the 

relative velocity V = 151 - ~I is eliminated from the collision integral 

/lQ. By considering the classical two-body problem in the plane of the 

orbit one findszc, 4 b that the motion of the colliding particle relative to the 

"probe" particle (Figure 1) is equivalent to the motion of a particle of unit 

mass about a fixed center of force. For a central force field of the type 

m
1

m 2K 
F = the potential energy at a distance r for this particle of unit 

s 
r 

(m1 + m 2) K 
mass is given by s-l The important parameter appearing 

(s-1) r 
z 

in the equations of motion is the ratio of the kinetic energy V /Z to the 

2 s-1 
V {s-1) b • * This 
2(m1 + m 2)R potential energy at the distance r = b, or 

* As in Sections II. and III. Z., b is the impact parameter, or 
perpendicular distance between the probe particle and the initial trajectory 
of the colliding particle. 
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parameter determines the total d e fl e ction or scattering angle during a 

collision. Suppose that b is replace d by a new variable a, defined by the 

relation 

a = b [ 

2 ]1/s- 1 

(m
1

: m
2

) K 

which is just the scattering angle parameter raised to the [1/(s-l)]power, 

except for a numerical factor. The n the quantity V b d b appearing in the 

collision integral~ Q [Eq. (33)] i s replaced by 

For s = 5, V disappears, and 

where 

b.. Q = J (ml + Mz) K J f f fl J d r d.L (46) 

J = j 7 (Q' - Q) n d n d E ( 47) 

0 0 

In other words for s = 5 the collision integral A Q is given by the value of 

J averaged over the velocity spac e of both the probe and colliding particles, 

where J depends only on the binary collision process and not on the velocity 

distribution function itself. The v alue of 6. Q is proportional to the ave r a ge 

value of Q itself, and for the lower moments~ Q contains the components 

of the shear stress tensor and heat flux vector. 

Since Q is always some function of the particle velocity and its 

components the change in the velocity components of the particles during a 

collision must be evaluated befor e the quantity J (and!:::.. Q) can be computed. 
4b 2c 

Following Maxwell and Jeans we construct a plane parallel to NP, the 

original direction of the colliding particle relative to the probe particle at 

0 (Figure 4), and containing the (arbitrary) x- axis. The inter section of 

this plane with the plane throus h 0 j_ NP gives the direction OR, from which 

the angle E. is now measure d. The vectors OG and OG' represent the 

relative velocity between the particle before and after the encounter, 

respectively; of course, if OG is directed inward then OG' is directed 

outward, and vice versa. The angle g 1 between these two vectors denote a 

the scattering angle or total angle of deflection in fhe encounter. 

By means of vector geometry (Appendix B) one finds that 
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( ' ') (~ s:) o• ,/vz - (S:l - s:: )k2 . "' (e. ,.\ ) .5 -sl k : ..)1 -.::> k COS + v· ~ ~ Sln ,_ COS c.+<..VkX 1 
{48) 

where ~ k and {s
1 

)k are components of the particle velocities in the k­

direction before collision, and s kl and ( sl')k are these components after 

collision. Here Wkx is the angle between the plane containing OG and the 

k- axis, and the plane containing OG and the x- axis; thus, 

Wxx = 0; cos~ = 

where k = y, z. By combining these geometric relations with the 

statement expressing conservation of linear momentum, 
-+ ~ ...,.. ~ 

ml g 1 + m2 S 1 1 = ml S + m2 S 1 

the quantity _s
1 

I can be elim.inated, and One obtainS 
k 

i. e. , 

(49) 

5:- m2 [ 2 J 2 2 
.:>k' = Sk + m +m 2(.$1 -g )k cos (0 '/2) + V -( 51-S)k 

1 2 
sin 0 1 cos (E+Ukx) J . 

For a pure gas (m1 = m 2) .6Q vanishes when Q is one of the collisional 

invariants of mass, momentum, or energy (Section III. 2.) • The next 

higher moment of interest is the momentum flux, Q = m .Sj s k • In 

evaluating J [Eq. (47)] , it is helpful to recognize that all terms in the 

expression for (Q' - Q) that are proportional to cos mE or sin me: (m I 0) 

integrate out to zero. With these terms discarded, 

Q'-Q -"--'- = 
m 

and J cos
2 

(0'/2) a d a 

· o 

- [(3u)/4 J [<sjl -~}(~kl -.hl] j 
0 

2 
sin gr d a (50) 

The first term in the expression for J will give no net contribution to f::.Q, 
because the average value of S. S k is identical with the average value of 

Jl 1 
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Sj gk • In the second term clearly (.$ . -S .) and (S'k - sk) can be replaced by 
J 1 J l 

~ -t _. . 1 11 (c. - c.) and (ck - ck), where c = .s - u, the 1ntrinsic ve ocity. Fina y, 
Jl J 1 

6.Q = -3/4 A 2 /zm K mjj[<cj ck)l + cj ck] £f1 d.s(t1 , (51) 

00 
2 [ 4b ] where A 2 = rr J sin Q' a. d a.. Maxwell found that A 2 = l. 3682. 

0 

But according to the definition of pjk(Eq. (45c)], 

6. Q = (3/2 A 2 J2m K ) n pjk 

4b 
Now Maxwell had already shown that the ordinary coefficient of viscosity 

based on the local full-range Maxwellian velocity distribution is given b y the 

expression 

fL = 
kT 

3/2 Az \}2m K 

where k is the Boltzmann constant. Therefore, with Q = m Sj~ and 

s = 5,~ Q = (p/JL) p .
1 

, regardle ss of the forn1 of the velocity distribution 
,~ J ~ 4b ----

function.* Maxwell also showed that P0 = rr/ 4 ( 1/'t'f), where t"'f is the 

mean free time, and this relation will be useful later( Section IV. l.). 

Similarly, by taking Q = m f j (,52 
/2) one finds that 

q. + L (p~) P ·k uk = (p~) [ -(2/3) q. + L pJ.k ~] • ** (52) 
J k J J k 

In a rectangular Cartesian coordinate system with no external .forces the 

Maxwell integral equations of transfe r for the first nine moments beyond 

the collisional invariants take the following form for Maxwell particles:*** 

By definition p = nkT; note that Pi. = - p + p . . I p, in general. 
1 2 11 * 

** The expression for 1:::.. Q = 6. (m_s. • 5 /2) given by Jeans 
(Reference Zd, page 241, Eq. (667)] contaitlls numerical errors. The 
correct expression reads as follows: 

m [ u . c
2 

- 3 L 
J k 

from which one obtains the result given by Eq. 
for a monatomic gas. 

- ---r J ( u. c . ck) - c . c , 
J J J 

(52). Here (c p.)/k = 2/3 p 

*** The equations for an orthogonal curvilinear coordinate system 
with external forces are given in Appendix A. 
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(a/at)( J mJjSk f dj) + t (a/ax1)(Jm..fi5j.!k f c!J> === (plj.L) pjk (53) 

(a/at}(J m $ j f- f dJ)+ ~ (a/ ax1)(J msi sj f. f dS) = (plj.d [- j. qj+ ~ pjk uk] • (54) 

Thus the collision integrals are evaluated once and for all without the 

necessity for any further approximation, and pjk and qj can always be 

expressed in terms of the arbitrary functions ti1, -cr
2

, n 1 2 , T 1 2 
[ Eqs. (34a) and (34 b)] • ' ' 

III. 4. Boundary Conditions 

When atoms or molecules impinge on a solid surface a complex 

interaction takes place which is only poorly understood at present. 

Particularly in the range of incident particle energies of 1/10 to 10 electron 

volts, we have not progressed very far beyond Maxwell's original rough 
31 suggestion that the emitted beam consists partly of specularly reflected 

and partly of diffusely reemitted particles. Following Maxwell, it is 

customary to define a tangential momentum exchange coefficient, a- , by 

the relation 

0"": = 

where 7: i and 7: R are the incident and reflected tangential momenta, 

respectively, and r is the tangential momentum of diffusely reemitted 
w 

particles having a Maxwellian velocity distribution corresponding to the 

temperature of the solid surface; by symmetry 't = 0. Smoluchowski 
32 

w 
extended Maxwell 1 s conception to include an energy accommodation 

coefficient, a, defined by the relation 

Ei- ER 
a = E.- E 

1 w 

and Schaaf
33 

and Bell introduced a normal momentum reflection coefficient 

o-1, where 

e>' = 
pi- PR 

Pi- Pw 
. 34 

As suggested by Hurlbut , for most "engineering surfaces" the 

random orientation of the tilt planes of the surface material on the atomic 

scale insures that cr;: 1, regardless of the details of the surface interaction 
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process itself. But experimental values of a (and presumably of 0""1) vary 

from a few hundredths to nearly unity, depending on the incident gas, the 

surface material, surface temperature, presence of an adsorbed gas layer, 

etc. Recently Schamberg
35 

introduced a more rational description of the 

surface interaction process, in which the three arbitrary coefficients cr, 
o- 1, and a are replaced by thr e e physical interaction parameters: (1) the 

angular half-width of a reemitted conical beam of particles; (Z) the 

inclination of the axis of the reemitted beam as a function of the angle o£ 

impingement of the incident beam; (3) the speed or kinetic temperature of 

the reflected particles.* On the basis of low energy molecular beam 
34 

experiments Schamberg assumes that the distribution of reemitted 

particle number density across the beam obeys a cosine law, which would 

be correct for purely diffuse scattering. He finds that the beam width 

plays only a minor role. In fact the most probable situation is diffuse 

reemission with a and 0" 1 .f 1, i. e., the axis of the reemitted beam is 

normal to the surface and the beam half-width is 90°, but the diffusely 

reemitted particles have a kinetic temperature lying between the surface 

temperature and the kinetic temperature of the incident particles. 

Because of the scarcity of experimental data at the pres.ent time 

it does not seem worthwhile to enter into a detailed discussion of the 

possible values of a and o-•. The two-stream Maxwellian velocity 

distribution function introduced in Section III. Z. is well suited to a 

description of the surface interaction process, and the results of new 

experiments can be incorporated into the analysis as they become available. 

In fact this consideration was one important reason for selecting the two­

stream Maxwellian in the first place. In order to illustrate the types of 

boundary conditions encountered in the present approach two special 

models are discussed here: ( 1) diffuse reemission ( 0""= 1) with a = tr' = 1 1 

(2) diffuse reemission according to the Maxwell-Smoluchowski model, 

with a and a- 1 .f 1. 

* Schamberg developed his analysis first for hyperthermal incident 
velocity, for which the thermal mo~Wn can be neglected, but he subsequently 
extended it to include lower speeds , at least approximately. Schamberg 
takes the speed (or kinetic tempe rature) of the reemitted particles to be 
independent of direction, but as we shall see late r . (page 36) it seems more 
logical to associate this speed with the normal component of the velocity 
of the reemitted particles, at least for diffuse reemission (()= 1; a, 0' 1 -/1). 
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At a convex solid surface the incident particles all belong to group 2, 

and the reemitted particles belong to group 1 (Figure 2 and sketch below).* 

For diffuse reemission with a =a-' = 1 the reemitted particles have a 

Maxwellian velocity distribution corresponding to T 1 by definition, and w 
the mean velocity of the reemitted particles is identical with the local 

~-+ + ~ -+~ 
surface velocity, i.e. 1 u 1 (R, t) = u and T 1 (R, t) = T when R = R • w w w 
When there is no net mass transfer at the surface an additional boundary 

condition must be satisfied which is similar to the usual free-molecule 
-+ J_. 

flow condition, except that now u 2 r u
00 

in general: 

nl Vrs\Tl = nl yrJ\Tw = n2J <F\T2 c (-s 2 
n 

where 2 
-s 

C(s ) 
n +y;;- s ( 1 + erf s ) = e n n n 

Here 

(u2 - u w 
n n 

82 = 
n J2CPIT 2 

(55) 

(56a) 

~ -+ 
where u

2 
and uw are the normal components of u

2 
and uw , respectively. 

n n 

In the limiting case s 2 < < 1, Eq. (56a) becomes 
n 

while in the case of hyperthermal velocity (s2 > > 1), 
n 

* For a concave surface the reemitted particles all belong to 

(56 b) 

group 11 but the distribution of incident particles depends upon the particular 
geometry of the problem. 
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n 1 J CRTw = vz; n2 (u - u2 w 
(56c) 

n n 

or (u w - u2 

\12'1TY 
n n 

nl = n2 Jo 6>\Tw 
(56 d) 

In considering the uniform rectilinear motion of a finite body in a 

fluid of infinite extent the following boundary conditions must also be 

imposed (in body coordinates): 

_:;, ~ 

u2 ~ uoo I T2 ~Too I and n2 ~ noo as X~ - 00 • 

For axially- symmetric or two-dimensional flows (for example) the values 

of three of the unknown functions (;i
1 

and T 
1

) are determined at the body 

surface, and Eq. (55) furnishes a fourth relation. If two functions are 
. --> ~ 

chosen 1n advance (say u 2 = u
00

), then the values of n 2 and T
2 

on the surface 

are the integration parameters, when the integration is carried outward 

from the body surface. The situation is somewhat simpler in the case of 

bounded flows. For plane (or cylindrical) Couette flow, for example, the 

boundary conditions are as follows (Figure 3): 

u 1 (y) "" - (U/2), 

u 2 (y) = + (U/2), 

v( y) = 0 

T 1(y) = T9.. at y= -b/2 

T 2(y) = Tu at y = +b/2 

or n 1 VT";, = n 2 VT;. 
(57) 

ally. 

A sixth relation connecting the six unknown functions is introduced by 

specifying the density level; for example, by selecting the value of n
1 

at 

y = -b/2. 

When()= 1 but a and 0'" 1 f. 1 the boundary conditions are more 

complicated. Of course the mean tangential velocity of the reemitted 

particles is equal to the tangential velocity of the surface, but in general 

the normal component of the mean velocity of the reemitted particles is 

~ equal to the normal velocity of the surface. The condition of zero 

net mass transfer at the surface leads to the relation 

C(- s
2 

) 
n 

where C( sn ) is defined by Eq. (56a), and s
1 

n 

- u 

= 
w 

n 

By computing the incident and reemitted translational kinetic energies 

and normal momenta with the aid of the two- stream Maxwellian, and 

utilizing the definitions of a a 'nd cr', two additional boundary conditions 

(58) 



are obtained, as follows: 

where 

and 

where 

and 

Energy Accommodation 

(1 - a) T 2 E. (- s 2 

E (sn , Is I ) = 

Is I > = e 
-s n 

2 

n 
I s 2 I ) + 2a T w = T 1 E. ( s 1 

n 

E(sn, lsi) 

C(s ) 
n 

Normal Momentum Accommodation 

(1 -0"') rT;, (p (-s 2 ) + (]" .y; rr= 
2 w 

n 

(p ( s ) 
p (s ) 

n 
= C {s ) n n 

[ sn 

2 
-s - 2 

p (s ) n +Vtr (-J; + s )(1 + erf s ) = e n n n 

35 

(59a) 

(59 b) 

(60) 

(6la) 

(61 b) 

(62) 

The functions E(s , Is I ) and P(s ) are similar to the usual free molecule 
n n 37 

expressions for energy and normal momentum flux , except that 

s I u-oo 
vzrRT 

00 

in general. In addition to the conditions given by Eqs. (58), (59a), and (61a), 

we have u
1 

= u (for(): 1 ), where 11 t 11 is the direction tangential to the 
t wt 

surface. 

Two limiting cases are of particular interest: (1) low Mach number 

flow with small temperature differences, i.e., s 2 < < 1 and Tw = T 2 (1 +E), 

withE < < 1; (2) hyperthermal flow, or s 2 < 0 and I s 2 j > > 1. In the first 

case, Eq. (59a) takes the limiting form 

2Tw [1 +f. (1- a)+ .•.• J (63) 

while Eq. (6la) becomes 

J T w [ 1+ f (I - o- ') + ... J = ~ 2/.fo <P (s 1 ) 
n 

(64) 
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If 0"' 1 =a then s 1 = 0, but~ otherwise. In other words, specifying the 

surface interactiBn process by means of a single parameter a. = <r' is 

consistent in this limiting case with the statement that u 1 = uw The 

boundary conditions here are n n 

(l-a)T2 +a.Tw = T 1 
~ ~ 

ul = uw 

In the opposite limiting case when s 2 < 0 and I s 21> > 1, Eqs. 

(58), (59a), and (6la) yield the relation 

4 (R T 
sin 9 2 ~ (1-a.)+a. 

w 
2 

a-' 
(uw - uz) 

= , 

sin 92 
r; - -r 

(65) 

(66) 

.(67) 

~ 
where 9

2 
is the angle of inclination of the velocity vector u 2 with respect to 

the surface. * In particular, if 

4 (R T 
w < < 1 , then o- 1 = 1 -

J 1 - a. 
sin 0

2 

Thus cr 1 depends upon a, the ratio of the local surface temperature to the 

kinetic energy 
~ . 

and the local inclination of u
2 

with respect 

to the surface. The relation between o- 1 and a given by Eq. (67) is similar 
35 

to the result obtained by Schamberg for hyperthermal free-molecule £low, 

except for certain numerical factors in the second terms of both numerator 

and denominator. These differences arise because Schamberg takes the 

relative reemission speed V R as constant for all angles of reemiseion, 

whereas in the present analysis this speed is associated with the normal 

component of the relative velocity. 

* Actually this limiting case is specified more precisely by the 

conditions (1 -a.) s 2 
2 > > 1 and (1 - o-') s 2 > > 1. · 

n 



IV. ILLUSTRATIVE EXAMPLE: 

PLANE PARALLEL FLOW AT LOW MACH NUMBER 

WITH SMALL TEMPERATURE DIFFERENCES 
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IV. 1. General Considerations, Differential Equations, and Boundary Conditions 

Although the present integral method is designed mainly to deal 

with the non-linear aspects of rarefied gas flows, it seems desirable to 

explore the method first for some linear flow problems. For this purpose 

plane parallel flow at low Mach number with small temperature differences 

provides the simplest example. Solutions obtained by the integral method 

can be compared with studies of this class of flow problems carried out by 

means of some of the other techniques reviewed in Section III. 1. Most of 

the simplifications in this limiting case apply equally well to steady, plane 

Couette flow and to Rayleigh's problem of the non- steady flow generated by 

the impulsive start of an infinite flat plate set into uniform motion in its 

own plane (Figure 3). For this reason the differential equations and 

boundary conditions for the two problems are formulated jointly. 

The requirement that M
2 < < 1 is equivalent to the statement that 

the kinetic energy of mean motion is negligibly small compared to the 

static enthalpy. Even if all of this kinetic energy is converted into random 

particle motion, the increase in gas temperature thus produced is 

insignificant. If there are no internal heat sources, and if the temperature 

of the plate (or plates) differs only slightly from ambient temperatures, 

then the plane shear flow and the tem.perature field are completely 

independent of one another. This "splitting" between the velocity and 

temperature fields is well-known for the Navier-Stoke s equations. It 

1 f th G d . 2 7 , 28 d . '1 h t 1 occurs a so or e ra equatlons , an 1s eas1 y s own o app y 

also to the present transport integral method.* In this paper, only the 

isothermal shear flow is considered; the treatment of the temperature 

field is entirely similar.* 
N 

Since T = const., the only self-consistent choice of the temperature 

functions appearing in the two stream Maxwellian equations (Eqs. (35a) 

and (35 b)] is that 

* For details see the forthcoming paper on steady, compressible 
plane Couette flow by C. Liu and the present author. 



where T is the ambient temperature. All physical quantities are 
0 

inde p e ndent of x, and to this approximation the equation of continuity 

(Eq. (36)] states that 
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av/ay = 0 (69) 

for both steady and non- steady flow. But v(y, t) = 0 at a solid surface, 

so that 

v(y, t) 0 

In this case the y-momentum equation [Eq. (38b)J yields 

0 = aP YY/ay , or P YY = canst. J 
By definition, P = - m f f ( ~ - v) 

2 
d g , and p = nm = f d t' . 

YY Y ..) 
By carrying out the integrations for the two- stream Maxwellian 

[Eqs. (35a) and (35b)] one obtains 

n(y, t) = ~ [ nl(y, t) + n2(y, t) J 
and 

p = - k/2 (n
1 

T 1 
+ n 2 T 2 ) = -nkT = - p yy 

In other words, 

p = canst. = p
0 

, and n = canst., or p = canst. = p
0 

as expected. Now 

-oo -oo -oo 

or 

Therefore, Eqs. (68) and (70) through (75) lead to the conclusion that 

n1 = n2 = n (canst.). 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

The two remaining unknown functions u 1 (y, t) and u 2 (y, t) determine 

the shear stress and x-compone nt of flow velocity completely. By definition 

pu = m J £g x di = ~ m [ n 1 u 1 (y, t) + n 2 u 2 (y, t) ]' , 

for the two- stream Maxwellian. In the present limitfng case 

u (y, t) = ~ [ u 1 (y, t) + u 2 (y, t)] 
Also, 

(76a) 

(76b) 
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Pxy = - mf f Csx- u) <.Sy- v) dS = - m J f .SxSy dg+ p u v {77) 

and the two- stream Maxwellian yields the following relation (v = 0): 

Pxy {y, t) = p
0 

Jffi T 
0
/2tr [ u 2 {y, t) - u 1 {y, t)] (78) 

In order to determine the shear flow we must now apply the x-momentum 

equation and one additional moment beyond the collisional invariants 

(Section III. 2.) . The most natural choice is Q = m .f 5 , which leads 
X y 

directly to an expression for the shear stress p . The x- momentum 
xy 

equation is 

p (8u/8t) = (ap /ay) o xy 

while the appropriate transport integral equation is given by Eq. (53) 

(Section III. 3.) : 

a/at (J m.fxfy f dg) + 8/ay if m_3xsy
2 

f d_f) = (p
0

j.t_
0

) Pxy 

(79) 

(80) 

According to Eq. (77), when v = 0 the first term on the left-hand side of 

Eq. (80) is simply { - apx/ot). The second integral is evaluated as follows: 

+oo oo +oo 

J J J 
-oo o -oo 

{ 81) 

-oo -oo -oo 

Since f 1 and f 2 are even functions of (.f x- u 1) and (}x- u 2), respectively, 

the integral is reduced to the form 

+oo oo +oo +oo o +oo 

ul s s J m fl sy 2 dsx dSy d_§"z + u2 J J J m f2Sy 2dS"x d.Syd!z 
-oo o -oo -oo -oo -oo 

(82) 

But f
1 

and f
2 

are even functions ofsy, and each inteeral on the right-hand 

side of Eq. (82) contributes exactly p /2 in this case. Thus 

m J f Sx'Sy2 d! = po/: (ul + u2) = Po u(y) 

and Eq. (80) becomes 

(83) 
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In this limiting case the functions u
1 

and u 2 can be eliminated in favor 

of the macroscopic quantities p and u ; in general the situation is not xy 
quite so simple. 

Several interesting conclusions can be drawn from Eq. (83). If a 

uniform shear stress distribution is applied at time t = 0 to a fluid at rest 

(or in uniform motion) then 

-(p /p. )t 
,..J 0 0 

Pxy e 

where Tf is the mean free time between collisions. In other words, l£ 
4b 

plays the role of a relaxation tim e , as shown by Maxwell • In a non-

steady flow such as Rayleigh's proble m the shear stress depends not only on 

the local velocity gradient, but also on the time history of the shear stress 

itself through the term - ( ap I at) • Roughly, the region of influence 
xy 

extends over a time interval of order ~· Thus when t > > t;., Pxy--;_ p. (ou/8y ), 

and the gas behaves like a Newtonian fluid, but when t/t'f = 0( 1) the situation 

is entirely different. In the Chapman-Enskog
5 

expansion procedure 

(Section-III. 1.) f is replaced by the local full-rang e single Maxwellian f 

on the left-hand side of Eq. (80) in first approximation, and the term 

- (ap /at) is lost. In the more general case spatial as well as time xy 
derivatives of various moments will appear in Eqs. (53) and (54). and 

-+-

0 

the shear stress and heat flux quantities at a location (R , t ) are influenced 
0 0 

by the behavior of these moments in a region of space and time defined by 

IR - R 0 1 ~ c 7:£ = ~ , I t - t
0 

I'"'"' 7: f . 

For steady plane Coue tt e flow, Eq. (83) states that p = LL(8u/oy) xy 1 

over the whole range of gas density from free-molecule flow to the Navier-

Stokes limit. Of course this result is a direct consequence of the restriction 

to low Mach number isothermal flow, and the choice of the two- stream 

Maxwellian. In general the two-stream Maxwellian does not yield the 

Navier-Stokes relation even for this simple geometry. According to 

Eq. (79), p = const., and therefore the velocity profile is given by xy 

(84) 

27 for all gas densities. Identical results were obtained by Yang and the 

present author by applying the linearized Grad equations to this problem, 

because the terms proportional to p and q in Gr~d' s distribution function xy y 
(Section Ill. 2.) make no contri bution to the integ ral in Eq. (80) in this case, 

and all the other terms vanish. 



41 

In order to simplify the boundary conditions only the case of 

completely diffuse remission is considered here. At the upper plate in 

Couette flow (for example) u 2 = U/2. By Eq. (76b), u 1 = 2u - (U/2) at 

y = b/2, so that Eq. (78) becomes 

Pxy = p
0 

J (26\T 
0

)/rr [ (U/2) - u ] (85) 

By symmetry u (-b/2) = - u(b/2) and the boundary condition at the lower 

plate is also satisfied.* Similarly, in Rayleigh's problem, 

(86) 

and p and u ~ 0 as y ~ oo • The condition v = 0 at the plate surface xy 
is already satisfied [Eq. (75)], because v = 0. 

IV. 2. Steady, Plane Couette Flow 

The differential equations and boundary conditions obtained by the 

present transport integral method are identical with those derived in 

Reference 27 from the linearized Grad equations (Section IV. 1.) , and 

the expressions for shear stress and velocity are naturally also identical. 

In fact, as shown in that paper, the same re'3ults are obtained by employing 

the Maxwel1 11velocity slip" relation and the Navier-Stokes equations, as 

suggested originally by R. A. Millikan 
38

. The main difference is that 

velocity slip is not introduced as an ad hoc assumption at the boundaries, 

as in the usual treatment, but follows directly from the statistical 

averaging process [ Eqs. (76a) and (76b)] . In this simple case velocity 

slip is obtained regardless of the nature of the solid boundary; only the 

magnitude is influenced by the reemission process. 

It is instructive to examine the behavior of the functions u 1 (y) and 

u 2 (y) and the two-stream Maxwellian in this simple case. By employing 

Eqs. (84) and (85) at y = b/2, one obtains 

+ ~ (Re/M) (87) 

where 

= Re = (p u b)/(u) , 
0 /0 

* It should be emphasized that this particular relation between p xy 
and u applies only at the plate surfaces. 
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Thus the drag coefficient has the correct free-molecule flow value in the 

limit Re/M ~ 0, and the correct Navier-Stokes behavior (CD= 2/Re) 

in the limit Re/M--+ oo. By Eq. (85), 

u(y)/(0/2) = 1/(1+13) • y/(b/2) (88a) 

where 

13-l = l/V21To • Re/M (88b) 

By utilizing Eqs. (76b) and (78), one finds that 

= 1/(1+13) [ y/(b/2) + 13 J 0 (89) 

The mean velocity u(y) and the two functions u
1 

(y) and u 2(y) are sketched in 

Figure 5. Dr. Hans W. Li e pmann pointed out to the author that the mean 

profile in this case can be r egarded as being composed of one velocity 

distribution that exhibits "velocity slip" at the lower plate but not at the 

upper plate, and a second distribution symmetrically displaced that "slips'' 

at the upper plate but not at the lower plate. In the free-molecule flow 

u1 (y) uz(Y) 
limit (Re/M---:;. 0 ) -wz --+- - 1 , O/Z -+ + 1 , and u(y) --+ 0 ; 

of course f
1 

and f
2 

are pr e cise ly the free-molecular velocity distribution 

functions in this limiting case. I 
In order to bring out the character of the solution in the Navier­

\ 
Stokes limit (Re/M > > 1) mor e clearly, we replace Re/M by \the ratio of 

mean free path, A , to plate s pacing b. According to the relation 
0 

P lu = (1T/4)(1/tc> = (1T/4)(c />-. ) oro o o 

the viscosity is given by J.J.. = t p c A = A p Vr-(-2/"7"1T-)-:(R-T-
; o ooo o o 

where c
0 

= V (8/1T) CRT 
0 

Thus the quantity 13 appearing in Eqs.(88a) 

and (89) is equal to ....\/(b/2), and the expression for CD Eq. (87) can be 

rewritten in the form 

1 
1 + (6/2/X) (90) 

where the subscript F-M denotes free-molecule flow values. From these 

results one sees that 



ul (y) 

U/2 
u2(y) 

0/2 

= u + !. (au/ay) 

In the Navier-Stokes regime A < < b/2 and A (au/By) < < U/2, 
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so that f
1 

and f 2 can be regarded as the local Maxwellians for particles that 

cross the plane at y from below and above, respectively, and retain the 

properties of their original layers located a distance of one mean free path 

away from this plane. The boundary condition at the plate surface [Eq. (85)] 

is exactly 

U/2 - u(b/2) = A (au/ay)y=b/2 
31 \ 

as proposed by Maxwell . Although formally correct for all values of 1\ /b, 

this description is meaningless (and unnecessary) when A/b = 0(1), or 

larger. A comparison between these simple results and the solutions 

obtained by other methods is presented in Section v. 1. 

IV. 3. Rayleigh's Problem 

By eliminating the flow velocity between Eqs. ( 79) and (83) one 

obtains 
2 2 2 2 2 

(a Pxy)/(ay ) - {l/a1 )• {a pxy>/at = ( 1/JJ· (apx/at) (91) 

- the Telegrapher's Equation. [ Here a
1 

is the isothermal speed of 

sound given by a
1 

= J ()\ T 
0 

• According to this simple model, the 

impulsive motion of the plate generates a shear stress-velocity wave of 

decaying amplitude propagating into the gas. Some distance behind the 

wave front, and especially near the plate surface, the motion eventually 

takes on the diffusive character of Rayleigh's classical solution. Yang
28 

and the present author obtained a qualitatively similar behavior by 

applying the linearized Grad equations to this problem, but the equations 

were much more complicated b e cause of the involved character of Grad 1 s 

distribution function. 

By simple momentum considerations the discontinuities in p and xy 
u across the initial wave front (Figure 6) are connected by the relation 

6.. Pxy = - Po ai 6. u 

Since Pxy = u = 0 ahead of the front, 

(92) 
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Pxy = - Po al u (93a ' 

at any point located immediately behind the wave, so that 

(93b) 

along the front. On the other hand, the method of. characteristics applied 

to Eq. (91) (or to Eqs. (79) and (83)] yields the following relation along the 

wave 

d p - p a
1 

du + (p //1 ) p dt = 0 xy o oro xy (94) 

By combining Eqs. (93b) and (94) and integrating, one finds that the decay 

of p and u along the wave front is given by 
xy 

f(t) = f(O) 
-i(P /J' )t 0~0 

e = f(O) 

where f(t) is either shear stress or velocity. Evidently p and u decrease 
xy 

only slightly from their initial values up to t/t'f = 1, but the decay is quite 

rapid once t exceeds 7:'£' and is much faster than the diffusive 1//t behavior 

for p expected near the plate surface when t/'?;',f > > 1. xy 
At time t = 0 the wave has just started propagating outward from the 

plate surface, so that p (0) and u(O) = - rp (0~ /(p a
1 

) must satisfy the xy Uxy U o 

boundary condition given by Eq. (86) (Section IV. 1.) • By utilizing this 

condition one obtains 

= - Po U 
2 

) 
1 + V2/rr 

or 

M cf (0) = - 0. 685 for ¥ = 5/3 • where cf = Px/<i p
0 

U
2

) ; * 

u(O)/U = 
1 = o. 45 * 1 + {rr/2 

Thus along the wave front M cf(t) = -0. 685 e-O. 39(t/l'f) and 

u(t)/U = o. 45 e-o. 39(t/t'f) . 

Once the behavior of pxy and u along the wave front is known, 

the entire flow field can be calculated by the method of characteristics 

* These values for M cf(O) and u(O)/U differ slightly from the free­
molecule flow values of 0. 615 and i, respectively, for a plate at 
ambient temperature. ( See Section V. 2. ) 



(Figure 6). In non-dimensional form the differential relations along 

characteristics are as follows: 

d (cf M) -t (2/y'-() d w t (1T/2) (cf M) d T = 0 
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(95) 

along dy = ± dT , where w = u/U, Y = y/a,.17:f , and T = t/1£ • The boundary 

condition along Y = 0 is cf .M = - 1. 24 (1 - w), for 7f = 5/3. The calculated time 

history of the skin friction at thP plate surface is shown in Figure 7; 

according to the boundary condition at the plate surface the velocity slip 

. u - u( o t> I 
1 is g1ven by U • = 1 - w = 0. 81 cf M • Saine typical shear 

stress and velocity "profiles" between the plate surface and the wave front 

are plotted in Figures 8 and 9. In Figure 10 we show the ratio 

= 8/(~Vi) [ 
( 8w/ 8Y) 
cf M L=O 

as a function of t/7: f ; the difference between this ratio and unity is a 

measure of the numerical departure from the Navier-Stokes relation. 

In order to examine the behavior of the solutions near the wave front 

and "far" from the front more carefully,it is helpful to derive analytical 

asymptotic forms for shear stress and velocity. By applying the Laplace 

transformation to both sides of Eq. (91), and to the boundary condition at 

the plate surface, one obtains the following expression for the Laplace 

transform of pX}' (for example): 

Pxy (y, s) 
-p u VffiT 

0 0 = exp {- f ( s) y} (96) 

where 

(97) 

Here Q(y, s) = [ - I e-st Q(y, t) dt J . Near the wave front 

0 

1'\J 

(t = < < 1 ) s is large, and by retaining terms up to 1/ s 2 

in the series expansion of V 1 + (p
0
/p. )(1/ s) 

one obtains 

, and inverting the transforms, 



M c£ (y, t) = - 0. 685 exp t- 0. 39 Y - 0. 087t }[cosh (0. 204t) 

+ (0. 38 Y - 0. 426) sinh (0. 204 t) J 
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(98) 

The shear stress and velocity are analytic functions of t/7:f in this region; 

the skin friction at the plate surface given by Eq. (98) with Y = 0 is shown 

as the dashed line labelled t/7:f < 1 in Figure 7 • 
.V 

For t > > 1 the transform of cf M is approximated by the expression 

M cf (y, s) ~ - 1. 
2
:._ exp {-V (p

0
/p.

0
) (y/a1)'{;;}, , (99) 

Vs <fS + V 2/rr V <Po/p.o> 
so that 

M cf (y, t) ~ - 1. 24 exp{(T/2) (1 +_it ~ erfc [ V T/2 (1 + - y >] . 
c t 

0 

( 100) 

where T = t/'Lf, A= a
1 
{;72, and ~0 = V (8/rr) (R T

0 
The skin fric tion 

at the plate surface given by Eq. ( 1 00) with y = 0 is shown as the dashed 

line labelled t/?:f > > 1 in Figure 7. [Evidently the two approximate 

expressions are adequate for t/tf < 1 and t/'l:f > 10.] Here the analytical 

behavior is a little more complicated, but the "correction•• to the classical 

Rayleigh solution is analytic in ff/t 11far 11 from the wave front. For example, 

M cf (0, T) = - fi 9 
[ 1- (1/T) + (3/T

2
)- (15/T

3
) + ... ] (101) 

By employing the relations for M cf given by Eqs. (98) and ( 1 00), 

we obtain approximate expre ssions for the ratio 

[ 

J.) (au/ ay) 

.Pxy 
= R(T) 

as follows: 

ForT< 1: 

R(T) -v 1 _ (4 /rr) [ 0. 174 cosh (0. 204T) - 0. 241 sinh (0. 204T)J (l02 ) 
= cosh (o. 204 T) - 0. 426 sinh (o. 204 T) 

and R(O) = 0. 78. 

or 

For T > > 1: 

R(T) ~ 1 + (2/rr) [ 1 - ( J 2/rr )(1/VT) ----
1
-----l(l03a) 

exp(T/2) erfc ({T/2) J 
[R(T)] ~ 1 - (2/rr) [ (1/T)- (2/T

2
) + •.. J' . (103b) 

Thus for T > > 1 the departure from the Navier-Stokes relation is of order 



1/T in first approximation, while the velocity slip at the plate surface 

[Eq. (85)] is of order 1/VT . 
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The approximate expressions given by Eqs. (102) and (103a) are 

shown as the dashed lines in Figure 10. 
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V. DISCUSSION AND FUTURE WORK 

V. 1. Steady, Plane Couette Flow 

The simple results for steady plane Couette flow obtained in 

Section IV. 2. for the limiting case M
2 

< < 1, D. T/T < < 1 are all the more 

interesting when compared with the complicated behavior of the solutions 

generated by methods based on the linearized Maxwell-Boltzmann equation 

5y (d¢/dy) = J(¢) (104) 

[Here f = f
0 

(1 + ¢), and J(¢) is the linearized collision operator9• 
22

.] 

For example, Willis' integration scheme [Reference 15 and Section Ill. L] 
yields a velocity profile for near free-molecule flow of the form* 

u(~)/(U/2) = g [- 1.13 a loge a+ 0.15 a]+ 0. 564 a [ <i -_5) loge (i -$) 

- ( i + 5 ) loge ( i + S ) J ( 105) 

where 5 = y/b ·and a = b/ A The shear stress is given by 

= 1 - v;; (a/2) - (a 
2 
/2) loge a + ( 106) 

Thus the shear stress and velocity are non-analytic functions of the 

parameter (b/A) (or Re/M) in the free-molecule limit. This non-analytic 

behavior is produced by Willis' velocity distribution function, which 

contains terms of the form 

exp { _ n;y(f) } 

and is therefore non-analytic at 5 = 0. y 
For the parallel plate geometry most methods based on the linearized 

Maxwell-Boltzmann equation greatly overemphasize the role of the particles 

travelling nearly in the mean flow direction. It is by no means certain 

that similar difficulties do not arise even for the non-linear Maxwell­

Boltzmann equation, and even for steady three-dimensional flows, unless 

special care is exercised. It is almost as if one tried to integrate the 

ordinary hydrodynamic momentum equation by writing it in the form 

* A second approximation gives additional terms of order 
2 3 4 [ J n loge a, n and a Eq. (4. 19). page 25, Reference 15 . 
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- --"-w . grad W = f (xi , t) . Evidently certain difficulties would arise at a 

stagnation point, but these are spurious difficulties introduced by the method 

of integration. To take a simple example, consider the ordinary differential 

equation x(dy/dx) = y f (x) , which admits of the solution y = C ex{[ f~x) dx]. 

Clearly, integration schemes based on approximations to f(x) may not be 

suitable in this case. One of the important advantages of Maxwell's 

transport integral approach is that such difficulties are smoothed over by 

the integration process. By analogy, the simple differential equation above 

is converted to 

J m+l / J m x (dy dx) dx = x y f (x) dx 

which is a more suitable form for approximate or iterative methods. 

By applying half-range (Method B) or full-range (Method A) 

particle velocity moment equations to the equation for ¢ [Eq. (104)], 

Gross 9 • 
23

, Jackson and Ziering avoid the singular behavior in the limit 

b/ A ----. 0. But when the "second approximation", 
+ + + 

¢- = a - (y) .$ + a 1- (y) s s 
0 X X y + 

is utilized, both methods yield expressions for flow velocity and ¢-
+ I + I 

containing terms like e -ab A and e -ay A , while the shear stress 

+ I 
contains terms like e -ab A Thus these quantities approach the Navier-

Stokes solution (b/..X. ---+ oo) in a non-analytic manner
23

• The velocity 

profile exhibits a curved portion within a "Knudsen layer" close to the 

plate surface, but outside of this layer the velocity is very nearly linear 

in y. 

This emphasis on "boundary effects" led Gross, et al, to reject as 
+ + 

"too crude" the much simpler analytic solution obtained with ¢- = a - (y) g 
0 X 

However, in ·a recent report39 the y reexamine this "first approximation". 

For the special case of low Mach number isothermal flow this approach 

with Method A is much like the present scheme. In fact, the two-stream 

Maxwellian [Eqs. (35a) and (35b)] takes the form 

fl, 2 = fo [ 1 + P{ 6\ To) S x ul, 2 (y) + '· '· J 
so that J x u

1
• 

2 
(y) .-v ¢- , and the results obtained by the first 

approximation in Method A and the present method are 
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identical.* While admitting the attractive properties of this simple 

solution, Gross 39 and Ziering express a lack of confidence in it because 

the so-called "correct" behavior of p in the free-molecule flow limit is 
xy 

not obtained. The normal behavior is supposed to be given by the value of 

the slope 

[ 
obtained by Wang Chang and Uhlenbeck by the technique of "Knudsen 

iteration". According to this method
18 

• 

lim 
b/A-+ o 

a [Px/(Pxy)F-M] 
8 (b/)\) ~ - 1. 0059 

for hard- sphere molecules, or -1. 242 for Maxwell molecules. Method B 

(second approximation) gives a slope for hard- sphere molecules very close 

to the Wang- Chang Uhlenbeck value, while the simple solution [ Eq. (92)] 

yields the slope -0. 50. However, the Knudsen iteration technique is known 

to be non-convergent and analytically inadmissible for this problem15• 23 

18 
Wang Chang and Uhlenbeck recognize d that a second approximation to the 

velocity profile was unobtainable by this m ethod. Once an expansion 

procedure of this type is applied to t h e Maxwell-Boltzmann equation we are 
40 dealing with a singular perturbation problem, in the language of Lagerstrom 

and Kaplun, and there is little reason for trusting the limiting value of the 

slope 

8 Pxy/(pxy)F-M 
a (5/J\ ) 

in the limit b/.A--+ 0. 

In Figure 11 the ratio (p )F M/p is shown as a function of xy - xy 

* Unfortunately there is a numerical error in the expression for )A­
near the middle of page 6, Reference 39. If pis defined by the relation 

px~ Pxz 
}L = {duTy) = (dqz/dx) 

3
;

2 
in the notation of that paper, then one obtains u. = p c A ( 1T ) • r o 4 12 X 

By substituting the expression for I2/rr
3

/
2 

obtained from this relation into 

the relations for Pxz and qz .=. u given on pages 5 and 6, one verifies that 

the results obtained by the two methods are in fact identical. 
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b/A. = V 2/rr'O (Re/M) for Willis' solution
15

, the Gross-Ziering
23 

second 

approximation (Method B) for hard-sphere molecules, and the present 

solution. [The second approximation with Method A 39 (full-range moments) 

would give an initial slope of about -0. 70. J Evidently the slopes of the 

Willis and Gross-Ziering solutions rapidly approach the value given by the 

present simple theory as b/>.. increases. The actual numerical differences 

in p are small. xy 
The present author believes that there is no justification for 

regarding half-range moment methods (Method B) as "superior" to full­

range moment methods such as Method A. One of the advantages of 

utilizing Maxwell's inverse fifth power force law is just the fact that the 

collision integrals in a full-range moment method are completely independent 

of the form of the distribution function, and this advantage is lost in the 

half-range moment method (Method B). + 

clear 

flow. 

A more serious question is the use of polynomials in ¢-. It is not 

that terms of the form 5 x Sy play any useful role in a rarefied gas 

In the simple case of linearized plane parallel flow or heat transfer 

these terms do not lead to any special difficulties, but in non-linear problems, 

or in problems with curved geometry, one finds the same sort of undesirable 

cross-coupling between normal stresses and heat flux as in Grad's equations. 

Of course as Gross39 and Ziering point out, there is no "unique" integral 

method. Perhaps the question of the most suitable method can be settled 

only by obtaining "exact" solutions of the Maxwell-Boltzmann equation 

[ Eq. (27)] in some simple cases, or by experiment. 

Because of the experimental difficulties involved in producing a 

plane Couette flow, we must rely at present on investigations of cylindrical 

Couette flow in which the width of the annulus is small compared to the 

radius of either cylinder. As shown by Yang
27 

and the present author, if 

the drag on the statiQnary outer cylinder is written in the form 

1 

the values of the slope B(r 2/r 1) in the experiments of Kuhlthau41 and 

·Bowyer 42 and Talbot do not differ very much from the value of 0. 50 

obtained for plane Couette flow. [Here r 1 and r 2 ~re the radii of the inner 

and outer cylinders, respectively, and Re = U(r 2 - r 1 )/v . J By analogy with 

the case of plane Couette flow, it was suggested27 that this function is 
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identical with the expression obtained in the Navier-Stokes regime, i.e., 

B(r 2/r 1) = l [ 1 + (r 2 - r 1 )/(2r1) J . Recently D. K. Ai and C. Y. Liu 

of this laboratory solved the problem of linearized cylindrical Couette 

flow for small ratios of annulus width to cylinder radius, and verified that 

the function B(r 2/r 1) is indeed given by the Navier-Stokes expression over 

the whole range of gas densities. However the value of A(r 2/r 1) obtained 

differs somewhat from the correct free-molecule flow val ue because of the 

very simple distribution function employed.* 
42 

In Figure 12 the drag data obtained by Bowyer and Talbot are 

compared with the theoretical solution for isothermal cylindrical Couette 

flow with completely diffuse reemission. [ Figure 12 also shows the Wang 

Chang-Uhlenbeck
18 

slopes in the limit b/A ~ 0.] In view of the experimental 

difficulties at low density the scatter in the experimental data is remarkably 

low. The slope of the experimental curve of 1/CrJvl vs. Re/M follows the 

simple theory fairly well, not only in the low density regime shown in these 

figures, but over the whole range of densities. Nevertheless, by com pari son 

with Figure ll,one sees that the experimental drag data is hardly able to 

settle the question of the most suitable integral method for this problem. 

It appears that measurements of some mean flow quantity such as velocity 

or temperature are required to provide conclusive evidence. 

V. 2. Rayleigh's Problem 

At first the wave-like character of the solutions obtained for 

Rayleigh's problem in Section IV. 3. may seem surprising, but collisions 

between particles in the gas are relatively infrequent when t/'tf < 1, and 

thus diffusive effects are secondary. The over- simplified version of the 

two- stream Maxwellian employed in Section IV. 3. introduces a certain 

averaging process over the particle velocities in the direction normal to 

the plate; the result is a single characteristic propagation velocity equal 

* D. K. Ai utilized the linearized Grad equations, while C. Y. Liu 
employed the present method. For the shear flow Grad 1 s equations offer 
no difficulties, but for heat transfer they lead to a physically incorrect 
result in the free-molecule flow limit. The pre sent method yields 
consistent results over the whole range of gas densities. These results 
will appear in forthcoming reports. We are also investigating the problem 
for arbitrary ratios of annulus width to cylinder radius. 
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to the isothermal sound speed. This "defect" is easily removed by 

employing a slightly more sophisticated two- stream Maxwellian that 

differentiates between "fast" and "slow11 particles. This new distribution 
43 

function is the natural generalization of the function utilized by Yang and 

the author for Rayleigh's problem in free-molecule flow with arbitrary plate 

Mach nwnber and plate temperature. In free-molecule flow, particles 

crossing the horizontal plane at y from below at time t are aware of the 

plate motion only if 3 > (y/t), where t is the time elapsed since the start y 
of the impulsive motion. Thus, a more consistent two- stream Maxwellian 

is defined as follows: (Figure 3) 

3 > y/t y 

-oo ~ s < y/t 
y 

(104) 

For low speed isothermal flow n 1 = n 2 = canst., and T 1 = T 2 = canst. , 

as before. Of course the momentum equation (Eq. (79) J is also unchanged, 

but the transport integral for Q = m 3 x S y [ Eq. (53)] now yields the equation 

- apxy 

at 
+ p (au/ay) - (a/ay) ( p Y..t ) = (p /;1 ) p o xy oro xy 

( 105) 

The equations are still hyperbolic, but the characteristics are defined by 

(dy)/(a1 dt) = dY/dT = ! (Y/T) ! vfY
2
)/(4T

2
)] + 1 (106) 

or 

loge (T/T 1) = 1/4 (Y
2 
/T

2
) ±[t (Y/T) VI + (Y

2 
/4T

2
) + ! log t! -i +Jl + { ~ )]. 

(107) 

where T i is the intercept a1ongY = 0 (see sketch on page 54). Near the 

plate surface the characteristic signal speeds are "t a
1

, as before 

(Section IV. 3.) , but far from the plate surface, or more precisely, when 

Y/T > > 1, the characteristic speeds are 0 and y/t > > al" Along T = 0 the 

characteristic speed is infinite. Without going into details, we state that 

the solutions for the shear stress and flow velocity for T < < 1 are 

and 
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t 
T =if 

u/ U ( y, t) = ! e r f c ( y 
J 2d{T t 

0 

and these solutions are identical with the free-molecule flow solutions24• 43 • 

For large times (t/'i'f > > 1), pxy--+ p(Bu/By) , as before, but 

lim 
t~O ,u (au/By) 

) = 0 
y=O 

By employing the method of characteristics we obtain the entire time 

history of the smooth transition from free-molecule flow to the classical 

Rayleigh solution. 

V. 3. Future Work 

When the present method based on Maxwell 1 s integral equations of 

transfer is applied to linearized flows, reasonable results are obtained 

fairly simply, and most of the essential features of the problem are 

uncovered. But low Mach number flows with small temperature differences 

are too simple to provide a serious test of any method that purports to be 
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general. Recently C. Y. Liu and the author applied this method to steady 

plane compressible Couette flow, in order to study the effects of large 

temperature differences and dissipation.* Similar techniques are now 

being investigated for the flow of an unionized, monatomic gas through 

a normal shock wave of arbitrary strength. We are also studying the 

steady flow over a cylinder or sphere. 

No integral method such as the present one is capable of resolving 

old problems such as flow separation and the details of wake formation 

behind bluff bodies in the Navier-Stokes regime. For this reason it seems 

desirable at first to restrict the studies of flow over closed bodies to the 

two limiting cases of M > > 1 and M < < 1. At hypersonic speeds, the flow 

over the rear portion of the body does not influence the flow over the 

front portion very much. On the other hand, when M < < 1, a wide range 

of the parameter Re/M can be investigated from free-molecule flow up to 

the Stokes or Oseen limit [ Re = 0(1)], without penetrating the regime in 

which vortex shedding occurs. 

So far the work is restricted to the study of a pure, unionized, 

monatomic gas, but in principle the method can be extended to include gas 

mixtures and charged particles. 

* Report to appear soon. 
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APPENDIX A 

MAXWELL'S INTEGRAL EQUATIONS OF TRANSFER 

IN AN ORTHOGONAL CURVILINEAR COORDINATE SYSTEM 

Maxwell 1 s integral equations of transfer of a quantity Q that is an 

arbitrary function of the velocity components of a particle must include 

61 

the rate of change of Q produced by particle acceleration (Section III. z. ) . 
This contribution is expressed as follows: 

3 a 

J£ ( \ ao Si ) d; 
L Tsi -at 2> 
i=l 

-
= J f( ~ at (A-1) 

In a curvilinear coordinate system 

- ~ 
x S = F/m (A-Z) 

...... 
~ere F is the ''external" force vector acting on a single particle, and 

S 2 is the local instantaneous angular velocity introduced by the curvature 

of the coordinate system. Thus 
-+ 

If(~ at f {!- <SLS>}. is- a <if . =f (A-3) 

The term Q x! is evaluated with the aid of the relations for orthogonal 

coordinate curvature given by elementary differential geometry. For 

simplicity, consider the two-dimensional case first (see sketch): 



Suppose that the differential arc lengths along the curves a.
2 

= canst. 

and a. 1 = canst. are given by 

and 

6Z 

(A-4) 

respectively, where a.1 and a. 2 ar e t h e orthogonal curvilinear coordinates, 

and h 1 and h 2 are known functions of a. 1 and a. 2• Then the curvature in the 

a. 1 direction is responsible for an apparent acceleration in that direction 

ag1 - agl 
given by 52 ar- = .§" 2s 1 ~ Similarly, the curvature in the a.2 

1 
direction produces an acceleration in the a 

1 
direction given by 

- ~2 ~gt2 -- - ~22 aags22 .) .:5 , so that the total contribution in the a
1 

direction 

is 

= 

Now o~s 1 ) !:: ~ s 2 • 6_ g 1 (see sketch). But c5(6..s 1) = ah16..a. 1 , 

according to Eq. (A-4); therefore, 

agl ah
1 

1fci""i = rsz = 

Similarly, 

ag2 

ao:z = 

(A-5) 

(A-6) 

(A-7) 

By Eqs. (A- 5), (A-6). and (A-7), the contribution to the component of 

acceleration in the a
1 

direction made by coordinate curvature is given by 

(A-8) 
._,.. 

The contribution made by the component of velocity s 3 and the coordinate 

curvatures in the a
3 

and a.
1 

directions is obtained from Eq. (A-8) by 

replacing the subscript 2 by 3. 

By generalizing this result to the three-dimensional case one obtains 
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~ 
3 

Jf ( -+ ~ =f I +-ag 
. \}5 ) Q d 5 f (F /m> ( ao/ qs- t> ds at 

i= 1 

3 

[khj f) h . 8h. 
+ jfL 5 ·2 J :? i 5j 

1 
(A-9) 

8a. - ao::-J 
i= 1 

1 J 

2 8hk a h. 1} aa/an1 J ~ + 1/(hihk) < s-k si sk 1 dg 
Fai -

aak 

where the cyclical order of permutation of the indices i, j, k must be 

followed. Finally, Maxwell 1 s inte gral equations of transfer in orthogonal 

curvilinear coordinates are as follows: 

a/at J f Q dg + (l/hlh2h3) tl (a/ao.i) [ hj~ J f 5! Q dr] 

(A-1 0) 

= j f < ai at 

where the first integral on the right-hand side of Eq. (A-1 0) is given by 

Eq. (A-9), and the collision integral-6 Q is given by Eq. (32) of the text. 

Of course !::,., Q is evaluated locally and is independent of coordinate 

curvature. The evaluation of 6. Q for Maxwell particles is discussed in 

Section III. 3. 



APPENDIX B 

CHANGES IN COMPONENTS OF RELATIVE VELOCITY 

DURING A BINARY COLLISION 

This appendix contains a simple vector geometry derivation of 

the relations written down by Maxwell
4

b and Jeans
2
c. For clarity 

suppose Figure 4 is rotated so that OG plays the role of one coordinate 

axis: 

X 

x- axis 

R 

< E. 
G' 
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As in Figure 4, OG, OR, and the x- axis lie in one plane, and OG, OG', 

and OP lie in another plane (the plane of the orbit) making a dihedral 

angle c with the first plane. Now the x- component of the relative velocity 

after collision is given by 

cos (G', x) = ( so;::-1 s:- ') 
-.:>1 X 

v (B-1) 

-+ ~ 

where iG' and i are unit vectors along OG' and the x- axis, respectively. 



65 

But -+ ~ ~ 

iG 1 = iG cos Q
1 + ip sin Q1 (B-2) 

and 
~ ~ -+ 
i - iR cos E + is sin E. p- (B-3) 

where OS is perpendicular to OR and perpendicular to the plane containing 

OG, OR, and the x- axis. Therefore, 

= 
-'r 
(iG • i) cos Q1 + sin gr c rR. T cos E 

+ ~ 

+ i 8 • i sin E. ] 
(B-4) 

= cos (G, x) cos Q' + sin gr [sin {G, x) cos t + 0 ] 

But, cos (G, x) = , so that [Eqs. (B-1) and (B-4)] 

I I ·.I 2 - 2 (5 -31 >x = ( s1 -s>x cos Q' + vv - (.S 1 -._$ >x sin g• cos£. 

Denote by cu the dihedral angle between the plane containing yx 
OG, OQ, and the y- axis, and the plane containing OG, OR, and the 

x - axis (see sketch below). 

G 

R 

0 

(B-5) 

p 
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OQ, OR, and OP all lie in a second plane perpendicular to OG. Now 

tf' -S 1'>y -. ..,.. 
cos (G 1

, y) = y - = iG' • j , (B-6) 
.....,.. 

~ 
where j is the unit vector along the y- axis. ..... But i

0
, is given by Eq. (B-Z), 

and the unit vector ip can be written as 

~ +- 4-

ip = i0 cos ( E + W ) + iT sin ( t + W ) yx yx 

where the direction OT is perpendicular to OQ and perpendicular to the 
~ 

plane containing OG and j. Therefore, 

(B-7) 

--)- ..J;. 

iG'. j = cos (G, y) cosO'+ sinO' [sin (G, y) cos (c +wyx) + o](B-8) 

and [ Eqs. (B-6) and (B-8)] , 

. [2- z (_s' -s1• )Y = {_f1 -s )Y cos 0' + yv ( ~~ -.S )Y sinO' cos (E+GJyx> , 

(B-9) 

which is the result quoted in Eq. (48) of the text, withy replaced by k. - ...,.. 
The angle w is determined by expressing i and j as follows 
~ .....,... yx -+ 

i = iR sin (G, x) + i 0 cos (G, x) 
~ ...,.. -r (B-10) 
j = iQ sin (G, y) + iG cos (G, y) 

-'). + - _,. 
_:nd uti~zing the vector identit~ . j = 0. Since iQ • iR = cos Wyx, and 

iR and iQ are perpendicular to i.G , 
~ + 
i. j = 0 = cos w sin (G, y) sin (G, x) + cos (G, y) cos (G, x) , (B-11) yx. 

from which one obtains 

cos = (B-12) 

The expression for cos w is obtained by replacing the subscript y by z zx 
[Eq. (49)] . 
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Attention: Dr. A. Kantrowitz 
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2385 Revere Beach Parkway 
Everett 49. Massachusetts 
Attention: Dr. Harry E. Petschek 

A VCO Manufacturing Corp. 
Advanced Development Division 
2385 Revere Beach Parkway 
Everett 49. Massachusetts 
Attention: Dr. F. R. Riddell 
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2385 Revere B each Parkway 
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Boeing Airplane Company 
P. 0. Box 3107 
Seattle 14, Washington 
Attention: Mr. G. Snyder 
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A Division of General Dynamics Corp. 
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950 South Raymond Avenue 
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Attention: Mr. F. Felberg 

Cornell Aeronautical Laboratory 
Buffalo, New York 
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Cornell Aeronautical Laboratory 
Buffalo, New York 
Attention: Mr. A. Hertzberg 

Cornell Aeronautical Laboratory 
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Attention: Dr. F. K. Moore 
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Douglas Aircraft Company 
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Douglas Aircraft Company 
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827 Lapham Street 
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Attention: Dr. H. T. Nagamatsu 

11 

General Electric Company 
Missile and Ordnance Systems Department 
3198 Chestnut Street 
Philadelphia 4, Pennsylvania 
Attention: Documents Library, 

L. Chasen, Mgr. Libraries 

General Electric Company 
Aeroscience Laboratory - MSVD 
3750 "D'.' Street 
Philadelphia 24, Pennsylvania 
Attention: Library 

Giannini Controls Corporation 
918 East Green Street 
Pasadena, California 
Attention: Library 

The Glenn L. Martin Company 
Aerophysics Research Staff 
Flight Vehicle Division 
Baltimore 3, Maryland 
Attention: Dr. Mark V. Morkovin 

The Glenn L. Martin Company 
Baltimore 3, Maryland 
Attention: Mr. G. S. Trimble, Jr. 
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Attention: Mr. E. T. Pitkin 
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P. 0. Box 516 
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North American Aviation, Inc. 
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Attention: Dr. E. R. van Driest 
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Santa Monica, California 
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The RAND Corporation 
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The RAND Corporation 
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Republic Aviation Corporation 
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Republic Aviation Corporation 
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Space Technology Laboratories 
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Attention: Dr. J. Logan 

United Aircraft Corporation 
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Attention: Mr. J. G. Lee 
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Dr. Harry Ashkenas 
Dr. James M. Kendall 
Dr. John Laufer 
Dr. Thomas Vrebalovich 
Dr. Peter P. Wegener 
Dr. Harry E. Williams 
Mr. Richard Wood 
Hypersonic WT; Attn: Mr. G. Goranson 
Reports Group 
Jet Propulsion Laboratory 
4800 Oak Grove Drive 
Pasadena 2, California 

Dr. S. S. Penner 
Dr. Edward Zukoski 
Mechanical Engineering Department 
California Institute of Technology 

Dr. W. D. Rannie 
Jet Propulsion Center 
California Institute of Technology 

Dr. Julian D. Cole 
Dr. Donald E. Coles 
Dr. P. A. Lagerstrom 
Prof. Lester Lees 
Dr. H. W. Liepmann 
Dr. Clark B. Millikan 
Dr. Anatol Roshko 
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