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We study quantum spacetime fluctuations near light-sheet horizons associated with a Rindler wedge in
anti–de Sitter (AdS) spacetime, in the context of AdS=CFT. In particular, we solve the vacuum Einstein
equation near the light-sheet horizon, augmented with the ansatz of a quantum source smeared out in a
Planckian width along one of the light-cone directions. Such a source, whose physical interpretation is of
gravitational shock waves created by vacuum energy fluctuations, alters the Einstein equation to a
stochastic partial differential equation taking the form of a Langevin equation. By integrating fluctuations
along the light sheet, we find an accumulated effect in the round-trip time of a photon to traverse the

horizon of the Rindler wedge that depends on both the d-dimensional Newton constant GðdÞ
N and the AdS

curvature L, in agreement with previous literature utilizing different methods.

DOI: 10.1103/PhysRevD.108.066002

I. INTRODUCTION

The quantum mechanical description of gravity is one of
the most elusive questions in physics. An important tool
toward understanding the ultimate theory of quantum
gravity is the AdS=CFT correspondence. In this paper,
we aim to study the dynamics of gravity in the region of anti–
de Sitter (AdS) spacetime near light sheets shown in Fig. 1.
In particular, we seek to understand how spacetime fluctua-
tions alter the trajectory of a photon in the d-dimensional
bulk. Reference [1] found a fluctuation in the round-trip time
Tr:t: of a photon traveling from theAdS boundary to theRyu-
Takayanagi (RT) surface Σd−2 in the bulk having area
AðΣd−2Þ and back to the boundary,

ΔT2
r:t:

T2
r:t:

¼ 2

ðd − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GðdÞ

N

AðΣd−2Þ

s
: ð1Þ

The boundary of a causal diamond created by light
sheets is defined by a Rindler horizon, which has a nonzero
temperature and entropy, similar to a black hole event
horizon. The calculation of Ref. [1] (as well as Refs. [2,3])
operated through the analog between the boundary of the
Rindler wedge and a black hole horizon, utilizing tech-
niques developed in, e.g., [4,5]. In AdS=CFT, the modular
Hamiltonian K and its fluctuations ΔK obey an area law
similar to a black hole horizon [1,6–8]

hKi ¼ hΔK2i ¼ AðΣd−2Þ
4GðdÞ

N

¼ Sent; ð2Þ

where Sent is the entanglement entropy. Further, the metric,
if restricting to only the part of the spacetime covered by the
Rindler wedge shown in Fig. 1, can be parametrized in
terms of the topological black hole,

ds2 ¼ −fðρÞdτ2 þ dρ2

fðρÞ þ
ρ2

L2
dΣ2

d−2 with fðρÞ ¼ ρ2

L2
− 1;

ð3Þ
where L is the AdS radius, and the radial coordinate ρ
ranges from L ≤ ρ < ∞. Reference [9], based on the
calculations of Refs. [1–3], proposed a dictionary between
the horizons of causal diamonds (in common spacetimes
such as AdS and Minkowski) and black hole horizons.
It has long been known that black hole horizons have

a hydrodynamic description, known as the fluid-gravity
correspondence [10–12]. The fluid-gravity correspondence
was made more precise in the context of AdS=CFT, where
the hydrodynamics of a strongly interacting fluid (e.g.,
quark-gluon plasma) on the asymptotic boundary of a lower-
dimensional spacetime is described by gravitational dynam-
ics on a black brane in the bulk ofAdS [13–16]. Theseworks
inspired an extensive literature studying a hydrodynamic
effective description of gravity, e.g., [17–22]. Further,
Refs. [23,24] studied the dynamics of gravity in flat
spacetime with a cutoff surface, showing that the Einstein
equation in vacuum reduces to a Navier-Stokes equation in
one lower spacetime dimension.
Here, we utilize an effective fluid description of gravity

at the horizon of the Rindler wedge in AdS shown in Fig. 1
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to understand and recast the result Eq. (1). In particular, we
will study the Einstein equation near the boundary defined
by null sheets in Fig. 1. The hydrodynamic behavior of the
metric becomes apparent when the vacuum Einstein equa-
tion in the near-horizon limit is augmented with an ansatz
that the Einstein equation has a quantum source,�

d − 2

L2
−∇2⊥

�
hhuuðu;x⊥Þhuuðu0;x0⊥Þi

¼ 8πGðdÞ
N

δðu − u0Þ
2πelp

δd−2ðx⊥ − x0⊥Þ;�
d − 2

L2
−∇2⊥

�
hhvvðv;x⊥Þhvvðv0;x0⊥Þi

¼ 8πGðdÞ
N

δðv − v0Þ
2πelp

δd−2ðx⊥ − x0⊥Þ: ð4Þ

Here,u, v are light-cone coordinates, whilex⊥ are the (d − 2)
remaining transverse spatial directions. The left-hand side is

derived from the vacuum Einstein equation in AdS in the
near-horizon limit, while the right-hand side is a quantum
noise term, an ansatz motivated by the membrane paradigm.
In particular, a gravitationally coupled ultralocal quantum
noise term δdðx − x0Þ is reduced on one of the light-cone
directions by smearing one of the light-cone delta functions
with a Planckian width elp across a membrane (or black
brane) at the light-sheet horizon. This smearing is depicted as
a red/blue band in Fig. 1. When we solve this equation to
obtain the fluctuation in the photon round-trip traversal time,
wewill reproduceEq. (1), provided that thewidth of the black
braneelp is the reducedPlanck scale,whichwediscuss below.
Note that the quantum source on the right-hand side of

Eq. (4) now appears like an energetic particle that creates a
gravitational shock wave, as proposed by Dray and ’t Hooft
[25]. Such shock waves were recently shown in Ref. [26] to
generate the modular relations in Eq. (2), creating a self-
consistent physical picture. The quantum noise term in
Eq. (4) turns the Einstein equation into a Langevin-type
equation

hẊðτÞẊðτ0Þi ¼ hFðτÞFðτ0Þi; ð5Þ

where hFðτÞFðτ0Þi ¼ 2Dδðτ − τ0Þ is a noise term with the
diffusion coefficient D characterizing the scale of inter-
action, and we have integrated Eq. (4) over the (d − 2)
directions transverse to the light-cone coordinates. Here
XðτÞ is a position variable identified with XðτÞ ¼R
τ hττðτ0Þdτ0, where τ ¼ uðvÞ on the lower (upper) half

of the causal diamond, and the two-point function of ηðτÞ
describes a stochastic noise that drives a random walk.
Consequently, the classical Einstein equation becomes
a stochastic differential equation, where the “quantum
uncertainty” in spacetime itself undergoes a random walk,
with the correlations in the (d − 2) transverse directions
given by the Green’s function of the transverse Laplacian.
A “smeared-out” horizon is quite analogous to the notion

of a stretched horizon, which is a timelike hypersurface
Planckian separated from the true horizon first proposed by
Damour [10]. Later Refs. [11,12] showed that the proper-
ties of a black hole horizon can be mapped to those on the
stretched horizon. In the present context, we will smear
out the horizon by a “reduced Planck length” previously
identified in Refs. [3,9,26],

el2
p ∼

ld−2
p

Ld−4 : ð6Þ

In four dimensions, the reduced Planck length corresponds
to simply the Planck length, elp ∼ lp ≡ ffiffiffiffiffiffiffiffiffiffiffiffi

8πGN
p

.1 In a

FIG. 1. Depiction of the causal diamond in AdS space anchored
at the boundary. The red solid line traces out the light signal emitted
from the boundary to a point in the bulk on the Ryu-Takayanagi
surface labeled by Σd−2, while the blue solid line represents the
light reflected from the point in the bulk and received at the
boundary. The dashed lines represent the smearing of the light-
sheet horizon. The red and blue shaded region represents quantum
gravity induced fluctuations of the light trajectory.

1In d > 4, the Planck length is reduced by the IR scale L to a
scale smaller than lp, suggesting to us that in d > 4 there is
actually no cumulative IR effect of the quantum fluctuations of
spacetime.
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general number of dimensions, the length scale in Eq. (6)
was identified as the fundamental length scale of ’t Hooft
commutation relations in any number of dimensions [26].elp ∼ L=

ffiffiffiffiffiffiffi
Sent

p
in Eq. (6) was also identified in Ref. [3] as

the decoherence scale of nested causal diamonds, each of
which have Sent degrees of freedom. We will find that
positing a causal diamond with a stretched horizon of width
given by Eq. (6) allows us to reproduce Eq. (1), the main
result of Ref. [1].
Finally, we comment that, while the square-root behavior

of the variance ΔT2
r:t: in Eq. (1) is perhaps somewhat

perplexing from a scattering amplitude or naïve effective
field theory perspective, it is, however, characteristic of
random walk behavior in hydrodynamics, where fluctua-
tions take a typical form

ΔT2
r:t: ∼ el2

pN ; ð7Þ

where elp is the UV timescale of the hydrodynamic theory
(normally associated with the diffusion coefficient, as
discussed in Ref. [9]), and N ¼ L=elp is the number of
steps in the random walk over the round-trip time.
The outline of this paper is as follows. In Sec. II, we set

the stage by reviewing the background geometry. In
Sec. III, we study the gravitational perturbations to the
background geometry and show that the Einstein equation
in the near-horizon limit reduces to an equation relating
metric fluctuations and gravitational shock waves. In
Sec. IV, we solve this equation with a source term derived
from the ’t ooft commutation relations. Then we use the
solution to calculate the uncertainty in photon round-trip
time. Finally, in Sec. V, we discuss implications of our
results and point to a few future directions. Throughout this
paper, we will use 8πGðdÞ

N ¼ ld−2
p for the gravitational

constant and Planck length in d dimensions.

II. PRELIMINARIES: BACKGROUND GEOMETRY

As discussed in the Introduction, we consider the geo-
metric setup in Fig. 1. A photon is emitted from the
boundary into the bulk of d-dimensional AdS space,
reflected by a “mirror” on the RT surface in the bulk,
and finally received on the boundary. We briefly review
three coordinates used throughout this paper, Poincaré,
Eddington-Finkelstein (EF), and Kruskal-Szekeres. The
first (and most standard) will be useful for interpreting
the results in terms of the observable time delay. The EF
coordinates are closely related to topological black hole
coordinates introduced in Eq. (3) and are useful as an
intermediate step to derive equations of motion governing
the dynamics of near-horizon metric fluctuations. Finally,
the Kruskal-Szekeres coordinates are the curved space
analog of the light-cone metric. The light-cone metric is
used extensively to study the effects of spacetime fluctua-
tions of a causal diamond in Minkowski space in

Refs. [2,26], and a natural generalization to curved space-
time is provided by the Kruskal-Szekeres coordinates. We
now proceed to briefly summarize these three coordinate
systems, as useful for our discussion.

A. From topological black hole to Poincaré metric

While the topological black hole metric described in
Sec. I is suitable to study the interior of the bulk causal
diamond, there is also a causal diamond with spherical
symmetry on the boundary, such that the interferometer
could also be viewed as being on the (suitably regularized)
boundary. The Poincaré metric describes the near boundary
region of the d-dimensional AdS space,

ds2 ¼ L2

z2
ðdz2 −dx20þ δabdxadxbÞ for a;b¼ 1;…;d− 2:

ð8Þ

A causal diamond in AdS is illustrated in Fig. 1, in which
the blue line denoted by B is the finite spherical entangling
surface on the boundary, described by the inequalityP

i x
2
i ≤ L2. The full interior of the causal diamond

satisfies the inequality [1]

L2 − z2 −
X
i

x2i þ x20 ≥ 2Ljx0j: ð9Þ

The transformation between the Poincaré and topological
black hole metrics is given in Refs. [1,4], which we do not
repeat since the details are not important for the purpose of
this paper.

B. From topological black hole
to Kruskal-Szekeres metric

Our interest is in the dynamics of spacetime fluctuations
near the light front of Rindler-AdS space. The light front
coincides with the horizon of the topological black hole
metric, where Eq. (3) becomes singular, and it becomes
desirable to perform a coordinate transformation to over-
come the apparent pathology of Eq. (3). We transform the
topological black hole metric into the EF metric as an
intermediate step, defining the tortoise coordinate ρ� as

ρ� ≡
Z

ρ dρ0

fðρ0Þ ¼
L
2
ln
ρ − L
ρþ L

; ð10Þ

where fðρÞ ¼ ρ2=L2 − 1. Then we define two new coor-
dinates U and V,

V ≡ τ þ ρ� and U ≡ τ − ρ�: ð11Þ

In terms of U and V, the original topological black hole
metric in Eq. (3) becomes
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ds2 ¼ −fðρÞdV2 þ 2dVdρþ
�
ρ

L

�
2

dΣ2
d−2 ðEF ingoingÞ;

ð12Þ

ds2 ¼ −fðρÞdU2 − 2dUdρþ
�
ρ

L

�
2

dΣ2
d−2 ðEFoutgoingÞ:

ð13Þ

The metric dΣ2
d−2 in the transverse space is given by

dΣ2
d−2 ¼ dχ2 þ sinh2

�
χ

L

�
dΩ2

d−3: ð14Þ

The form of Eq. (14) plays an important role in determining
the angular correlation functions of uncertainty in the
photon traversal time. We will discuss angular correlations
in detail in Sec. IVA. Both metrics above are nonsingular at
the horizon. While Eq. (12) describes the trajectories of
particles on the upper half of the causal diamond in Fig. 1,
Eq. (13) describes the trajectories of particles on the
lower half.
Following Refs. [27,28], we define the “light-cone”

coordinates in Rindler-AdS space,

u ¼ −Le−U=L ¼ −L

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ − L
ρþ L

s
e−τ=L;

v ¼ LeV=L ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ − L
ρþ L

s
eτ=L; ð15Þ

where the second equality relates u and v to the topological
black hole coordinates ðτ; ρÞ. Rindler-AdS space in the
Kruskal-Szekeres metric becomes

ds2 ¼ −
4L4dudv
ðL2 þ uvÞ2 þ

�
L2 − uv
L2 þ uv

�
2

dΣ2
d−2: ð16Þ

An advantage of the Kruskal-Szekeres metric is that the
“light-cone time” u and v can be directly related to the time
coordinate x0 in the Poincaré metric. By using the embed-
ding equations in Refs. [4,27], we find x0 as a function of u
and v,

x0ðu; vÞ

¼ �L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ u2ÞðL2 þ v2Þ − ðL2 − uvÞ2cosh2ðχ=LÞ

p
Lðv − uÞ þ ðL2 − uvÞ coshðχ=LÞ :

ð17Þ

In particular, the point of emission xðem:Þ
0 corresponds to the

initial value of u ¼ ui on the past light front, where v ¼ 0.
Furthermore, we set χ ¼ 0 such that the photon trajectory
we choose coincides with the one selected by Ref. [1],

xðem:Þ
0 ðu¼ ui;v¼ 0;χ¼ 0Þ¼−

Lui
L−ui

→−L as ui→−∞:

ð18Þ

Similarly, the point of reception can be related to the final
value of v ¼ vf on the future light front where u ¼ 0,

xðreÞ0 ðu ¼ 0; v ¼ vf; χ ¼ 0Þ ¼ Lvf
Lþ vf

→ L as vf → þ∞:

ð19Þ

Therefore, the total photon travel time in the Poincaré
coordinates Δx0 is

Δx0≡xðreÞ0 ðvfÞ−xðem:Þ
0 ðuiÞ≈2L ⇒ Tr:t:¼

L
zc
Δx0; ð20Þ

where we have related the physical round-trip time observed
on a cutoff surface z ¼ zc to Δx0 in the Poincaré metric, in
accordance with the convention in Ref. [1].
Our main task is to determine how spacetime fluctua-

tions would alter the classical traversal time of the light
beams; to do so, we start with studying metric perturbations
about the Rindler-AdS background geometry in the sub-
sequent section.

III. NEAR-HORIZON METRIC PERTURBATIONS

Given the background geometry in Sec. II, our goal is to
study fluctuations on top of this background and how
they will give rise to a potentially observable effect in an
interferometer experiment. Spacetime fluctuations are
encapsulated by metric perturbations. Because these fluc-
tuations are small in amplitude, we utilize the linearized
Einstein equations to study the dynamics of the perturbed
metric.
The vacuum Einstein equations for AdSd spacetime

reads

GMN ≡ RMN −
1

2
gMNRþ ΛgMN ¼ 0; ð21Þ

where M;N ¼ 1;…; d are the indices of AdSd bulk
spacetime, and Λ ¼ −ðd − 1Þðd − 2Þ=2L2 is the cosmo-
logical constant. All the metrics in Secs. I and II are
solutions to the vacuum Einstein equations.
We are interested in metric fluctuations in the near-

horizon region of Rindler-AdS space, so it is most
convenient to use the EF coordinates. Metric perturbations
along the past (future) light front are described by Eq. (13)
[Eq. (12)]. We choose to study metric fluctuations along
the past light front, which corresponds to using the
EF-outgoing metric. A completely analogous analysis
applies for the future light front. The perturbed metric
along the past light front is given by
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ds2 ¼ −fðρÞdU2 − 2dUdρþ
�
ρ

L

�
2

dΣ2
d−2

þHUUdU2 þ 2HUρdUdρþHρρdρ2 þ � � � ; ð22Þ

where ð� � �Þ denotes Hab, a; b ¼ 1;…; d − 2 in the trans-
verse space.
The perturbed metric in Eq. (22) solves the linearized

Einstein equation for jHMN j ≪ 1, which in AdS space is
given by [15,16]

δGð1Þ
MN ≡ Rð1Þ

MN þ d − 1

L2
HMN ¼ 0; ð23Þ

where the perturbed Ricci tensor Rð1Þ
MN satisfies [13]

RMN ¼ Rð0Þ
MN þ Rð1Þ

MN þ � � �

¼ −
ðd − 1Þ
L2

ðgð0ÞMN þHMNÞ: ð24Þ

Here, gð0ÞMN denotes the background metric. Next, we expand
the perturbations as a power series in the near-horizon
region [27,29]

HMN ¼ Hð0Þ
MN þHð1Þ

MN

�
r − L
L

�
þ � � � ; ð25Þ

and Hð0Þ
MN can be written as

Hð0Þ
MNðU;x⊥Þ ¼

Z
dω
2π

hMNðx⊥Þe−iωU; ð26Þ

where x⊥ denotes the coordinates in the transverse space,
and ω is the frequency conjugate to U. Following the
procedure in Refs. [27,29], one can show that the UU
component of the linearized Einstein equation describes the
Dray-’t Hooft shock wave perturbation in Refs. [25,30].
Substituting Eq. (26) into Eq. (23), we find the UU
component of Eq. (23) to be [27,29]

d − 2

L2

�
1þ L

�
4πT − iω −

3

L

��
hð0ÞUU −∇2⊥h

ð0Þ
UU

−
iωþ 2πT

L
X ¼ 0; ð27Þ

where

T ¼ f0ðρÞ
4π

����
ρ¼L

¼ 1

2πL
ð28Þ

is the Hawking temperature. The variable X denotes all

hð0ÞMN coupled to hð0ÞUU via Eq. (23). In general, the exact form
of X is quite complicated. For instance, Ref. [27] has
computed the form of X in AdS4 to be

X ¼d¼4
2 cothðχ=LÞhð0ÞUχ þ iωLðcsch2ðχ=LÞhð0Þθθ þ hð0Þχχ Þ

þ 2csch2ðχ=LÞ ∂h
ð0Þ
Uθ

∂θ
þ 2L

∂hð0ÞUχ

∂χ
: ð29Þ

Fortunately, the precise form of X will not be relevant for
the purposes of this paper.
Equation (27) thus imposes a constraint relating hð0ÞUU to

other metric perturbation components. However, when
ω ¼ ω⋆ ¼ i2πT, the second line of Eq. (27) vanishes
altogether. The resulting equation takes on the same form
of the partial differential equation describing metric per-
turbations due to gravitational shock waves [25,30]. As
pointed out in Ref. [29], the point ω⋆ ¼ i2πT is very
special, as 2πT is also known as the “Lyapunov exponent”:
2πT ¼ λmax, which characterizes chaotic behavior in a
quantum system [20,31–33]. Following the argument of
Refs. [27,29], one deduces that at the point ω⋆ ¼ i2πT,

hð0ÞUU decouples from the rest of hð0ÞMN and becomes an
independent scalar degree of freedom which satisfies the
equation �

d − 2

L2
−∇2⊥

�
hð0ÞUU ¼ 0: ð30Þ

The solution to this equation is readily obtained by setting

∇2⊥h
ð0Þ
UU ¼ −k2⊥h

ð0Þ
UU, with k2⊥ being the eigenvalue of the

transversal Laplacian operator. Therefore, Eq. (30) is
reduced to an algebraic equation

d − 2

L2
þ k2⊥ ¼ 0: ð31Þ

We can rewrite Eq. (31) by substituting ω⋆ ¼ i2πT ¼ L−1

into the expression

ω⋆ ¼ iDk2⊥; D ¼ L
d − 2

¼ vB
2πT

; ð32Þ

so it resembles the dispersion relation arising from a
diffusive system. The diffusivity D characterizes the so-
called energy diffusion [29], because the metric perturba-
tion is in the UU component. The factor of 1=ðd − 2Þ ¼ vB
has been shown [27,34] to be the “butterfly velocity” in
Rindler-AdS space. The butterfly velocity characterizes the
speed of information propagating in a system with a
horizon (e.g., a black hole), and it is closely related to
the propagation of gravitational shock waves and quantum
chaos [31,33,35,36]. Furthermore, Ref. [37] studying an
AdS5 black brane obtained a similar diffusive dispersion
with the same Lyapunov exponent, but with a different vB.
In fact, several recent works [20,29,38,39] have shown that
energy diffusion phenomenon is quite universal in various
holographic systems, which all have the same Lyapunov
exponent, but with a geometry-dependent vB.
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So far our discussions have been completely classical.
Equation (30) also describes classical gravitational shock
waves [25,27,29,37] if we add a source, where the right-

hand side is 8πGNTUU ∼ ld−2
p

δðU−U0Þ
2πelp δd−2ðx⊥ − x0⊥Þ for a

classical shock wave stress-energy tensor propagating at
x0 ¼ ðU0;x0⊥Þ with momentum pv ¼ 1

2πelp. It is, however,
possible to also consider quantum sources. In particular, we
focus on a quantum source from vacuum energy fluctua-
tions, motivated by the ’t Hooft commutation relations
[40,41]. In particular, Ref. [26] showed that vacuum
fluctuations in Minkowski space, fixed by the ’t Hooft
commutation relations, give rise to the modular fluctuations
in Eq. (2). In the following, we will utilize this result and
apply it to Rindler-AdS space by adding a quantum source
to the vacuum Einstein equation (30) of size fixed by the ’t
Hooft commutation relations. In so doing, we will repro-
duce quantum fluctuations in the round-trip photon travel
time in Eq. (1).

A. Quantum sources from the ’t Hooft
commutation relation

We will ultimately be interested in studying Eq. (30) in
the presence of shock waves from quantum fluctuations. In
particular, these quantum fluctuations are motivated by the
commutation relations proposed in Ref. [26], which are
written in light-cone coordinates ðu; vÞ. Thus, we will
transform the EF coordinates ðU; ρÞ of Eq. (30) to the light-
cone ðu; vÞ Kruskal-Szekeres metric, taking hUU → huu,
where we suppress the superscript henceforth. Because u
and U are related via Eq. (15), it is straightforward to see
that, in the Kruskal-Szekeres metric, Eq. (30) is�

d − 2

L2
−∇2⊥

�
huu ¼ 0: ð33Þ

Due to vacuum energy fluctuations, the right-hand side of
Eq. (33) is replaced with some stress-energy tensor Tuu.
Here we will assume that Tuu captures the quantum

nature of the fluctuations. This is the ansatz of this paper
that differs from other literature, which further will be
crucial for obtaining the fluctuation in the round-trip
photon traversal time obtained in Ref. [1]. In particular,
we make use of a commutation relation (closely related to
those proposed by ’t Hooft) at unequal times [26]

½TuuðxÞhvvðx0Þ� ¼ iδdðx − x0Þ; ð34Þ

where x denotes the coordinates in Rindler-AdSd space,
written in light-cone coordinates. The d-dimensional delta
function can be factorized into three parts

δdðx − x0Þ ¼ 1

2
δðu − u0Þδðv − v0Þδd−2ðx⊥ − x0⊥Þ; ð35Þ

where u0 and v0 denote the location of the bifurcate
horizon, and δd−2ðx⊥ − x0⊥Þ is the (d − 2)-dimensional
delta function in the transverse space. Note that the addi-
tional factor of 1=2 comes from the normalization condition
for the delta function in the Kruskal-Szekeres metric.
Imposing the commutation relation in Eq. (34) implies
that huu and hvv are no longer classical metric perturba-
tions, but have been promoted to quantum operators.
By further imposing the linearized Einstein equation on
Eq. (34), we obtain an operator equation

�
d − 2

L2
−∇2⊥

�
½huuðu;x⊥Þhvvðv;x0⊥Þ�

¼ i
2
ld−2
p δðu − u0Þδðv − v0Þδd−2ðx⊥ − x0⊥Þ: ð36Þ

Note that the transverse Laplacian acts only on huuðu;x⊥Þ
and not the coordinates marked with a prime in hvvðv;x0⊥Þ.
Equation (36) then implies that

½huuðu;x⊥Þhvvðv;x0⊥Þ�

¼ i
2
ld−2
p δðu − u0Þδðv − v0Þfðx⊥;x0⊥Þ; ð37Þ

where ld−2
p ¼ 8πGðdÞ

N , and fðx⊥;x0⊥Þ is the Green’s func-
tion that satisfies

�
d − 2

L2
−∇2⊥

�
fðx⊥;x0⊥Þ ¼ δd−2ðx⊥ − x0⊥Þ: ð38Þ

Since Tuu is a stochastic source in vacuum, this implies that
hhuui and hhvvi vanish, where h� � �i denotes the expectation
value of any minimum uncertainty state. However, the
variances hh2uui and hh2vvi are nonvanishing by virtue of the
Robertson uncertainty relation in quantum mechanics

hh2uuihh2vvi ¼
���� 12i h½huu; hvv�i

����2

¼
�
ld−2
p

4

�
2

½δðu − u0Þδðv − v0Þfðx⊥;x0⊥Þ�2:

ð39Þ

Two important comments are in order.
(1) Formally, the ’t Hooft commutation relations were

formulated on the horizon of a black hole. In the
present context, that would imply Eq. (39) is
evaluated at the bifurcate horizon, which is located
at u0 ¼ v0 ¼ 0. However, according to Refs. [3,9],
the light beam in an interferometer system passes
through a series of causal diamonds. Specifically, the
maximal causal diamond in Fig. 1 is foliated by a
sequence of nested causal diamonds. Each of the
adjacent causal diamonds is separated by a length
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scale, called the “decoherence length” elp, given in
Eq. (6). Subsequent causal diamonds separated by a
distance larger than elp become statistically inde-
pendent [3]. A schematic of the nested causal
diamonds is shown in Fig. 2. Along the past light
front, we keep v fixed, while u varies along the
trajectory; along the future light front, the opposite
holds. From the viewpoint of nested causal dia-
monds, a light beam traveling along the past
light front will experience a series of statistically
independent fluctuations. Along the past (future)
null trajectory, where the clock is uðvÞ, one can
define the variance hh2uui≡ hhuuðu;x⊥Þhuuðu0; x0⊥Þi
(ðhh2vvi≡ hhvvðv;x⊥Þhvvðv0;x0⊥ÞiÞ), where u0ðv0Þ
denotes the location of the bifurcate horizons of
each nested causal diamond.

(2) We postulate the past (future) light front will be
smeared out by elp, which operationally means
the delta function which localizes the light front
at v0ðu0Þ, δðv − v0Þ ¼ δðvÞ [δðu − u0Þ ¼ δðuÞ] will
be replaced by a regularized delta function of
Planckian width. This is quite similar to the imple-
mentation of a stretched horizon for a black hole
in Refs. [35,36,42]. In the present case, we imple-
ment the “smearing” of the light front by regular-
izing δðvÞ with a Poisson kernel of a Lorentzian
width elp,

δðvÞ ¼ limelp→0

2

π

elpel2
p þ v2

≈
2

πelp

along the past light front v → 0: ð40Þ

These points are illustrated in Fig. 2, where the broadening
of the delta function along the past and future light front is
shown as a shaded red/blue gradient. Note that our final
result for the fluctuations in the photon round-trip traversal
time may depend on the precise form of the delta-function
regularization by an Oð1Þ number, but can be absorbed
into an Oð1Þ (dimensionless) coefficient by matching the
present hydrodynamic result to the earlier result in Eq. (1).
The regularization scheme thus will not impact the overall
physical picture since the dimensionful scales match
between the present hydrodynamic calculation and the
result of Ref. [1].
In summary, Eq. (39) together with Eq. (40), at a fixed

point on the past or future null horizon, implies a non-
vanishing two-point function of huu and hvv given by

hhuuðu;x⊥Þhuuðu0;x0⊥Þi¼
ld−2
p

2πelp

δðu−u0Þfðx⊥;x0⊥Þ; ð41Þ

hhvvðv;x⊥Þhvvðv0;x0⊥Þi¼
ld−2
p

2πelp

δðv−v0Þfðx⊥;x0⊥Þ: ð42Þ

In the next section, we study how these fundamental
commutators can be evolved to give the integrated uncer-
tainty in the light traversal time.

IV. UNCERTAINTY IN PHOTON TRAVERSAL
TIME FROM NEAR-HORIZON
QUANTUM FLUCTUATIONS

In the previous section, we have argued that vacuum
energy fluctuations in the near-horizon region give rise
to nonvanishing variance of the metric perturbations,
Eqs. (41) and (42). The equations that govern the two-
point function of huu and hvv are shown in Eq. (4). Note

FIG. 2. The causal diamond in Rindler-AdS space is foliated
with a series of nested causal diamonds. The separation between
two adjacent diamonds is the decoherence length elp. Each nested
causal diamond intersects with the past (future) light front at a
bifurcate horizon along the past (future) light front. The high-
lighted region corresponds to the near-light-sheet region of
spacetime, where quantum fluctuations cause a probe photon
to undergo random walk.
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that the two-point functions of metric perturbations them-
selves are not observables in an interferometer system.
To connect the equations above to a quantity more directly
connected to the observable, we first define two “light-ray”
operators as in Ref. [26],

Xv ¼ vþ
Z

u
du0huuðu0;x⊥Þ; ð43Þ

Xu ¼ uþ
Z

v
dv0hvvðv0;x⊥Þ: ð44Þ

Reference [26] has demonstrated that the ’t Hooft commu-
tation relations in Eq. (34) applied on the bifurcate horizon
implies a commutation relation of Xu and Xv,

½Xuðx⊥ÞXvðx0⊥Þ ¼ ild−2
p fðx⊥;x0⊥Þ: ð45Þ

Presently, we are interested in obtaining the accumulated
uncertainty along the light sheet. This uncertainty is
computed from solving the following equations:

�
d − 2

L2
−∇2⊥

�
h∂uXvðu;x⊥Þ∂u0Xvðu0;x0⊥Þi

¼ ld−2
p

2πelp

δðu − u0Þδd−2ðx⊥ − x0⊥Þ; ð46Þ

�
d − 2

L2
−∇2⊥

�
h∂vXuðv;x⊥Þ∂v0Xuðv0;x0⊥Þi

¼ ld−2
p

2πelp

δðv − v0Þδd−2ðx⊥ − x0⊥Þ: ð47Þ

Equations (46) and (47) look similar to a Langevin equation
that describes random motion of a particle suspended in a
dissipative fluid [43]. Recall that, in statistical mechanics, the
one-dimensionalLangevin equation is a stochastic differential
equation which takes on the form (for a massless particle) of
Eq. (5). Besides the spatial response in the transverse plane,
we can clearly identify quantities derived from gravitational
shockwave dynamics in Eqs. (46) and (47)with the dynamics
of a microscopic particle in a fluid subjected to a random
force. In particular, we find the following identifications:

Ẋðτ;x⊥Þ ¼
�
∂uXvðu;x⊥Þ past light front;

∂vXuðv;x⊥Þ future light front:

hFðτ;x⊥ÞFðτ0;x0⊥Þi ∼
�
δðu − u0Þfðx⊥ − x0⊥Þ past light front;

δðv − v0Þfðx⊥ − x0⊥Þ future light front:
ð48Þ

Wenow compute the observable fromEqs. (46) and (47). An
appropriate observable in an interferometer is the total time
delay of a light beam traversing the whole causal diamond.
This time delay is measured on the boundary in the Poincaré
metric: Tr:t: ¼ Lx0=zc. To compute the total time delay, we
need to integrate over all local (and statistically uncorrelated
at distinct spacetime points) fluctuations generated by the
quantum uncertainty in Eqs. (46) and (47),�
d − 2

L2
−∇2⊥

�
hXvðx⊥ÞXvðx0⊥Þi

¼ ld−2
p δd−2ðx⊥ − x0⊥Þ

2πelp

Z
0

ui

du
Z

0

ui

du0δðu − u0Þ

¼ −
ld−2
p

2πelp

uiδd−2ðx⊥ − x0⊥Þ; ð49Þ
�
d − 2

L2
−∇2⊥

�
hXuðx⊥ÞXuðx0⊥Þi

¼ ld−2
p δd−2ðx⊥ − x0⊥Þ

2πelp

Z
vf

0

dv
Z

vf

0

dv0δðv − v0Þ

¼ ld−2
p

2πelp

vfδd−2ðx⊥ − x0⊥Þ: ð50Þ

Notice that these equations already exhibit the randomwalk
behavior, shown in Eq. (7), proposed in Refs. [2,3,9], where
the total uncertainty in a length operator accumulates
linearly with the size of the causal diamond (which here
is given by ui, vf).
We first consider the case in which the full symmetry of

the transverse space is respected (corresponding to the
s-wave mode), in order to directly compare with Eq. (1). To
extract this information from our analysis (which includes
the transverse response), we thus (i) take the operator
∇2⊥ → 0 on the left-hand side of Eqs. (49) and (50), and
(ii) integrate δd−2ðx⊥ − x0⊥Þ over the area and then divide by
the area of Σd−2 on the right-hand side of Eqs. (49) and (50),

ðiÞ d − 2

L2
−∇2⊥ →

d − 2

L2
;

ðiiÞ δd−2ðx − x0⊥Þ →
1

AðΣd−2Þ
Z

δd−2ðx − x0ÞdΣd−2

¼ 1

AðΣd−2Þ
: ð51Þ

In an interferometer, the quantity related to the observable is
the round-trip time of a light beam measured by a clock on
the boundary located at z ¼ zc [1],
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vf −ui ⇒
Poincaré

Δx0 ≈ 2L ⇒ Tr:t: ≈
L
zc
ð2LÞ; ð52Þ

as we formally take vf ¼ −ui → ∞.
Fluctuations of Tr:t: are captured by the two-point

function in Eqs. (49) and (50), which is now found to be

ΔT2
r:t:

T2
r:t:

≡
�
L
zc

�
2 1

T2
r:t:
ðhXvðx⊥ÞXvðx0⊥Þi þ hXuðx⊥ÞXuðx0⊥ÞiÞ

¼ 1

2ðd− 2Þ
�
Lelp

�
1

Sent
: ð53Þ

Here we have used the definition of the entangle-

ment entropy Sent ≡ AðΣd−2Þ=4GðdÞ
N with 8πGðdÞ

N ¼ ld−2
p .

Comparing our result in Eq. (53) with that from Ref. [1]
[shown in Eq. (1)] allows us to determine elp as

elp ¼ L
4

ffiffiffiffiffiffiffi
Sent

p : ð54Þ

This is the same length scale first identified, through
independent and complementary means, in Refs. [3,9,26]
and quoted in Eq. (6). In particular, Ref. [26] identified elp

as the relevant uncertainty scale appearing in the commu-
tation relation (45), giving a physical interpretation to the
width of the stretched horizon we have employed here. The
dependence of the uncertainty scale on the dimensionful
scales lp; L can be parametrically seen by noting that
fðx⊥;x0⊥Þ ∼ L4−d [as can be seen from Eq. (38) and which
we will write out explicitly below], such that right-hand
side of the uncertainty relation Eq. (45) has a dimensionful
scaling as ld−2

p =Ld−4 ∼ el2
p. Even more precisely, Eq. (54)

agrees to a factor of 4 (which can be attributed to
uncertainty due to the regularization procedure employed
here) with that predicted in Refs. [3,9].

A. Angular correlations of photon traversal
time fluctuations

The form of the expressions in Eqs. (49) and (50)
allows us to now also extract the angular correlations,
via fðx⊥;x0⊥Þ, which as the Green’s function of the
transversal Laplacian in (38) becomes�
d−2

L2
−

∂
2

∂χ2
− ðd−3Þcoth

�
χ

L

�
1

L
∂

∂χ
−

1

L2sinh2ðχ=LÞ∇
2
Sd−3

�
×fðx⊥;x0⊥Þ¼ δd−2ðx⊥−x0⊥Þ; ð55Þ

where the Laplacian operator on the transverse spaceΣd−2 ≅
Hd−2 is given by Ref. [44] and ∇2

Sd−3
denotes the Laplacian

on a (d − 3)-dimensional unit sphere. In the following, we
consider an interferometer setup in which the two end
mirrors are located at χ and χ0. In other words, the two

interferometer arms pick out two particular directions in the
χ coordinate of the transverse space, while leaving the
residual subspace Sd−3 invariant. Therefore, we can neglect
the term ∇2

Sd−3
in Eq. (55). Spherical symmetry implies that

the solution of Eq. (55) depends only on the geodesic
distance in Σd−2, which is given by [27,44]

ξðx⊥;x0⊥Þ≡ cosh−1
�
cosh

�
χ

L

�
cosh

�
χ0

L

�
− sinh

�
χ

L

�

× sinh

�
χ0

L

�
cos γ

�
; ð56Þ

where γ is the polar angle subtended by the two interfer-
ometer arms. To further simplify the problem we consider
the case in which L is sufficiently large compared to ξ such
that the term ðd − 2Þ=L2 can be neglected. Equation (55)
then reduces to

−
∂
2fðx⊥;x0⊥Þ

∂χ2
−
ðd − 3Þ

L
coth

�
χ

L

�
∂fðx⊥;x0⊥Þ

∂χ

¼ δd−2ðx⊥ − x0⊥Þ: ð57Þ

The solution to Eq. (57) is found in Ref. [44] to be

fðx⊥;x0⊥Þ ¼
1

Ωd−3Ld−4 fðΣ;Σ0Þ; ð58Þ

where fðΣ;Σ0Þ is given in terms of the hypergeometric
function [27,44]

fðΣ;Σ0Þ ¼ 1

ðd − 3Þcoshd−3ξ

× 2F1

�
d − 3

2
;
d − 2

2
;
d − 1

2
;

1

cosh2ξ

�
: ð59Þ

In the limit where the hyperboloid Hd−2 looks locally
Euclidean, fðΣ;Σ0Þ reduces to the familiar result in
Euclidean space [44],

fðΣ;Σ0Þ ≈
8<
:

ln L
jχ−χ0j for d ¼ 4;	
L

jχ−χ0j


4−d

for d ≥ 5:
ð60Þ

Because the Green’s function fðx⊥;x0⊥Þ ∼ L4−d, it receives
a conformal rescaling on the (regularized) boundary at
z ¼ zc in the Poincaré metric

fðx⊥;x0⊥Þ →
z¼zc

�
L
zc

�
4−d

fðx⊥;x0⊥Þ: ð61Þ

Accounting for the conformal factor ðL=zcÞ properly,
and using Eq. (49) together with (50), we find the
fluctuations ΔT2

r:t: to be
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ΔT2
r:t:ðx⊥;x0⊥Þ≡

�
L
zc

�
2

ðhXvðx⊥ÞXvðx0⊥Þi þ hXuðx⊥ÞXuðx0⊥ÞiÞ

¼
�
L
zc

�
2
�
2L3

elp

��
ld−2
p

2πΩd−3Ld−2ðL=zcÞd−3
�
fðΣ;Σ0Þ

¼
�
L
zc

�
2

8L2
1ffiffiffiffiffiffiffi
Sent

p fðΣ;Σ0Þ: ð62Þ

In evaluating the second line, we substituted the area of
the transverse space AðΣd−2Þ≈Ωd−3Ld−2ðL=zcÞd−3 (for
zc→0) and used the definition of the entanglement entropy
again, while in the third linewe have used the scale precisely
identified in Eq. (54). Thus, the relative uncertainty of
photon round-trip time, with angular correlations, is

ΔT2
r:t:

T2
r:t:

ðx⊥;x0⊥Þ ¼
2ffiffiffiffiffiffiffi
Sent

p fðΣ;Σ0Þ: ð63Þ

V. SUMMARY AND DISCUSSION

In this paper, we have shown that vacuum energy
fluctuations in AdS space, with a quantum noise term
motivated by commutation relations presented in Ref. [26]
and shown in Eqs. (34) and (45), give rise to hydrodynamic
behavior for the fluctuations of the spacetime geometry. In
particular, we demonstrated that the near-horizon fluctua-
tions of a finite causal diamond is a diffusive process that
captures “random walk” characteristics in time (but with
transverse spatial correlations) of quantum spacetime
fluctuations. We further analyzed the effect of these
fluctuations on the traversal time of photons traveling from
the boundary and reflecting off a mirror in the bulk,
confirming the previous result of Ref. [1] despite taking
a computationally complementary route. An important step
in our reasoning was to focus only on the hydrodynamics

on the stretched horizon of a causal diamond, distinct from
the usual fluid/gravity correspondence that proposes a
duality between the bulk gravitational perturbations and
boundary hydrodynamics.
There are many interesting future directions to pursue.

First, one could carry out a similar type of analysis in
Minkowski space. Second, one could seek to understand
the underlying origins of these vacuum fluctuations
from shock wave geometries. Finally, one could utilize
theoretical tools such as out-of-time-order correlators that
describe fast-scrambling systems and quantum chaos to
study the connection between hydrodynamics and shock
wave geometries. We look forward to further developments
in these formal aspects and its groundwork for future
observational tests.
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J. High Energy Phys. 03 (2014) 117.

[7] Y. Nakaguchi and T. Nishioka, A holographic proof of
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