Measurement of partial branching fractions of inclusive charmless
B
meson
decays to
K
þ
,
K
0
, and
þ
P. del Amo Sanchez,
1
J. P. Lees,
1
V. Poireau,
1
E. Prencipe,
1
V. Tisserand,
1
J. Garra Tico,
2
E. Grauges,
2
M. Martinelli,
3a,3b
D. A. Milanes,
3a
A. Palano,
3a,3b
M. Pappagallo,
3a,3b
G. Eigen,
4
B. Stugu,
4
L. Sun,
4
D. N. Brown,
5
L. T. Kerth,
5
Yu. G. Kolomensky,
5
G. Lynch,
5
I. L. Osipenkov,
5
H. Koch,
6
T. Schroeder,
6
D. J. Asgeirsson,
7
C. Hearty,
7
T. S. Mattison,
7
J. A. McKenna,
7
A. Khan,
8
V. E. Blinov,
9
A. R. Buzykaev,
9
V. P. Druzhinin,
9
V. B. Golubev,
9
E. A. Kravchenko,
9
A. P. Onuchin,
9
S. I. Serednyakov,
9
Yu. I. Skovpen,
9
E. P. Solodov,
9
K. Yu. Todyshev,
9
A. N. Yushkov,
9
M. Bondioli,
10
S. Curry,
10
D. Kirkby,
10
A. J. Lankford,
10
M. Mandelkern,
10
E. C. Martin,
10
D. P. Stoker,
10
H. Atmacan,
11
J. W. Gary,
11
F. Liu,
11
O. Long,
11
G. M. Vitug,
11
C. Campagnari,
12
T. M. Hong,
12
D. Kovalskyi,
12
J. D. Richman,
12
C. A. West,
12
A. M. Eisner,
13
C. A. Heusch,
13
J. Kroseberg,
13
W. S. Lockman,
13
A. J. Martinez,
13
T. Schalk,
13
B. A. Schumm,
13
A. Seiden,
13
L. O. Winstrom,
13
C. H. Cheng,
14
D. A. Doll,
14
B. Echenard,
14
D. G. Hitlin,
14
P. Ongmongkolkul,
14
F. C. Porter,
14
A. Y. Rakitin,
14
R. Andreassen,
15
M. S. Dubrovin,
15
B. T. Meadows,
15
M. D. Sokoloff,
15
F. Blanc,
16
P. C. Bloom,
16
W. T. Ford,
16
A. Gaz,
16
M. Nagel,
16
U. Nauenberg,
16
J. G. Smith,
16
S. R. Wagner,
16
R. Ayad,
17,
*
W. H. Toki,
17
H. Jasper,
18
A. Petzold,
18
B. Spaan,
18
M. J. Kobel,
19
K. R. Schubert,
19
R. Schwierz,
19
D. Bernard,
20
M. Verderi,
20
P. J. Clark,
21
S. Playfer,
21
J. E. Watson,
21
M. Andreotti,
22a,22b
D. Bettoni,
22a
C. Bozzi,
22a
R. Calabrese,
22a,22b
A. Cecchi,
22a,22b
G. Cibinetto,
22a,22b
E. Fioravanti,
22a,22b
P. Franchini,
22a,22b
I. Garzia,
22a,22b
E. Luppi,
22a,22b
M. Munerato,
22a,22b
M. Negrini,
22a,22b
A. Petrella,
22a,22b
L. Piemontese,
22a
R. Baldini-Ferroli,
23
A. Calcaterra,
23
R. de Sangro,
23
G. Finocchiaro,
23
M. Nicolaci,
23
S. Pacetti,
23
P. Patteri,
23
I. M. Peruzzi,
23,
†
M. Piccolo,
23
M. Rama,
23
A. Zallo,
23
R. Contri,
24a,24b
E. Guido,
24a,24b
M. Lo Vetere,
24a,24b
M. R. Monge,
24a,24b
S. Passaggio,
24a
C. Patrignani,
24a,24b
E. Robutti,
24a
B. Bhuyan,
25
V. Prasad,
25
C. L. Lee,
26
M. Morii,
26
A. J. Edwards,
27
A. Adametz,
28
J. Marks,
28
U. Uwer,
28
F. U. Bernlochner,
29
M. Ebert,
29
H. M. Lacker,
29
T. Lueck,
29
A. Volk,
29
P. D. Dauncey,
30
M. Tibbetts,
30
P. K. Behera,
31
U. Mallik,
31
C. Chen,
32
J. Cochran,
32
H. B. Crawley,
32
W. T. Meyer,
32
S. Prell,
32
E. I. Rosenberg,
32
A. E. Rubin,
32
A. V. Gritsan,
33
Z. J. Guo,
33
N. Arnaud,
34
M. Davier,
34
D. Derkach,
34
J. Firmino da Costa,
34
G. Grosdidier,
34
F. Le Diberder,
34
A. M. Lutz,
34
B. Malaescu,
34
A. Perez,
34
P. Roudeau,
34
M. H. Schune,
34
J. Serrano,
34
V. Sordini,
34,
‡
A. Stocchi,
34
L. Wang,
34
G. Wormser,
34
D. J. Lange,
35
D. M. Wright,
35
I. Bingham,
36
C. A. Chavez,
36
J. P. Coleman,
36
J. R. Fry,
36
E. Gabathuler,
36
D. E. Hutchcroft,
36
D. J. Payne,
36
C. Touramanis,
36
A. J. Bevan,
37
F. Di Lodovico,
37
R. Sacco,
37
M. Sigamani,
37
G. Cowan,
38
S. Paramesvaran,
38
A. C. Wren,
38
D. N. Brown,
39
C. L. Davis,
39
A. G. Denig,
40
M. Fritsch,
40
W. Gradl,
40
A. Hafner,
40
K. E. Alwyn,
41
D. Bailey,
41
R. J. Barlow,
41
G. Jackson,
41
G. D. Lafferty,
41
J. Anderson,
42
R. Cenci,
42
A. Jawahery,
42
D. A. Roberts,
42
G. Simi,
42
J. M. Tuggle,
42
C. Dallapiccola,
43
E. Salvati,
43
R. Cowan,
44
D. Dujmic,
44
G. Sciolla,
44
M. Zhao,
44
D. Lindemann,
45
P. M. Patel,
45
S. H. Robertson,
45
M. Schram,
45
P. Biassoni,
46a,46b
A. Lazzaro,
46a,46b
V. Lombardo,
46a
F. Palombo,
46a,46b
S. Stracka,
46a,46b
L. Cremaldi,
47
R. Godang,
47,
x
R. Kroeger,
47
P. Sonnek,
47
D. J. Summers,
47
X. Nguyen,
48
M. Simard,
48
P. Taras,
48
G. De Nardo,
49a,49b
D. Monorchio,
49a,49b
G. Onorato,
49a,49b
C. Sciacca,
49a,49b
G. Raven,
50
H. L. Snoek,
50
C. P. Jessop,
51
K. J. Knoepfel,
51
J. M. LoSecco,
51
W. F. Wang,
51
L. A. Corwin,
52
K. Honscheid,
52
R. Kass,
52
N. L. Blount,
53
J. Brau,
53
R. Frey,
53
O. Igonkina,
53
J. A. Kolb,
53
R. Rahmat,
53
N. B. Sinev,
53
D. Strom,
53
J. Strube,
53
E. Torrence,
53
G. Castelli,
54a,54b
E. Feltresi,
54a,54b
N. Gagliardi,
54a,54b
M. Margoni,
54a
M. Morandin,
54a
M. Posocco,
54a
M. Rotondo,
54a
F. Simonetto,
54a,54b
R. Stroili,
54a,54b
E. Ben-Haim,
55
M. Bomben,
55
G. R. Bonneaud,
55
H. Briand,
55
G. Calderini,
55
J. Chauveau,
55
O. Hamon,
55
Ph. Leruste,
55
G. Marchiori,
55
J. Ocariz,
55
J. Prendki,
55
S. Sitt,
55
M. Biasini,
56a,56b
E. Manoni,
56a,56b
A. Rossi,
56a,56b
C. Angelini,
57a,57b
G. Batignani,
57a,57b
S. Bettarini,
57a,57b
M. Carpinelli,
57a,57b,
k
G. Casarosa,
57a,57b
A. Cervelli,
57a,57b
F. Forti,
57a,57b
M. A. Giorgi,
57a,57b
A. Lusiani,
57a,57c
N. Neri,
57a,57b
E. Paoloni,
57a,57b
G. Rizzo,
57a,57b
J. J. Walsh,
57a
D. Lopes Pegna,
58
C. Lu,
58
J. Olsen,
58
A. J. S. Smith,
58
A. V. Telnov,
58
F. Anulli,
59a
E. Baracchini,
59a,59b
G. Cavoto,
59a
R. Faccini,
59a,59b
F. Ferrarotto,
59a
F. Ferroni,
59a,59b
M. Gaspero,
59a,59b
L. Li Gioi,
59a
M. A. Mazzoni,
59a
G. Piredda,
59a
F. Renga,
59a,59b
C. Buenger,
60
T. Hartmann,
60
T. Leddig,
60
H. Schro
̈
der,
60
R. Waldi,
60
T. Adye,
61
E. O. Olaiya,
61
F. F. Wilson,
61
S. Emery,
62
G. Hamel de Monchenault,
62
G. Vasseur,
62
Ch. Ye
`
che,
62
M. T. Allen,
63
D. Aston,
63
D. J. Bard,
63
R. Bartoldus,
63
J. F. Benitez,
63
C. Cartaro,
63
M. R. Convery,
63
J. Dorfan,
63
G. P. Dubois-Felsmann,
63
W. Dunwoodie,
63
R. C. Field,
63
M. Franco Sevilla,
63
B. G. Fulsom,
63
A. M. Gabareen,
63
M. T. Graham,
63
P. Grenier,
63
C. Hast,
63
W. R. Innes,
63
M. H. Kelsey,
63
H. Kim,
63
P. Kim,
63
M. L. Kocian,
63
D. W. G. S. Leith,
63
P. Lewis,
63
S. Li,
63
B. Lindquist,
63
S. Luitz,
63
V. Luth,
63
H. L. Lynch,
63
D. B. MacFarlane,
63
D. R. Muller,
63
H. Neal,
63
S. Nelson,
63
C. P. O’Grady,
63
I. Ofte,
63
M. Perl,
63
T. Pulliam,
63
B. N. Ratcliff,
63
A. Roodman,
63
A. A. Salnikov,
63
V. Santoro,
63
R. H. Schindler,
63
J. Schwiening,
63
A. Snyder,
63
D. Su,
63
M. K. Sullivan,
63
S. Sun,
63
PHYSICAL REVIEW D
83,
031103(R) (2011)
RAPID COMMUNICATIONS
1550-7998
=
2011
=
83(3)
=
031103(8)
031103-1
Ó
2011 American Physical Society
K. Suzuki,
63
J. M. Thompson,
63
J. Va’vra,
63
A. P. Wagner,
63
M. Weaver,
63
W. J. Wisniewski,
63
M. Wittgen,
63
D. H. Wright,
63
H. W. Wulsin,
63
A. K. Yarritu,
63
C. C. Young,
63
V. Ziegler,
63
X. R. Chen,
64
W. Park,
64
M. V. Purohit,
64
R. M. White,
64
J. R. Wilson,
64
A. Randle-Conde,
65
S. J. Sekula,
65
M. Bellis,
66
P. R. Burchat,
66
T. S. Miyashita,
66
S. Ahmed,
67
M. S. Alam,
67
J. A. Ernst,
67
B. Pan,
67
M. A. Saeed,
67
S. B. Zain,
67
N. Guttman,
68
A. Soffer,
68
P. Lund,
69
S. M. Spanier,
69
R. Eckmann,
70
J. L. Ritchie,
70
A. M. Ruland,
70
C. J. Schilling,
70
R. F. Schwitters,
70
B. C. Wray,
70
J. M. Izen,
71
X. C. Lou,
71
F. Bianchi,
72a,72b
D. Gamba,
72a,72b
M. Pelliccioni,
72a,72b
L. Lanceri,
73a,73b
L. Vitale,
73a,73b
N. Lopez-March,
74
F. Martinez-Vidal,
74
A. Oyanguren,
74
H. Ahmed,
75
J. Albert,
75
Sw. Banerjee,
75
H. H. F. Choi,
75
K. Hamano,
75
G. J. King,
75
R. Kowalewski,
75
M. J. Lewczuk,
75
C. Lindsay,
75
I. M. Nugent,
75
J. M. Roney,
75
R. J. Sobie,
75
T. J. Gershon,
76
P. F. Harrison,
76
T. E. Latham,
76
E. M. T. Puccio,
76
H. R. Band,
77
S. Dasu,
77
K. T. Flood,
77
Y. Pan,
77
R. Prepost,
77
C. O. Vuosalo,
77
and S. L. Wu
77
(The
B
A
B
AR
Collaboration)
1
Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universite
́
de Savoie,
CNRS/IN
2
P
3
, F-74941 Annecy-Le-Vieux, France
2
Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a
INFN Sezione di Bari, I-70126 Bari, Italy
3b
Dipartimento di Fisica Universita
`
di Bari, I-70126 Bari, Italy
4
University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6
Ruhr Universita
̈
t Bochum, Institut fu
̈
r Experimentalphysik 1, D-44780 Bochum, Germany
7
University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8
Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
10
University of California at Irvine, Irvine, California 92697, USA
11
University of California at Riverside, Riverside, California 92521, USA
12
University of California at Santa Barbara, Santa Barbara, California 93106, USA
13
University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14
California Institute of Technology, Pasadena, California 91125, USA
15
University of Cincinnati, Cincinnati, Ohio 45221, USA
16
University of Colorado, Boulder, Colorado 80309, USA
17
Colorado State University, Fort Collins, Colorado 80523, USA
18
Technische Universita
̈
t Dortmund, Fakulta
̈
t Physik, D-44221 Dortmund, Germany
19
Technische Universita
̈
t Dresden, Institut fu
̈
r Kern- und Teilchenphysik, D-01062 Dresden, Germany
20
Laboratoire Leprince-Ringuet, CNRS/IN
2
P
3
, Ecole Polytechnique, F-91128 Palaiseau, France
21
University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22a
INFN Sezione di Ferrara, I-44100 Ferrara, Italy
22b
Dipartimento di Fisica, Universita
`
di Ferrara, I-44100 Ferrara, Italy
23
INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24a
INFN Sezione di Genova, I-16146 Genova, Italy
24b
Dipartimento di Fisica, Universita
`
di Genova, I-16146 Genova, Italy
25
Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
26
Harvard University, Cambridge, Massachusetts 02138, USA
27
Harvey Mudd College, Claremont, California 91711
28
Universita
̈
t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29
Humboldt-Universita
̈
t zu Berlin, Institut fu
̈
r Physik, Newtonstr. 15, D-12489 Berlin, Germany
30
Imperial College London, London, SW7 2AZ, United Kingdom
31
University of Iowa, Iowa City, Iowa 52242, USA
32
Iowa State University, Ames, Iowa 50011-3160, USA
33
Johns Hopkins University, Baltimore, Maryland 21218, USA
34
Laboratoire de l’Acce
́
le
́
rateur Line
́
aire, IN
2
P
3
/CNRS et Universite
́
Paris-Sud 11,
Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
35
Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36
University of Liverpool, Liverpool L69 7ZE, United Kingdom
37
Queen Mary, University of London, London, E1 4NS, United Kingdom
38
University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39
University of Louisville, Louisville, Kentucky 40292, USA
40
Johannes Gutenberg-Universita
̈
t Mainz, Institut fu
̈
r Kernphysik, D-55099 Mainz, Germany
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
031103(R) (2011)
RAPID COMMUNICATIONS
031103-2
41
University of Manchester, Manchester M13 9PL, United Kingdom
42
University of Maryland, College Park, Maryland 20742, USA
43
University of Massachusetts, Amherst, Massachusetts 01003, USA
44
Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45
McGill University, Montre
́
al, Que
́
bec, Canada H3A 2T8
46a
INFN Sezione di Milano, I-20133 Milano, Italy
46b
Dipartimento di Fisica, Universita
`
di Milano, I-20133 Milano, Italy
47
University of Mississippi, University, Mississippi 38677, USA
48
Universite
́
de Montre
́
al, Physique des Particules, Montre
́
al, Que
́
bec, Canada H3C 3J7
49a
INFN Sezione di Napoli, I-80126 Napoli, Italy
49b
Dipartimento di Scienze Fisiche, Universita
`
di Napoli Federico II, I-80126 Napoli, Italy
50
NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
51
University of Notre Dame, Notre Dame, Indiana 46556, USA
52
Ohio State University, Columbus, Ohio 43210, USA
53
University of Oregon, Eugene, Oregon 97403, USA
54a
INFN Sezione di Padova, I-35131 Padova, Italy
54b
Dipartimento di Fisica, Universita
`
di Padova, I-35131 Padova, Italy
55
Laboratoire de Physique Nucle
́
aire et de Hautes Energies, IN
2
P
3
/CNRS, Universite
́
Pierre et Marie Curie-Paris6,
Universite
́
Denis Diderot-Paris7, F-75252 Paris, France
56a
INFN Sezione di Perugia, I-06100 Perugia, Italy
56b
Dipartimento di Fisica, Universita
`
di Perugia, I-06100 Perugia, Italy
57a
INFN Sezione di Pisa, I-56127 Pisa, Italy
57b
Dipartimento di Fisica, Universita
`
di Pisa, I-56127 Pisa, Italy
57c
Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy
58
Princeton University, Princeton, New Jersey 08544, USA
59a
INFN Sezione di Roma, I-00185 Roma, Italy
59b
Dipartimento di Fisica, Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
60
Universita
̈
t Rostock, D-18051 Rostock, Germany
61
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
62
CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
63
SLAC National Accelerator Laboratory, Stanford, California 94309 USA
64
University of South Carolina, Columbia, South Carolina 29208, USA
65
Southern Methodist University, Dallas, Texas 75275, USA
66
Stanford University, Stanford, California 94305-4060, USA
67
State University of New York, Albany, New York 12222, USA
68
Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
69
University of Tennessee, Knoxville, Tennessee 37996, USA
70
University of Texas at Austin, Austin, Texas 78712, USA
71
University of Texas at Dallas, Richardson, Texas 75083, USA
72a
INFN Sezione di Torino, I-10125 Torino, Italy
72b
Dipartimento di Fisica Sperimentale, Universita
`
di Torino, I-10125 Torino, Italy
73a
INFN Sezione di Trieste, I-34127 Trieste, Italy
73b
Dipartimento di Fisica, Universita
`
di Trieste, I-34127 Trieste, Italy
74
IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
75
University of Victoria, Victoria, British Columbia, Canada V8W 3P6
76
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
77
University of Wisconsin, Madison, Wisconsin 53706, USA
(Received 23 December 2010; published 14 February 2011)
We present measurements of partial branching fractions of
B
!
K
þ
X
,
B
!
K
0
X
, and
B
!
þ
X
,
where
X
denotes any accessible final state above the endpoint for
B
decays to charmed mesons,
specifically for momenta of the candidate hadron greater than 2.34 (2.36) GeV for kaons (pions) in the
B
rest frame. These measurements are sensitive to potential new-physics particles which could enter the
b
!
s
ð
d
Þ
loop transitions. The analysis is performed on a data sample consisting of
383
10
6
B
B
pairs
*
Now at Temple University, Philadelphia, PA 19122, USA
†
Also with Universita
`
di Perugia, Dipartimento di Fisica, Perugia, Italy
‡
Also with Universita
`
di Roma La Sapienza, I-00185 Roma, Italy
x
Present address: University of South Alabama, Mobile, AL 36688, USA
k
Also with Universita
`
di Sassari, Sassari, Italy
MEASUREMENT OF PARTIAL BRANCHING FRACTIONS OF
...
PHYSICAL REVIEW D
83,
031103(R) (2011)
RAPID COMMUNICATIONS
031103-3
collected with the
BABAR
detector at the PEP-II
e
þ
e
asymmetric energy collider. We observe the
inclusive
B
!
þ
X
process, and we set upper limits for
B
!
K
þ
X
and
B
!
K
0
X
. Our results for these
inclusive branching fractions are consistent with those of known exclusive modes, and exclude large
enhancements due to sources of new physics.
DOI:
10.1103/PhysRevD.83.031103
PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Ji
B
mesons decay predominantly to charmed mesons
through the tree level process
b
!
c
, while the tree ampli-
tude
b
!
u
and the one-loop processes
b
!
s
and
b
!
d
are strongly suppressed. In the standard model (SM), the
inclusive branching fraction of
B
mesons to charmless final
states is of the order of 2% [
1
]. Particles associated with
physics beyond the SM, such as supersymmetric partners
of SM particles, could enter the loop amplitudes while
leaving the tree level processes nearly unaffected, making
a sizable enhancement of the inclusive
b
!
s
ð
d
Þ
g
(where
g
denotes a gluon) branching fraction possible [
2
,
3
].
Additionally, since semi-inclusive processes are usually
affected by smaller hadronic uncertainties than those that
arise in calculations for exclusive final states, these decays
can be sensitive to nonperturbative amplitudes, such as
charming penguins [
4
].
An interesting theoretical mechanism that can modify the
SM prediction is provided by the Randall-Sundrum frame-
work, in particular, from the Warped Top-Condensation
Model where a radion field
is postulated. In the case
where
1
<m
ð
Þ
<
3
:
7GeV
, the radion would decay dom-
inantly to gluons, thus enhancing the rate of the charmless
B
decays through the process
b
!
s
. In such a model the
b
!
s
inclusive decay rate could be enhanced by an order
of magnitude with respect to the SM predictions [
5
].
Historically, an enhancement of charmless
B
decays had
been postulated [
6
] to explain the deficit of
b
!
c
pro-
cesses observed by the ARGUS and CLEO experiments
[
7
]. Later measurements and refined theoretical calcula-
tions established that no significant discrepancy was
present [
8
]. Inclusive
b
!
sg
decays have been searched
for by the ARGUS, CLEO, and DELPHI collaborations
[
9
]. None of these experiments has found a statistically
significant signal and only upper limits in agreement with
theoretical expectations were set.
In this paper we present measurements of partial branch-
ing fractions of inclusive charmless
B
-meson decays. The
signature of these decays is the presence of a light meson
(
K
þ
,
K
0
S
,or
þ
[
10
]) with momentum beyond the kine-
matic endpoint for
B
decays to charmed mesons, measured
recoiling against a fully reconstructed
B
meson. It is pos-
sible to compare our results with the inclusive branching
fraction of
b
!
s
in the same kinematical region and with
some recent theoretical predictions [
4
] based on Soft
Collinear Effective Theory.
The measurement is performed on a data sample col-
lected by the
BABAR
detector [
11
], operated at the asym-
metric energy
e
þ
e
PEP-II collider at the SLAC National
Accelerator Laboratory. We use
347 fb
1
(equivalent to
383
10
6
B
B
pairs) collected at a center-of-mass energy
ffiffiffi
s
p
corresponding to the mass of the
ð
4
S
Þ
resonance,
which predominantly decays to charged or neutral
B
B
pairs; a smaller sample (
37 fb
1
) of data collected at an
energy of 40 MeV below the
ð
4
S
Þ
peak is used to study
the background originating from continuum
e
þ
e
!
q
q
(
q
¼
u
,
d
,
s
,
c
) processes.
In order to suppress the potentially overwhelming back-
ground from continuum events, we fully reconstruct one of
the two
B
mesons (denoted by
B
reco
) and search for a high
momentum light hadron (
K
þ
,
K
0
S
,or
þ
) among the decay
products of the other
B
(
B
sig
). The full reconstruction of the
B
reco
candidate allows us to determine the four-momentum
of
B
sig
precisely. In order to suppress backgrounds arising
from the dominant
B
decays to charmed mesons, we
require the light meson’s momentum
p
in the
B
sig
rest
frame to be greater than 2.34 (2.36) GeV in the kaon (pion)
case; this corresponds to a system, recoiling against the
candidate hadron, of mass less than 1.69 (1.71) GeV. The
separation of
K
þ
from
þ
candidates is based on the
Cherenkov angle measured in the Detector of Internally
Reflected Cherenkov light.
The
B
reco
is reconstructed in the decays
B
!
D
ðÞ
Y
,
where
Y
is a combination of hadrons containing
one, three, or five charged kaons or pions, up to two
neutral pions, and at most two
K
0
S
!
þ
. We recon-
struct
D
!
D
0
;
D
0
!
D
0
0
;
D
0
!
K
þ
,
K
þ
0
,
K
þ
þ
,
K
0
S
þ
; and
D
!
K
þ
,
K
þ
0
,
K
0
S
,
K
0
S
0
,
K
0
S
þ
.
We define the purity of a particular mode as
S=
ð
S
þ
B
Þ
,
where
S
(
B
) denotes the number of signal (background)
events; we use only the 186
B
reco
final states with purity,
measured in data control samples, greater than 0.2. When
more than one
B
reco
candidate is found in an event, we
retain the one with the decay mode having the highest
purity; the overall purity of our selected sample is approxi-
mately 0.45.
Two kinematic variables characterize correctly recon-
structed
B
candidates: the energy-substituted mass
m
ES
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=
4
p
2
B
q
and the energy difference
E
E
B
ffiffiffi
s
p
=
2
,
where
ð
E
B
;
p
B
Þ
is the
B
-meson four-momentum in the
ð
4
S
Þ
rest frame. For the
B
reco
candidate, we select events
with
5
:
2500
<m
ES
<
5
:
2893 GeV
and we apply a mode-
dependent cut on
E
. Additional background rejection is
provided by the angle
T
, defined as the angle between the
thrust axis of the
B
reco
candidate decay products and the
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
031103(R) (2011)
RAPID COMMUNICATIONS
031103-4
rest of the event. For continuum events
j
cos
T
j
peaks
sharply at 1, while
B
B
events exhibit a uniform distribu-
tion. We select events with
j
cos
T
j
<
0
:
9
.
Finally, we combine into a Fisher discriminant
F
four
variables sensitive to the event shape and the production
dynamics: the polar angles with respect to the beam axis in
the
ð
4
S
Þ
frame of the
B
reco
candidate momentum and of
the
B
reco
thrust axis, and the zeroth and second angular
moments
L
0
;
2
of the energy flow. The moments are defined
by
L
j
¼
P
i
p
i
j
cos
i
j
j
, where
i
labels a charged or
neutral candidate not originating from the decay of the
B
reco
,
i
is the angle with respect to the
B
reco
thrust axis,
and
p
i
is its momentum.
The branching fractions we are measuring are normal-
ized to the number of fully reconstructed
B
B
events present
in our sample. We determine the
B
B
yield (over the
q
q
continuum background) through a maximum likelihood fit
to the variables
m
ES
and
F
. The probability density func-
tion (PDF) of
m
ES
for the
B
B
category is the sum of two
components: two Gaussian functions centered on the mass
of the
B
parameterize the correctly reconstructed
B
candi-
dates, while an ARGUS [
12
] function describes the mis-
reconstructed
B
decays. For the continuum we use only an
ARGUS function. For the
F
variable we use the sum of a
bifurcated Gaussian with a Gaussian for both
B
B
and
q
q
.
Besides the yields of the two components (
B
B
and
q
q
), the
ARGUS exponent for the
q
q
component and the fraction of
correctly reconstructed
B
B
events are free. We split the
data sample into four subsamples characterized by differ-
ent purity ranges of the
B
reco
candidates. The ARGUS
exponent and the fraction of
B
B
events peaking in
m
ES
are allowed to take different values among these catego-
ries. Figure
1
shows the projection over the
m
ES
variable of
this fit. The
B
B
yield is
ð
2
:
0902
0
:
0020
Þ
10
6
B
B
events. By repeating the fit on the subsamples with differ-
ent purities and using different parameterizations for the
PDFs, we estimate the systematic uncertainty on the
B
B
yield to be 5%.
We assign to
B
sig
all the charged and neutral particles
that do not belong to the
B
reco
candidate and require
5
:
1000
<m
ES
ð
B
sig
Þ
<
5
:
2893 GeV
. This loose cut sup-
presses background events in which a significant amount
of energy and momentum is lost. We suppress
b
!
c
semi-
leptonic decays by rejecting events where an electron or
muon candidate is present. We also veto events in which a
D
0
,
D
þ
,or
D
þ
s
candidate, with a mass within 30 MeV of
the nominal value, is found.
We require that a
K
þ
,
K
0
S
,or
þ
candidate with
p
>
1
:
8 GeV
be present on the signal side. The distance of
closest approach for
K
þ
and
þ
candidates must be less
than 3 standard deviations from the
B
sig
decay vertex.
K
0
S
candidates are reconstructed in the
þ
final state, with
requirements that the vertex probability of the two tracks
be greater than
10
4
, that the flight length be greater than 3
times its uncertainty, and that their mass satisfy
0
:
486
<
m
þ
<
0
:
510 GeV
.
We extract the signal yields from a maximum likelihood
fit to the three variables
m
ES
(
B
reco
),
F
, and
p
. For the
K
þ
and
þ
samples we also measure the direct
CP
asymmetry
A
ch
ð
þ
Þ
=
ð
þ
þ
Þ
, where the superscript to
the decay width
refers to the charge of the light hadron.
Our fits have three components: signal,
b
!
c
background,
and continuum background. For each of these categories
j
we define probability density functions
P
j
ð
x
Þ
for the vari-
able
x
, with the resulting likelihood:
P
j
¼
P
j
ð
m
ES
Þ
P
j
ð
F
Þ
P
j
ð
p
?
Þ
;
(1)
L
¼
e
P
j
Y
j
N
!
Y
N
i
¼
1
X
j
Y
j
P
i
j
;
(2)
where
P
i
j
is
P
j
evaluated for event
i
,
Y
j
is the yield for
category
j
, and
N
is the number of events entering the fit.
We assume the PDFs for each variable to be uncorrelated in
the signal and
b
!
c
components (a correlation in the
continuum component is handled as discussed below).
We check this assumption by means of Monte Carlo
(MC) experiments [
13
], in which signal and
b
!
c
events
are taken from fully simulated event samples and the
continuum background is generated from the PDFs. In
the extraction of the signal yields, we correct for the small
biases we observe in these ensembles. The PDFs are ex-
tracted by fitting MC samples, where the charmless decays
are separated from
b
!
c
background using information at
the generator level.
Signal and
b
!
c
events share the same PDFs for the
m
ES
and
F
variables which are only effective to separate
B
B
events from the continuum; the fit distinguishes
(GeV)
ES
m
5.25
5.26
5.27
5.28
5.29
Events / 2.5 MeV
0
100
200
300
3
10
×
(GeV)
ES
m
5.25
5.26
5.27
5.28
5.29
Events / 2.5 MeV
0
100
200
300
3
10
×
FIG. 1 (color online). Projection of the
m
ES
variable for the
B
reco
sample; the dashed line represents the
B
B
component,
the dot-dashed is the continuum background, and the solid line
is the sum of the two components.
MEASUREMENT OF PARTIAL BRANCHING FRACTIONS OF
...
PHYSICAL REVIEW D
83,
031103(R) (2011)
RAPID COMMUNICATIONS
031103-5
between charmed and charmless
B
decays by exploiting
the differences in the
p
distributions. The
p
distribution
is parameterized by the sum of a Gaussian with an ARGUS
function for the signal, by the sum of an exponential and a
Gaussian for the
q
q
component, and by the sum of three,
one, or five Gaussians for the
b
!
c
background in the
K
þ
,
K
0
S
and
þ
samples, respectively. The latter parameterize
the broad component(s) of the
b
!
c
background and the
peaking components corresponding to the
B
!
D
ð
;
Þ
h
,
(
h
¼
K
þ
,
K
0
S
or
þ
) decays, all of which are evident in
the
þ
sample (see Fig.
2
). Similarly, the Gaussian com-
ponent of the signal
p
PDF accounts for the dominant
two-body decays (mainly
B
!
0
K
), while the broad com-
ponent describes the sum of the other contributions. The
splitting of the data into subsamples based on the purity
and the charge of the
B
reco
candidates allows differences in
the background distributions to be accommodated in the fit
by allowing the parameters most sensitive to these varia-
tions to take different values in each subsample.
The fit is performed through an iterative procedure. In
the first step we fix the signal yield to the predictions of the
MC and fit the
p
>
1
:
8 GeV
sample, leaving free to vary
the most important parameters of the background such as
the normalization of the peaking components in the
b
!
c
background, the width of the broad components, and the
exponent of the ARGUS function. This step is aimed at
determining the shape and the normalization of the
b
!
c
background; the projection plots for this step of the fit are
presented in Fig.
2
.
In the next step, we use the results obtained in the
previous fit to extrapolate the predicted
b
!
c
background
into the high
p
region (
p
>
2
:
34 GeV
for
K
þ
and
K
0
S
,
p
>
2
:
36 GeV
for
þ
). We fit these subsamples, varying
only the yields of the signal and
q
q
background compo-
nents and the charge asymmetries, while the shapes are
those determined in the previous step (see Fig.
3
). An
exception occurs for the
F
variable in the
q
q
background,
which is correlated with
p
; thus, fixing its shape to that
determined in the whole
p
range would lead to a bias. In
this case we parameterize the
F
distribution with two
Gaussians, determine its parameters from the MC in the
high
p
range, and leave the mean of the core Gaussian free
to vary in the fit. Using the
p
cut efficiency derived from
the MC, we then recalculate the number of signal events in
the whole
p
range and repeat the fitting procedure from
the beginning.
We find that this procedure converges after at most six
cycles and that the result does not depend on the initial
values we choose for the signal yield. We use the results of
the final fit to the high
p
range to derive the partial
branching fractions and the direct
CP
-asymmetries (for
the
K
þ
and
þ
samples). The branching fractions are
computed using the efficiencies for reconstructing signal
events in the high
p
region derived from the simulation. In
order to avoid the systematic uncertainty related to the
B
reco
reconstruction efficiency, the calculation is done tak-
ing for the normalization the number of
B
B
events present
in our sample. To make the comparison with the kaon
samples easier, we extrapolate the branching fraction of
B
!
þ
X
to the
p
>
2
:
34 GeV
range (we assume the
systematic error associated with this extrapolation to be
negligible). The results are collected in Table
I
.
The whole fit procedure is tested on a data sample
enriched in
b
!
c
background, selected by reversing the
vetoes on the
D
0
,
D
þ
,or
D
þ
s
candidates associated with the
B
sig
. The results agree within statistical uncertainties with
the expectations of very small signal yields. We also verify
that our model for the continuum background is in very
good agreement with the data taken away from the
ð
4
S
Þ
resonance.
Systematic uncertainties arise from the imperfect
knowledge of the number of
B
reco
candidates (5%), from
p* (GeV)
1.8
2.0
2.2
2.4
2.6
2.8
Events / 40 MeV
0
200
400
600
0.0
0.5
1.0
1.5
2.0
2.5
p* (GeV)
1.8
2.0
2.2
2.4
2.6
2.8
Events / 40 MeV
p* (GeV)
1.8
2.0
2.2
2.4
2.6
2.8
Events / 40 MeV
0
50
100
150
0.0
0.5
1.0
1.5
2.0
2.5
p* (GeV)
1.8
2.0
2.2
2.4
2.6
2.8
Events / 40 MeV
p* (GeV)
1.8
2.0
2.2
2.4
2.6
2.8
Events / 40 MeV
0.0
0.5
1.0
1.5
2.0
2.5
p* (GeV)
1.8
2.0
2.2
2.4
2.6
2.8
Events / 40 MeV
0
500
1000
1500
2000
(a)
(b)
(c)
(GeV)
X
m
(GeV)
X
m
(GeV)
X
m
FIG. 2 (color online). Projection plots for the whole
p
range for the (a)
K
þ
, (b)
K
0
S
, and (c)
þ
samples. The solid curves are the
total fit functions, the (red) dashed lines are the signal components (which are kept fixed at this stage), the (blue) long dashed lines are
the
b
!
c
background and the magenta dotted lines are
q
q
. The scale on the upper border of the plots indicates the mass of the system
recoiling against the light hadron.
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
031103(R) (2011)
RAPID COMMUNICATIONS
031103-6
the uncertainties on the reconstruction efficiencies for
charged particles (0.5%),
K
0
S
candidates (2.1%), and other
neutral particles (0.9–1.2%, depending on the final state),
from the
K=
separation (2.4%), and from the statistics of
the MC sample which we use to compute the efficiency in
reconstructing signal events (6.8–14.5%). The above un-
certainties are multiplicative and do not affect the signifi-
cance of the measured branching fractions, contrary to the
following additive contributions: the uncertainty on the
PDFs of the signal component is estimated by leaving
each parameter kept fixed in the nominal fit free to vary
(3.6–8.5 events). The uncertainty in the
b
!
c
background
is computed by varying its yield by the sum in quadrature
of its Poisson uncertainty and the uncertainty in the ex-
trapolation to the high
p
region, taking into account the
uncertainty on the knowledge of the signal PDF. The
resulting systematic error is 2.8–10.3 events. The system-
atic error arising from the correction for the fit bias is taken
as the sum in quadrature of half the correction itself and the
statistical uncertainty on the correction (3.6–7.9 events).
The systematic uncertainties for the direct
CP
asymme-
tries include the uncertainty in detector related charge
asymmetries, which mainly affect the kaons (2%), different
reconstruction efficiencies for
B
and
B
candidates in the
tag sample (2.5%), and effects due to mistagging (3%).
Our results for the partial branching fractions and
A
ch
are given with statistical and systematic errors in Table
I
.
The central values for the branching fractions are in agree-
ment with our estimates [
14
] of the sums of the known
exclusive branching fractions of charmless two- and
TABLE I. Summary of the fit results to the high
p
range. The
b
!
c
background yield is kept
fixed in this fit; the quoted uncertainty represents the amount by which this quantity is varied for
the evaluation of systematic uncertainties. The first error in the branching fractions and in the
direct charge asymmetries is the statistical one, while the second is systematic (the significance
includes only the additive part of the latter). The upper limits (U.L.) on the partial branching
fractions are taken at the 90% confidence level. For the
þ
sample, the results of the yields
refer to the
p
>
2
:
36 GeV
range, whereas the branching fraction has been extrapolated to
p
>
2
:
34 GeV
.
B
!
K
þ
XB
!
K
0
XB
!
þ
X
Events to fit
306
84
692
b
!
c
yield (events)
66
86
:
5
2
:
6
173
13
q
q
yield (events)
194
15
48
8
430
22
Signal yield (events)
54
þ
11
10
32
þ
7
7
107
þ
15
14
Fit bias (events)
þ
10
:
9
þ
3
:
5
4
:
3
Significance (
)
2.9
3.8
6.7
B
ð
10
6
Þ
p
>
2
:
34 GeV
119
þ
32
29
37
195
þ
51
45
50
372
þ
50
47
59
B
U.L.
ð
10
6
Þ
p
>
2
:
34 GeV
187
294
A
ch
0
:
57
0
:
24
0
:
05
0
:
10
0
:
16
0
:
05
p* (GeV)
2.4
2.5
2.6
2.7
2.8
Events / 40 MeV
0
5
10
15
20
0.0
0.5
1.0
1.5
p* (GeV)
2.4
2.5
2.6
2.7
2.8
Events / 40 MeV
0
5
10
15
20
p* (GeV)
2.4
2.5
2.6
2.7
2.8
Events / 40 MeV
0
5
10
0.0
0.5
1.0
1.5
p* (GeV)
2.4
2.5
2.6
2.7
2.8
Events / 40 MeV
0
5
10
p* (GeV)
2.4
2.5
2.6
2.7
2.8
Events / 40 MeV
0
20
40
60
0.0
0.5
1.0
1.5
p* (GeV)
2.4
2.5
2.6
2.7
2.8
Events / 40 MeV
0
20
40
60
(a)
(b)
(c)
(GeV)
X
m
(GeV)
X
m
(GeV)
X
m
FIG. 3 (color online). Projection plots for
p
>
2
:
34
ð
2
:
36
Þ
GeV
for the (a)
K
þ
, (b)
K
0
S
, and (c)
þ
samples. The solid curves are the
total fit function, the (red) dashed lines are the signal component, the (blue) long dashed are the
b
!
c
background and the magenta
dotted are
q
q
. In order to enhance the signal component we apply cuts on the likelihood (computed excluding the
p
variable) which
retain 82–88% of signal events while suppressing most of the
q
q
background. The scale on the upper border of the plots indicates the
mass of the system recoiling against the light hadron.
MEASUREMENT OF PARTIAL BRANCHING FRACTIONS OF
...
PHYSICAL REVIEW D
83,
031103(R) (2011)
RAPID COMMUNICATIONS
031103-7
three-body
B
decays. On the other hand, predictions based
on SCET [
4
] underestimate the measurements, both those
of the inclusive branching fractions presented here and
those obtained by summing exclusive modes, even after
adjusting for the branching fractions of the
B
!
ð0Þ
X
modes, which are acknowledged to be problematic for
SCET. This fact is interpreted by the authors of Ref. [
4
]
as an indication of the need to introduce substantial non-
perturbative charming penguin contributions or large
higher-order corrections.
In conclusion we have measured the inclusive partial
branching fractions for
B
!
K
þ
X
,
B
!
K
0
X
, and
B
!
þ
X
in the region where the momentum of the candidate
hadron is greater than 2.34 GeV. The statistical signifi-
cance, computed as the difference between the value of
2ln
L
for the zero signal hypothesis and the value at its
minimum, exceeds 5 standard deviations in each case;
however, comparable systematic uncertainties lower the
significance to the values quoted in the table, and we quote
90% confidence level upper limit (taken as the value below
which lies 90% of the total of the likelihood integral, in the
region where the branching fraction is positive) for the
K
þ
and
K
0
modes. We observe
B
!
þ
X
independently of
previously reported observations of exclusive modes. All
results are in agreement with the standard model predic-
tions, and exclude large enhancements due to sources of
new physics. We do not find any significant direct
CP
asymmetry in the
K
þ
and
þ
samples.
We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-
tions that support
BABAR
. The collaborating institutions
wish to thank SLAC for its support and kind hospitality.
This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN
2
P
3
(France), BMBF and
DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MICIIN (Spain), STFC
(United Kingdom). Individuals have received support
from the Marie Curie EIF (European Union), the A. P.
Sloan Foundation (USA) and the Binational Science
Foundation (USA-Israel).
[1] C. Greub and P. Liniger,
Phys. Rev. D
63
, 054025 (2001)
.
[2] I. Bigi
et al.
,
Phys. Lett. B
323
, 408 (1994)
.
[3] A. Goksu, E. O. Iltan, and L. Solmaz,
Phys. Rev. D
64
,
054006 (2001)
.
[4] J. Chay, C. Kim, A. K. Leibovich, and J. Zupan,
Phys. Rev.
D
76
, 094031 (2007)
.
[5] H. Davoudiasl and E. Ponton,
Phys. Lett. B
680
, 247
(2009)
.
[6] A. Lenz, U. Nierste, and G. Ostermaier,
Phys. Rev. D
56
,
7228 (1997)
.
[7] T. E. Browder, K. Honsheid, and D. Pedrini,
Annu. Rev.
Nucl. Part. Sci.
46
, 395 (1996)
; B. Barish
et al.
(CLEO
Collaboration),
Phys. Rev. Lett.
76
, 1570 (1996)
;H.
Albrecht
et al.
(ARGUS Collaboration),
Phys. Lett. B
318
, 397 (1993)
.
[8] A. Czarnecki, M. Slusarczyk, and F. Tkachov,
Phys. Rev.
Lett.
96
, 171803 (2006)
.
[9] H. Albrecht
et al.
(ARGUS Collaboration),
Phys. Lett. B
353
, 554 (1995)
; T. E. Coan
et al.
(CLEO Collaboration),
Phys. Rev. Lett.
80
, 1150 (1998)
; P. Abreu
et al.
(DELPHI Collaboration),
Phys. Lett. B
426
, 193
(1998)
.
[10] Unless otherwise stated, charge conjugate reactions are
implied throughout the paper.
[11] B. Aubert
et al.
(
BABAR
Collaboration),
Nucl. Instrum.
Methods Phys. Res., Sect. A
479
, 1 (2002)
.
[12] H. Albrecht
et al.
(ARGUS Collaboration),
Phys. Lett. B
241
, 278 (1990)
.
[13] The
BABAR
detector Monte Carlo simulation is based on
GEANT4, S. Agostinelli
et al.
,
Nucl. Instrum. Methods
Phys. Res., Sect. A
506
, 250 (2003)
and EvtGen and D. J.
Lange,
Nucl. Instrum. Methods Phys. Res., Sect. A
462
,
152 (2001)
.
[14] Our rough estimate of the summed two- and three-body
B
decay branching fractions is based on the world average
values in Particle Data Group, C. Amsler
et al.
,
Phys. Lett.
B
667
, 1 (2008)
.
P. DEL AMO SANCHEZ
et al.
PHYSICAL REVIEW D
83,
031103(R) (2011)
RAPID COMMUNICATIONS
031103-8