Supplemental Information for:
Ab initio
phonon coupling and optical response of hot electrons in plasmonic metals
Ana M. Brown,
1
Ravishankar Sundararaman,
2
Prineha
Narang,
1, 2
William A. Goddard III,
2, 3
and Harry A. Atwater
1, 2
1
Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology
2
Joint Center for Artificial Photosynthesis, California Institute of Technology
3
Materials and Process Simulation Center, California Institute of Technology,
1200 East California Blvd, Pasadena CA 91125 USA
(Dated: January 27, 2016)
We provide the complex dielectric function in plain text
files for each of the four metals presented in the paper.
The files X
ImEpsilon.dat and X
ReEpsilon.dat, for X =
Al, Ag, Au or Cu, contain Im(
(
ω,T
e
)) and Re(
(
ω,T
e
))
respectively for a uniform grid of frequencies (
ω
) and elec-
tron temperatures (
T
e
). The first row of each text file
indicates
T
e
in Kelvin for each column of dielectric data.
The first column of each text file indicates
ω
in eV for
each row of dielectric data.
Figures 1-3 show the
ab initio
dielectric functions at
electron temperatures of 400, 1000 and 5000 K compared
to those at 300 K. As electron temperature increases,
features in the dielectric functions become increasingly
broad. Note that the change in dielectric function (rel-
ative to 300 K) is not noticeable on the scale of the di-
electric functions for all but the highest temperatures; we
therefore directly plot the changes in dielectric functions
in the main text.
-0.5
0
0.5
1
(
ω
/
ω
p
)
2
ε
(
ω
)
a) Al
-0.5
0
0.5
1
1.5
2
2.5
b) Ag
Im(
ε
) T
e
=400K
Im(
ε
) T
e
=300K
Re(
ε
) T
e
=400K
Re(
ε
) T
e
=300K
-1
-0.5
0
0.5
1
1.5
2
1
3
5
(
ω
/
ω
p
)
2
ε
(
ω
)
Frequency [eV]
c) Au
-1
-0.5
0
0.5
1
1.5
1
3
5
Frequency [eV]
d) Cu
FIG. 1.
Ab initio
predicted complex dielectric functions for
(a) Al, (b) Ag, (c) Au, (d) Cu at 400 K compared to 300 K.
The
y
-axis is scaled by
ω
2
/ω
2
p
in order to represent features at
different frequencies such as the Drude pole and the interband
response on the same scale.
-0.5
0
0.5
1
(
ω
/
ω
p
)
2
ε
(
ω
)
a) Al
-0.5
0
0.5
1
1.5
2
2.5
b) Ag
Im(
ε
) T
e
=1000K
Im(
ε
) T
e
=300K
Re(
ε
) T
e
=1000K
Re(
ε
) T
e
=300K
-1
-0.5
0
0.5
1
1.5
2
1
3
5
(
ω
/
ω
p
)
2
ε
(
ω
)
Frequency [eV]
c) Au
-1
-0.5
0
0.5
1
1.5
1
3
5
Frequency [eV]
d) Cu
FIG. 2.
Ab initio
predicted complex dielectric functions for
(a) Al, (b) Ag, (c) Au, (d) Cu at 1000 K and 300 K with the
same scaling as in Fig. 1.
-0.5
0
0.5
1
(
ω
/
ω
p
)
2
ε
(
ω
)
a) Al
-0.5
0
0.5
1
1.5
2
2.5
b) Ag
Im(
ε
) T
e
=5000K
Im(
ε
) T
e
=300K
Re(
ε
) T
e
=5000K
Re(
ε
) T
e
=300K
-1
-0.5
0
0.5
1
1.5
2
1
3
5
(
ω
/
ω
p
)
2
ε
(
ω
)
Frequency [eV]
c) Au
-1
-0.5
0
0.5
1
1.5
1
3
5
Frequency [eV]
d) Cu
FIG. 3.
Ab initio
predicted complex dielectric functions for
(a) Al, (b) Ag, (c) Au, (d) Cu at 5000 K compared to 300 K
with the same scaling as in Fig. 1.