Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 19, 2011 | Submitted
Report Open

Column Subset Selection, Matrix Factorization, and Eigenvalue Optimization

Abstract

Given a fixed matrix, the problem of column subset selection requests a column submatrix that has favorable spectral properties. Most research from the algorithms and numerical linear algebra communities focuses on a variant called rank-revealing QR, which seeks a well-conditioned collection of columns that spans the (numerical) range of the matrix. The functional analysis literature contains another strand of work on column selection whose algorithmic implications have not been explored. In particular, a celebrated result of Bourgain and Tzafriri demonstrates that each matrix with normalized columns contains a large column submatrix that is exceptionally well conditioned. Unfortunately, standard proofs of this result cannot be regarded as algorithmic. This paper presents a randomized, polynomial-time algorithm that produces the submatrix promised by Bourgain and Tzafriri. The method involves random sampling of columns, followed by a matrix factorization that exposes the well-conditioned subset of columns. This factorization, which is due to Grothendieck, is regarded as a central tool in modern functional analysis. The primary novelty in this work is an algorithm, based on eigenvalue minimization, for constructing the Grothendieck factorization. These ideas also result in a novel approximation algorithm for the (∞, 1) norm of a matrix, which is generally NP-hard to compute exactly. As an added bonus, this work reveals a surprising connection between matrix factorization and the famous MAXCUT semidefinite program.

Additional Information

Date: 26 June 2008. Supported in part by ONR award no. N000140810883. The author thanks Ben Recht for helpful discussions about eigenvalue minimization.

Attached Files

Submitted - Caltech_ACM_TR_2008_02.pdf

Files

Caltech_ACM_TR_2008_02.pdf
Files (477.8 kB)
Name Size Download all
md5:f99147e92d7a20182dc048b8f7f71263
477.8 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024