Column Subset Selection, Matrix Factorization, and Eigenvalue Optimization
- Creators
- Tropp, Joel A.
Abstract
Given a fixed matrix, the problem of column subset selection requests a column submatrix that has favorable spectral properties. Most research from the algorithms and numerical linear algebra communities focuses on a variant called rank-revealing QR, which seeks a well-conditioned collection of columns that spans the (numerical) range of the matrix. The functional analysis literature contains another strand of work on column selection whose algorithmic implications have not been explored. In particular, a celebrated result of Bourgain and Tzafriri demonstrates that each matrix with normalized columns contains a large column submatrix that is exceptionally well conditioned. Unfortunately, standard proofs of this result cannot be regarded as algorithmic. This paper presents a randomized, polynomial-time algorithm that produces the submatrix promised by Bourgain and Tzafriri. The method involves random sampling of columns, followed by a matrix factorization that exposes the well-conditioned subset of columns. This factorization, which is due to Grothendieck, is regarded as a central tool in modern functional analysis. The primary novelty in this work is an algorithm, based on eigenvalue minimization, for constructing the Grothendieck factorization. These ideas also result in a novel approximation algorithm for the (∞, 1) norm of a matrix, which is generally NP-hard to compute exactly. As an added bonus, this work reveals a surprising connection between matrix factorization and the famous MAXCUT semidefinite program.
Additional Information
Date: 26 June 2008. Supported in part by ONR award no. N000140810883. The author thanks Ben Recht for helpful discussions about eigenvalue minimization.Attached Files
Submitted - Caltech_ACM_TR_2008_02.pdf
Files
Name | Size | Download all |
---|---|---|
md5:f99147e92d7a20182dc048b8f7f71263
|
477.8 kB | Preview Download |
Additional details
- Eprint ID
- 27170
- Resolver ID
- CaltechAUTHORS:20111011-161421093
- Office of Naval Research (ONR)
- N00014-08-1-0883
- Created
-
2011-10-19Created from EPrint's datestamp field
- Updated
-
2019-10-03Created from EPrint's last_modified field
- Caltech groups
- Applied & Computational Mathematics
- Series Name
- ACM Technical Reports
- Series Volume or Issue Number
- 2008-02