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I.  MATERIALS AND METHODS 

A.  Sample Preparation 

Bipyramidal gold nanoparticles are synthesized in aqueous solution using a seed-mediated growth 

method.  The synthesis follows the procedure described in Ref. 1.  As well as bipyramidal gold 

nanoparticles, this synthesis also results in an irregular, spheroidal byproduct.  The byproduct has a 

plasmon resonance around a wavelength of 550 nm, far away from the longitudinal plasmon resonance 

in the bipyramidal particles, which is centered around a wavelength of 760 nm.  Optical measurements 

at the longitudinal-plasmon resonance frequency therefore probe only the bipyramids, and not the 

byproduct. 

As synthesized, the particles are stabilized in aqueous solution with a large excess of 

cetyltrimethylammonium bromide (CTAB).  This excess surfactant complicates transfer of the 

nanoparticles into different solvent mixtures, and can modify the viscosity and other physical properties 

of the solvent mixture.  We therefore replace the CTAB with polystyrene sulphonic acid (PSS), a 

negatively charged polymer that coats the nanoparticles and stabilizes them without requiring excess 

polymer in solution.1 In order to do this, the aqueous nanoparticle solution is first diluted to one fifth of 

its original volume and is then centrifuged at 5000 g for five minutes.  The supernatant is then decanted, 

and the remaining pellet is suspended to the diluted volume in a 2:1 mixture of water and 0.1% PSS 

solution (by weight).  The solution is left to stand for two hours, and is then again centrifuged at 5000 g 

for five minutes.  The supernatant is decanted, and the pellet is resuspended in water to its original 

volume. 

Small volumes of the resulting solutions of PSS-functionalized nanoparticles in water are added to 

larger volumes of water and glycerol to form the solutions that are measured optically.  The quantities 

of water and glycerol to be mixed are measured by mass, with the aqueous nanoparticle solution 
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included in the water portion of the mixture.  The solutions are stirred thoroughly to ensure that the 

mixtures are homogeneous.  They are then transferred to optical cuvettes with a path length of 2 mm, 

taking care that no bubbles are introduced into the high-viscosity solutions in the process.  The final 

concentration of the bipyramids in the solutions is such that the optical density in the 2-mm cuvettes at 

the longitudinal-plasmon resonance wavelength is between 0.1 and 0.2.	
  

B.  Transient-Absorption Measurements 

Optical measurements are performed using a transient-absorption-spectroscopy system (Ultrafast 

Systems HELIOS).  Measurement procedures follow those described in our previous publications.2,3 

Thermal artifacts are avoided by stirring the sample with a magnetic stir bar.  Our previous 

measurements on high-viscosity samples involved mechanically translating the cuvette during 

measurements; we found, however, that this meant that the amount of pump light scattered into the 

detector varied over time, as bubbles in the solution and contaminants on the surfaces of the cuvette 

were translated through the pump beam.  When the sample is stirred, by contrast, this scattering 

background is less variable over time, and can thus largely be subtracted from the measured signal by 

averaging eight spectra at negative time delays.  We therefore limited our measurements to samples 

that could be stirred during the measurements, which meant that we could measure solutions up to a 

maximum mass fraction of 80% glycerol. 

The temperature of the sample was monitored during measurements using a thermocouple 

immersed into the solution.  The cuvette was sealed with the thermocouple in place, in order to prevent 

absorption of water from the environment into the water-glycerol mixtures. 

C.  Experimental Data Analysis 

The background in the measured transient spectra due to scattered pump light is subtracted from all 

spectra, the measured signal is corrected for the fact that different probe wavelengths arrive at the focal 

spot at different times, and the time axis is adjusted so that the pump and probe overlap at time zero.  

The resulting spectrum at any given pump-probe time delay is then taken to be due to a shift in the 

longitudinal plasmon resonance frequency of the bipyramids and a broadening of the plasmon 

resonance line.  Assuming that the extinction spectra with and without the pump laser are both 

Lorentzian functions, each transient spectrum thus has the following form:2 
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Δ𝐴 𝑡 ∝
1

Δω! + 14
−

𝛾 𝑡

ΔΛ 𝑡 − Δω ! + 14 𝛾 𝑡 !
  .                                                                                        (S1) 

This expression involves the following normalized frequencies: Δ𝜔 ≡ 𝜔! − Λ!/𝑍!, ΔΛ(𝑡) ≡ Λ(𝑡)−

Λ!/𝑍! , and 𝛾(𝑡) ≡ 𝑍(𝑡)/𝑍! , where 𝜔!  is the probe frequency; Λ(𝑡)  and 𝑍(𝑡)  are the resonance 

frequency and linewidth, respectively, for a pump-probe delay 𝑡; and Λ!  and Z!  are the plasmon 

resonance frequency and linewidth in the absence of the pump pulse.  These last two values are 

determined from the measured linear extinction spectrum of each sample.  The remaining values are the 

fractional frequency shift and line broadening; these are determined for each time delay by least-

squares fitting of the transient spectra for wavelengths between 650 and 830 nm.  For measured spectra 

where there is a strong background of scattered pump light, wavelengths close to the pump wavelength 

are excluded from the fit.  For spectra at certain time delays, the signal-to-noise ratio is not sufficient to 

allow for a good fit; these delays are omitted from the resulting time traces. 

The time dependence of the peak shift, for pump-probe delays greater than 30 ps, consists of a 

damped oscillation on a decaying background.  The oscillations are due to longitudinal acoustic 

vibrations of the bipyramids, and can be approximated as an exponentially damped sinusoid with 

frequency 𝜔 and decay time 𝑇!"!.3,4,5,6 The background is due to the increased lattice temperature of the 

nanoparticles, and can be described over the measured time range as a decaying exponential with time 

constant 𝜏cool.  We therefore fit the time-dependent peak shift using a least-squares method to the 

following function:   

 ΔΩ 𝑡 = 𝐴!exp − !
!tot

sin 𝜔𝑡 + 𝜙 + 𝐴!exp − !
!cool

,                                                                              (S2) 

where 𝐴!, 𝐴!, and 𝜙 are fitting parameters.2,3 After the fit has been performed, the fitted second term 

can be subtracted from the data to obtain time traces that isolate the effects of acoustic oscillations, as 

in Figs. 1C and 2A. 

For each water-glycerol mixture, measurements are made with pump-pulse energies of 120 nJ, 240 

nJ, and 360 nJ, and values of 𝑇!"! and 𝜔 are determined for each of these pump energies.  A linear 

least-squares fit is then performed for the dependence of 𝑇!"! and 𝜔 on pump power.  The result of this 

fit is used to obtain values at zero power, which are the final values reported.  The fitted decay time, 

𝑇!"!, includes effects of the energy decay time, 𝑇, and the inhomogeneous dephasing time, 𝑇!"#.  The 

inhomogeneous decay time depends on the distribution of nanoparticle dimensions.  From analysis of 
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transmission-electron-microscope (TEM) images, we obtain the mean length, 𝐿! , and standard 

deviation in length, 𝜎!, of the bipyramidal nanoparticles.  Assuming that the lengths follow a normal 

distribution, the inhomogeneous damping time can be approximated as3 

𝑇inh ≈
2𝐿!
𝜔𝜎!

  .                                                                                                                                                              (S3) 

For sufficiently weak inhomogeneous damping, the energy decay time can then be approximated 

according to3 

1
𝑇 ≈

1
𝑇tot

−
1
𝑇inh

.                                                                                                                                                          (S4) 

A single adjustable parameter, 𝑄int, is also included when comparing measurements to theory.  This 

intrinsic quality factor accounts for damping within the nanoparticles themselves, and has been 

determined from previous measurements of nanoparticles in low-viscosity fluids.7 The total theoretical 

damping rate is then given by 1 𝑄 = 1 𝑄fluid + 1 𝑄int . The vibrational resonance frequency is 

𝜔!"# = 𝜔/ 1− 1/(4  𝑄!). 
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II.  ANALYTICAL MODELS 

A.  Newtonian Fluid 

We assume that the oscillation amplitude of the particle is much smaller than any other geometric 

length scale, so that all nonlinear effects can be ignored.8 This is the practical case and enables 

linearization of the equations of motion.7,8 The required governing equation for the fluid motion is then 

the incompressible unsteady Stokes equation: 

𝛁 ⋅ 𝐯 = 0, 𝜌
𝜕𝐯
𝜕𝑡 + 𝐯 ∙ 𝛁𝐯 = 𝛁 ∙ 𝐓,                                                                                                          (S5) 

where v is the fluid velocity field and ρ is the fluid density.  The Cauchy stress tensor is 𝐓 = −𝑝𝐈+ 𝐒, 

where p is the fluid pressure, 𝐈 is the identity tensor, and S is the deviatoric stress tensor.  For an 

incompressible Newtonian fluid, 𝐒 = 2𝜇𝐃, where µ is the fluid shear viscosity and 𝐃 = 𝛁𝐯+ 𝛁𝐯! /2 

is the rate-of-strain tensor.	
  

The corresponding equation for the solid nanoparticle is Navier’s equation: 

𝜌!
𝜕!𝐮
𝜕𝑡! =

𝐸
2 1+ 𝜎 𝛁𝟐𝐮+

1
1− 2𝜎 𝛁   𝛁 ∙ 𝐮 ,                                                                              (S6) 

where u is the solid displacement field, 𝜌! is the solid density, E the Young’s modulus of the solid, and 

σ is the Poisson ratio of the solid. 

Since the motion is oscillatory, all time-dependent variables, such as the solid displacement, fluid 

velocity and fluid pressure, are expressed in terms of the explicit time dependence 𝑒!!!!: 

𝑋 𝑟, 𝑧, 𝑡 =   𝑋 𝑟, 𝑧   Ω)  𝑒!!!!,     (S7) 

where i is the usual imaginary unit and X denotes any time-dependent quantity.  For simplicity, we 

henceforth omit the superfluous ‘∼’ notation, noting that the above relation holds universally for 

harmonic oscillation. 

At the interface between the fluid domain and the solid particle, the conditions of continuity of 

stress, velocity, and displacement are imposed.  The no-slip boundary condition is enforced at the solid 

interface.  This provides direct coupling between the Navier-Stokes equation for the fluid, equation 

(S5), and Navier’s equation for the solid, equation (S6).  
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We simplify the calculations by approximating the nanoparticles as axisymmetric.  A bipyramid is 

thus approximated as a pair of truncated cones, as illustrated in Fig. S1.  Each half of the particle along 

its symmetry axis is a cone with a base diameter of 𝑅!"# and a height of 𝐿!/2, truncated to a height of 

𝐿/2, so that the total length of the particle is 𝐿. 

 

Figure S1:  Schematic of the bipyramid particle geometry used for calculations.  The origin is at 
the center of the particle. 

 

An analytical solution to this problem can be obtained by assuming that the length of the particle 

greatly exceeds both the viscous penetration depth and the particle radius.7 This allows for 

approximation of the hydrodynamic load at any axial position along the particle by that due to a local 

shear flow; pressure does not affect the flow in this limit.  We then obtain the following normalized, 

complex eigenfrequency for the vibration:7 

                                        Ω! ≡
𝐿!𝜌!
𝐸 Ω!   

𝑅! 𝑧 𝑢′ 𝑧
!
𝑑𝑧

!
!
!

𝑅! 𝑧 + 1+ 𝑖 𝜌
𝜌!
𝑅!"#  𝑅 𝑧 1

𝛽 Ω   𝐾∗ 𝑢! 𝑧 𝑑𝑧
!
!
!

    ,                (S8) 

where Ω is the complex eigenfrequency, 𝑅(𝑧) is the position-dependent radius of the particle, 𝑧 is the 

distance along the particle, normalized by 𝐿 , and 

  𝐾∗ = 𝐾! −𝑖 2𝑖𝛽 Ω   𝑅(𝑧)/𝑅!"# /𝐾! −𝑖 2𝑖𝛽 Ω   𝑅(𝑧)/𝑅!"# .  In this expression, the Reynolds 

number is  

𝛽 Ω =
𝜌Ω𝑅!"#!

2𝜇 .                                                                                                                                                    (S9) 

The integrals in equation (S8) must be evaluated numerically. The equation then becomes a 

transcendental equation for the complex eigenfrequency, Ω.  The resonant frequency, 𝜔res, and quality 

factor, 𝑄!"#$%, of the nanoparticle vibrations can be determined from this eigenfrequency: 
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𝜔res = Ω!! + Ω!!    ,                                                                                                                                      (S10) 

and 

𝑄fluid =   −
𝜔res
2Ωi

    ,                                                                                                                                                    (S11) 

where Ωr and Ωi are the real and imaginary components of Ω, respectively. 

B.  Linear Maxwell Fluid 

The model developed above can readily be generalized to the case of a linear Maxwell fluid.  In this 

case, the deviatoric stress tensor is given by9 

𝐒+ 𝜆
∂𝐒
∂t = 2𝜇𝐃,                                                                                                                                                  (S12) 

where 𝜆 is the shear relaxation time of the fluid.  Applying the harmonic time dependence of equation 

(S7), equation (S11) becomes S− 𝑖Ω𝜆S = 2𝜇𝐃, which has the explicit solution 

𝐒 =
2𝜇

1− 𝑖Ω𝜆𝐃.                                                                                                                                                        (S13) 

The solution for a Maxwell fluid can thus be rigorously obtained from that of a Newtonian fluid, under 

the substitution 

𝜇 →
𝜇

1− 𝑖Ω𝜆 .                                                                                                                                                            (S14) 

In particular, making this substitution in equation (S9) enables calculation of the dynamic response of a 

nanoparticle immersed in a linear Maxwell fluid, from equation (S8).	
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III.  FINITE-ELEMENT CALCULATIONS 

Finite-element calculations solve the same eigenvalue problem, equations (S5) - (S7), as the 

analytical model described above, subject to the same boundary conditions.  In particular, we assume 

that the oscillation amplitude of the nanoparticles is small, and we apply the no-slip boundary condition 

at the solid-liquid interface.  Numerical solution of the equations, however, makes it possible to remove 

the approximation of long, slender nanoparticles, and consider cases where the nanoparticle length is 

arbitrary relative to its diameter or to the viscous penetration depth in the fluid. 

 

Figure S2:  Schematic of a bipyramidal nanoparticle immersed in a fluid, showing the 
computational domain and particle dimensions.  The line along the z-direction through the major 
axis of the particle is the axis of symmetry.  The fluid region is green and the solid region is gold.  
The dashed region is not part of the computational domain, and is shown only to illustrate the 
particle shape. 

 
In the finite-element calculations, we again assume cylindrical symmetry, approximating the 

bipyramidal nanoparticle as a pair of truncated cones, as illustrated in Fig. S1.  This symmetry makes it 

possible to reduce the computational domain to the r-z plane for 𝑧 ≥ 0, where the z-axis is along the 

symmetry axis of the particle, r is the radial direction, and the origin is at the center of the particle.  The 

fluid domain is taken to extend a distance 𝐿!/2 in both the r and z-directions from the center of the 

particle, as illustrated in Fig. S2, and the condition of zero fluid pressure is applied at these boundaries.  

This allows for flow into and out of the boundaries, and thus presents a weaker boundary condition 

than a no-penetration or no-slip condition, lessening the effect of the finite computational domain. 
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The resulting coupled system of equations is implemented in the commercial finite-element 

software COMSOL Multiphysics, using its damped eigenfrequency solver.  The effects of the 

computational domain are assessed by varying the size of the fluid domain while keeping the 

nanoparticle dimensions fixed.  This shows that 𝐿! ≥ 6  𝐿!  ensures calculated quality factors and 

resonant frequencies are independent of domain size to within 0.1%; we therefore use 𝐿! = 10  𝐿! in all 

reported calculations.  We use a high-density mesh at the liquid-solid interface, to capture effects due to 

the viscous boundary layer, and verify that a mesh with 23,625 elements provides results that are 

independent of mesh size to within 0.1%.  We also verify that the finite-element results agree 

quantitatively with the analytical theory for particles with aspect ratio 𝐿!/(2𝑅!"#) ≥ 100. 
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IV.  MATERIAL PROPERTIES 

A.  Gold Nanoparticles 

For all calculations, the gold nanoparticles are taken to have bulk material properties,6 specifically, 

a density of 19,320 kg/m3 and a Poisson’s ratio of 0.44.10 Young’s modulus is not required, because the 

data is normalized by the measured resonant frequencies. 

B.  Glycerol-Water Mixtures 

Standard low-frequency shear viscosities for the water-glycerol mixtures are calculated according 

to the empirical formula in Ref. 11.  The temperatures of the solutions measured during the optical 

measurements are substituted into this formula, together with the mass fraction of glycerol in the 

mixture. 

 

Figure S3:  Shear relaxation time, 𝜆, as a function of mass fraction of glycerol, for glycerol/water 
mixtures at 25°C. 

 

Calculations for a linear Maxwell fluid use tabulated values for the relaxation time, 𝜆, previously 

obtained from ultrasonic measurements.12 The shear relaxation time is given by the ratio of the low-

frequency shear viscosity, 𝜇, to the high-frequency shear modulus, 𝐺!: 

𝜆 =
𝜇
𝐺!

  .                                                                                                                                                                (S15) 
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Slie et al. showed that 𝐺! is weakly dependent on the concentration of glycerol and temperature.12 

Based on this measured data, and extrapolation to 100% water, they derived empirical relations for the 

infinite frequency shear modulus 𝐺! as a function of water concentration and temperature (see Table II 

of Ref. 12).  Since the fit coefficients vary linearly with water concentration and temperature, it is a 

simple matter to derive a general fit function that includes both effects.  Performing linear regression 

on these fit parameters then gives 

𝐺! = 2.67867− 0.99291  𝑐 − 0.02762− 0.01544  𝑐   𝑇               GPa ,                                  (S16)  

where c is the mole fraction of water and T is the temperature in °C.  The resulting dependence of 𝜆 on 

the mass fraction of glycerol, for water-glycerol mixtures at 25°C, is given in Fig. S3.  The limiting 

values for the shear relaxation time predicted by equation (S16) are in good agreement with 

independent reports for water and pure glycerol.13,14  

 

V.  TESTS OF MODEL ASSUMPTIONS 

A.  Effect of Fluid Compressibility 

The analytical models described above implicitly assume that flow is driven only by shear, since 

they are derived for a slender particle undergoing extensional oscillations.  These analytical models 

therefore have zero pressure variations, and give identical predictions for both compressible and 

incompressible Newtonian fluids.  However, they show good agreement with full finite-element 

simulations for incompressible flow,7 especially for slender particles.  The finite-element simulations 

account for the full three-dimensional geometry of the particles and thus accurately capture pressure 

effects at the particle ends.  This agreement between the analytical models and finite-element 

simulations indicates that pressure variations do not exert a strong effect on the fluid-structure 

interaction.  Since fluid compressibility affects flow behaviour and energy dissipation through pressure 

variations only, fluid compressibility is expected to exert a secondary effect. 
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Figure S4:  Effect of fluid compressibility.	
   	
  A. Velocity field in a vibrating bipyramidal gold 
nanoparticle and in surrounding pure water, showing sound wave propagation away from the 
particle.  B & C. Calculated resonant frequency and quality factor for vibrations of bipyramidal 
gold nanoparticles in water-glycerol mixtures. Results are shown for an incompressible Newtonian 
fluid, assuming an intrinsic quality factor 𝑄!"# = 50 (7), and for a compressible Newtonian fluid, 
assuming 𝑄!"# = 90. 

 

We verified this explicitly by performing finite-element simulations that treat the liquid 

surrounding the nanoparticle as a compressible Newtonian fluid.  Using the true particle geometry in 

these calculations rigorously accounts for pressure effects at the particle ends, and thus the fluid 

compressibility.  Figure S4(A) shows the velocity field in the particle and the fluid for a bipyramid 

vibrating in water.  As expected, sound waves are observed to radiate mainly from the particle ends, 

demonstrating that this is indeed predominantly a shear-driven flow.  Compressibility modifies the 

effect of fluid loading especially at high viscosity, and a monotonic decrease in both the resonant 

frequency and quality factor with increasing glycerol is observed; see Figs. S4(B) and S4(C).  Fluid 

compressibility is therefore unable to account for the experimental observations. 

 

 



	
  	
  	
  	
  	
  	
  

     SUPPLEMENTAL MATERIAL  
     Viscoelastic Flows in Simple Liquids Generated by Vibrating Nanostructures 
	
  

	
  

	
  

13	
  

B.  Effect of Slip at the Solid-Liquid Interface  

The models presented above can be generalized by replacing the no-slip boundary condition with a 

slip boundary condition.  We implement the standard Navier slip condition: 

𝑢!"#$ =   𝜂  𝐧 ∙ 𝛁𝐯 ∙ 𝐭  ,                                                                                                                                                  (S17) 

where η is a molecular length scale of the fluid, commonly referred to as a slip length, n is the unit 

normal vector to the surface, v is the velocity field, and t is the unit tangent vector to the surface. 

Figure S5 shows results of the analytical model that allows for slip at the solid-liquid interface, 

assuming a Newtonian fluid; similar conclusions are obtained using finite-element analysis.  Realistic 

values of the normalized molecular scale, or Knudsen number, Kn ≡ 𝜂/𝑅!"#, are less than 10!!.  For 

these values, the calculated resonant frequencies and quality factors are nearly identical to those 

obtained using the no-slip boundary condition.  Assuming high values of Kn leads to unrealistically 

low damping for low-viscosity fluids.  Including slip in the calculations thus does not capture the 

observed experimental trend. 

 

Figure S5:  Effect of slip on the calculated A. resonant frequencies and B. quality factors for 

bipyramidal gold nanoparticles in water-glycerol mixtures, as a function of the mass fraction of 

glycerol.  Results are shown for Newtonian fluids with different Knudsen numbers, Kn, and assume 

an intrinsic quality factor, 𝑄!"# = 35.	
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VI.  MAXIMUM POTENTIAL-ENERGY DENSITY IN SOLID AND FLUID 

DOMAINS 

A.  Solid Particle 

The potential energy per unit volume, 𝐸!"#$%, stored in a linearly elastic solid is 

𝐸!"#$% =
1
2𝐓 ∶ 𝐞  ,                                                                                                                                                  (S18) 

where T is the stress tensor and e is the strain tensor.  Integrating equation (S18) over the entire volume 

of the solid gives the total potential energy. 

Since the motion is harmonic, we apply the ansatz in equation (S7) and consider the real parts of 

the complex-valued stress and strain tensors: 

𝐓 = Re 𝐓  𝑒!!"#     ,            𝐞 = Re 𝐞  𝑒!!"#     .                                                                              (S19) 

Choice of the real part merely sets the phase reference in the oscillatory motion, and does not affect the 

final result for the energy stored. 

Retaining the “~” for clarity here, we obtain the required expression for the maximum energy 

stored in the solid in terms of the complex stress and strain tensors: 

max 𝐸!"#$% =
1
4 Re 𝐓 ∶ 𝐞∗ + 𝐓 ∶ 𝐞   ,                                                                              (S20) 

where * indicates the complex conjugate. 

Equation (S20) applies to any linearly elastic solid, regardless of the constitutive equation.  It is 

used to calculate the maximum energy density stored in the solid particle. 

B.  Surrounding Fluid 

The constitutive equation for a linear Maxwell fluid is given in equation (S12): 

𝐒+ 𝜆
∂𝐒
∂t = 2𝜇𝐃,                                                                                                                                                  (S21) 

where the total stress is 𝐓 = −𝑝𝐈+ 𝐒, p is the pressure, and S is the deviatoric stress tensor.  The rate 

of work done in deforming a material element of the fluid is 

𝑊 = 𝐓 ∶ 𝐃 = 𝐒 ∶ 𝐃  ,                                                                                                                                      (S22) 
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where we have assumed that the fluid is incompressible. 

Substituting equation (S21) into equation (S22) gives 

𝑊 =
1
2𝜇 𝐒 ∶ 𝐒+

𝜆
4𝜇

∂
∂𝑡 𝐒 ∶ 𝐒 .                                                                                                    (S23) 

The second term on the right hand side of equation (S23) does not contribute to the energy dissipated 

per cycle and defines the rate-of-change for the energy density stored in the fluid: 

𝐸!"#$% =
𝜆
4𝜇 𝐒 ∶ 𝐒.                                                                                                                                                  (S24) 

Equation (S24) can also be obtained from equation (S18) by noting that a linear Maxwell fluid 

corresponds to a spring connected to a damper in series.  Substituting the spring contribution to the 

total rate-of-strain into equation (S18) immediately gives equation (S24). 

Finally, we substitute the time ansatz for harmonic motion, 

𝐓 = Re 𝐓  𝑒!!"#     ,            𝐒 = Re 𝐒  𝑒!!"#     ,            𝑝 = Re 𝑝  𝑒!!"#     ,                                              (S25) 

into equation (S24), to obtain the required result for the maximum energy density stored in the fluid: 

max 𝐸!"#$% =
𝜆
8𝜇 𝐒 ∶ 𝐒∗ + 𝐒  : 𝐒 =

𝜆
8𝜇 𝐓 ∶ 𝐓∗ − 3 𝑝 ! + 𝐓 ∶ 𝐓− 3𝑝!   .                      (S26) 

This equation is used to calculate the maximum energy density stored in the fluid. 
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VII.  EFFECT OF MOLECULAR ORDERING OF LIQUID AND PSS LAYER 

The principal experimental observation of this study is that the resonant frequency of the 

nanoparticles increases with increasing glycerol concentration; this feature is not predicted using 

Newtonian theory (see Fig 2C).  Here, we show that molecular ordering of the liquid at the solid-liquid 

interface and/or a change in conformation of the PSS layer surrounding the nanoparticles cannot be 

responsible for this observation. 

A.  Vacuum Frequency  

We first calculate the resonant frequency of the particles in the absence of liquid, i.e., in vacuum.  

This value is then used as a reference for discussion.  Since Newtonian theory holds for water,2 the 

vacuum frequency of the particle can be calculated from the measurement in water.  The principal 

equation for the Newtonian theory is7 

𝐿!𝜌!
𝐸 𝜔! =   

𝑅! 𝑧 𝑢! 𝑧 !𝑑𝑧
!
!
!

𝑅! 𝑧 + 1+ 𝑖 𝜌
𝜌!
𝑅!"#𝑅 𝑧 1

𝛽 𝜔   𝐾∗ 𝜔, 𝑧 𝑢! 𝑧 𝑑𝑧
!
!
!

     , (S27) 

where 𝜔 is the complex eigenfrequency, 𝐿 is the particle length, 𝜌! is the particle density, 𝐸 is the 

Young’s modulus of the particle, ρ is the fluid density, µ is the fluid shear viscosity, 𝑢 𝑧  is the 

position-dependent axial displacement of the particle, 𝑅 𝑧  is the position-dependent radius of the 

particle, 𝑅!"# is the maximum particle radius, 𝑢 𝑧  is the position-dependent displacement of the 

particle in the z-direction,   𝐾∗ 𝜔, 𝑧 = 𝐾! −𝑖 2𝑖𝛽 𝜔   𝑅(𝑧)/𝑅!"# /𝐾! −𝑖 2𝑖𝛽 𝜔   𝑅(𝑧)/𝑅!"# , 𝐾! 

and 𝐾! are modified Bessel functions of the third kind, and 𝛽 𝜔 = 𝜌𝜔𝑅!"#! /(2𝜇).  Integration in Eq. 

(S27) is over one half of the bipyramid particle length, by symmetry.  

The resonant frequency in fluid, 𝜔!"#$%, is related to the complex eigenfrequency 𝜔 by 

𝜔!"#$% = 𝜔!! + 𝜔!!  .                                                                                                                                        (S28) 

The resonant frequency in vacuum is obtained by setting the fluid density to zero in Eq. (S27).  

Calculations using Eqs. (S27) and (S28) display excellent agreement with full FE simulations of the 

fluid-structure problem. 

Substituting the measured value for the resonant frequency of the nanoparticles in pure water, 
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𝑓!"#$% = 20.3  GHz  ,                                                                                                                                    (S29) 

into Eqs. (S27) and (S28), and solving for the vacuum frequency, gives the required result for the 

resonant frequency in vacuum: 

𝑓!"# = 20.6  GHz  .                                                                                                                                          (S30)  

B.  Effect of Increasing Glycerol Concentration  

Increasing glycerol concentration above 40% is experimentally observed to strongly increase the 

measured resonant frequency. (See Fig. 2C in the main text.)  Strikingly, the vacuum frequency of 

𝑓!"# = 20.6  GHz , calculated above, is significantly smaller than the measurement in an 80% 

glycerol/water mixture: 

𝑓!"%  !"#$%&'" = 22.3  GHz  .                                                                                                            (S31)  

This is to be compared to the 1.5% reduction in frequency from vacuum to water. 

This strong increase in resonant frequency with increasing glycerol concentration is not predicted 

using Newtonian theory and immediately establishes that presence of the surrounding glycerol mixture 

stiffens the particle. 

C.  Effect of Interfacial Liquid and PSS Layers  

We now examine the possible role of interfacial molecular ordering of the liquid and 

conformational changes in the PSS layer surrounding the particle surface.  Specifically, we explore the 

possibility that these effects alone could account for the large increase in resonant frequency from 

vacuum to 80% glycerol.  Such a large increase in resonant frequency would require an interfacial 

liquid layer and/or PSS layer that strongly increases the effective rigidity of the metal nanoparticle.  

If we assume these layers have identical elastic properties to gold, but with the density of water, 

then the layers would need to be approximately 2 nm thick to account for the frequency increase 

described above.  This thickness value is obtained by noting that, under such conditions, the potential 

energy increases linearly with the cross sectional area, whereas the kinetic energy is relatively 

unchanged (due to the difference in the density of gold and water).  Even so, the existence of either 

liquid or PSS layers with the elastic properties of a metal is clearly unphysical; this thickness estimate 

is therefore a lower bound.  Decreasing the rigidity of such layers from the values of gold would 

increase the required layer thickness.  Indeed, realistic elastic properties of these layers would require 
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that they be dramatically larger than the particle diameter in order to account for the observed increased 

in frequency.  

However, the thickness of the PSS layer is limited to a few nm by the size of the PSS molecules, as 

has been directly observed in TEM images.  This immediately eliminates the possibility that the PSS 

layer is responsible for the observed increase in frequency.  Similarly, long-range molecular ordering of 

the liquid over hundreds or thousands of nanometers from the particle surface is also unphysical; this 

rules out the possibility that interfacial liquid effects are responsible for the observations. 
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